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The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson

masses in the minimal standard model, it is instead metastable with a lifetime exceeding the present age

of the Universe. The decay of our vacuum may be nucleated at low temperature by quantum tunneling

or at high temperature by thermal excitation. We show that the requirement that the vacuum survive

the high temperatures of the early Universe places the strongest constraints from vacuum stability on the

top-quark and Higgs-boson masses in the minimal standard model. If a single Higgs boson is found ex-

perimentally, these constraints may place an upper bound on the scale of new physics beyond the
minimal standard model. In contrast with other work, we examine temperatures very large compared to
the scale of weak symmetry restoration and find much stronger bounds. We also present a simple analyt-
ic approximation that directly relates the bounds to the running coupling constants of the minimal stan-
dard model.

I. INTRODUCTION

This potential, however, is modified by radiative correc-
tions. As we shall review, the dominant efFect of radia-
tive corrections is to replace the couplings p and A, by
running couplings that are evaluated at the scale given by

P itself:

v, (P) = ,'p'(P)P'+ —,'&—(P)P— (1.2)

p and A, are determined by the Higgs-boson mass at the
vacuum expectation value o. =247 GeV and are then
evolved to the scale P using the leading-order P functions:

In the minimal standard model, the classical Higgs po-
tential has the form

y( y )
— & 2y2+ l gy4

cleation, the size of the nucleation region, and the op-
timal temperature, are all very roughly the same, so there
will be no confusion as to which scale to use for the cou-
pling constants.

The decay of our vacuum occurs by the nucleation of a
bubble of the unstable phase. If the bubble is too small, it
collapses under its surface tension. If the bubble is large
enough, it expands classically, eventually absorbing all of
the metastable phase. Figure 4 shows qualitatively the
energy of a bubble as a function of its radius when the
value of P probed at the center of the bubble is held fixed.
(For a more general qualitative discussion, see Ref. [6].)
There is an energy barrier inhibiting the formation of
su%ciently large bubbles. At zero energy, the vacuum
can decay only by quantum tunneling through the bar-
rier, and the rate will be exponentially small [7]. We shall
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Explicit formulas may be found in Ref. [1]. Pi receives
contributions of order X from scalar loops, g from
gauge-boson loops, and a negative contribution of order
g~ from fermion loops. For a top-quark mass large com-
pared to III and m~, the fermion contribution will dom-
inate the others and will drive A,(P) negative at very large
values of P, as depicted in Fig. 1. This destabilizes the
efFective potential [5], shown qualitatively in Fig. 2,
where P, )))o. The dashed curve in Fig. 3 separates the
values of top-quark and Higgs-boson masses for which
our vacuum at 0.=247 GeV is absolutely stable and
merely metastable. (This figure assumes the minimal
standard model is a good eA'ective theory all the way up
to the Planck scale, an assumption we shall relax later. )

We shall see later that all of the physical scales relevant
to false-vacuum decay, the typical P created during nu-
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FIG. 1. The running of the scalar self-coupling k(P) vs scale

P for a sample choice of mH and m, which destabilizes the
effective potential.
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FIG. 2. The effective potential when fermion masses are
large enough to destabilize it.

0 t

presently review the method for calculating this rate, but
the results are shown in Fig. 3. Above the dot-dashed
line, the lifetime of our vacuum exceeds the age of the
Universe.

If enough energy were present, the energy barrier Eb in

Fig. 4 might be crossed classically, rather than quantum
mechanically, and so there would be no exponentia
suppression arising from quantum tunnehng. It was once
suggested [8] that high-energy cosmic-ray collisions could
provide this energy, but one of us [6] argued that such
collisions could not produce enough Higgs quanta to
create a sufficiently large bubble. Producing such bubbles
might be possible if current speculations that weak in-
teractions necessarily become strong at energies of order
10—100 TeV are borne out. The implications for false-
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FIG. 3. Below the dashed curve, our vacuum is not absolute-

ly sta e. eow ebl B 1 the dot-dash curve, it would have already e-
. Below thecayed due to quantum tunneling at zero temperature. e ow e

solid curve, it would have already decayed due to thermal exci-
tation in the early Universe. The dotted line shows the genera-
ly weaker bound of Ref. [2] due to thermal excitation below the
symme ry-rest - toration temperature. All curves correspond to a

ff f A=10' GeV for the minimal standard mode. e
current bounds from the CERN e+e collider LEP (Ref. [ ])+

and the Collider Detector at Fermilab (CDF) (Ref. [4]) are also
shown.

FIG. 4. A qualitative sketch of bubble energy E vs bubble

size R for fixed bubble amplitude ((o.

V,tr( T) V,s( T=0)-g T P— (1.4)

This is the usual effect responsible for restoring SU(2)
gauge symme ry at at high temperatures. This contribution
will also raise the potential barrier in Fig. 2 and so wi
raise the energy EI, needed to initiate vacuum decay in
Fig. 4. The advantage of high temperatures to induce
vacuum decay hinges on a trade-off: there is thermal en-
ergy to cross the barrier, but the barrier is higher. These
issues were first addressed by Anderson [2], who restrict-
ed his attention to temperatures near or below the
symmetry-restoration transition and obtained the bounds
shown by the dotted line in Fig. 3. By examining much
higher temperatures, we find much stronger bounds on
top-quark and Higgs-boson masses, shown by the so i
line. We will also show how, to a good approximation,
these bounds may be related to the runing coupling con-

vacuum decay have been explored by Ellis, Linde, and
Sher [9] and by Hsu [10]. Since this possibility is so high-
ly speculative, its consequences cannot yet be used to ex-
clude any top-quark and Higgs-boson masses.

A th ource of energy to cross the barrier is theno er s
high temperature of the early Universe. In t e ig-
temperature plasma, Higgs quanta are as abundant as any
other particle, and thermal fiuctuations may excite a
sufFiciently large bubble. That large, coherent, classical
excitations may be formed in the thermal plasma has
been the subject of some debate and was demonstrated

a thermal fluctuation having sufficient energy EI, to cross
the barrier is simply given by a Maxwell-Boltzmann fac-

The rate will not be exponentially suppressed at tem-
eratures large compared to the barrier energy. At first

sight, this seems to imply that no false vacuum couuld sur-
vive the early history of the Universe. However, the
effective potential, and therefore Eb, also depends impli-
citly on the temperature. We shall review the finite-
temperature potential below, but the effect at high tem-
perature is to add a temperature-dependent contribution
of order
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stants by a simple analytic formula.
In the next section, we shall briefly review the effective

potential. In Sec. III, we discuss the vacuum decay rate
at zero temperature and review how the standard model
may be excellently approximated by a simple toy model.
In Sec. IV, we review the finite-temperature case, explain
our calculations, and show how, at high tempertures, the
standard model may again be well approximated by a
simple extension of our toy model. We also discuss the
validity of our approximations and the sources of higher-
order corrections.

II. THE EFFECTIVE POTENTIAL

+3(gy& p&)&In
M

B =
—,', (g i+2g ig2+3g2) —3gr

(2.1)

(2.2)

where M is the original, fixed renormalization scale,
which we shall in practice always choose to be the vacu-
um expectation value (VEV) o. . In our convention, P
represents ~4 /i/2 where @ is the complex Higgs dou-
blet. At large P, Vi is dominated by

1 rA2

Vi — (B+12A, )P ln
64~ M

(2.3)

For a suiTiciently large top-quark mass, this contribution
is negative; at sufficiently large P, it will destabilize the
potential. V, cannot be trusted at large P, because the
two-loop contribution grows as g ln P, the three-loop as

g ln P, and so forth. The convergence of the perturba-
tion series is controlled by g in/ rather than g . When
implemented at leading order, the renormalization group
implicitly sums the leading-logarithm term in every order
and restores convergence; our calculations will be valid to
leading order in g (P) and not merely leading order in

g 1ng. The renormalization-group-improved potential is
[1,13]

The one-loop correction to the effective potential is, in
the Landau gauge [1,13],

r

3rA
V, = BP ln +(3A,Q

—p ) ln
64~ M M

It will be convenient to work with a simply normalized
kinetic term. At the order of leading logarithms, and so
to leading order in g (P), we may absorb the wave-
function renormalization G (P) by replacing P by
P/G(P). For the remainder of this work, we shall then
work with the effective action

(2.7)

(2.8)

200

Vacuum Stability

The prescription is trivial: just evaluate the coupling
constants at scale P.

In general, the question of whether or not the elec-
troweak vacuum is necessarily unstable will depend on
the scale A at which new physics comes in beyond the
minimal standard model. The most conservative assump-
tion, for the sake of setting bounds on top-quark and
Higgs-boson masses, is to assume the vacuum unstable
only if V,s(P) drops below V,s(o ) for P5 A. Figure 5

shows how the unstable region of parameter space varies
with A. This has been computed more accurately by pre-
vious authors, who include next-to-leading-order correc-
tions to the effective potential [14].

At P near or below the vacuum expectation value o.,
the effective potential (2.8) does not exactly reproduce the
one-loop potential (2.1). This is because it ignores the
scalar threshold and treats in(aA, Q

—p ) as in/. The
dominant mechanism for vacuum decay, however, will al-
ways involve P large compared to o.. Near o, in any case,
the discrepancy is subleading order in A, (P). For P much
smaller than o. , we could remove the scalar contribution
to the /3 function, but this is not really necessary since A,

will generally be small. Regardless, the details of the be-
havior at very small P will not be relevant for our final re-
sults. We also cut off numerical evolution of the cou-
plings below 1 GeV in order to avoid the blow-up of a, .
(a, affects the running of A, and p indirectly by affecting

VRG(p)= 2p'(p)G'(p)p'—+—,'&(p)G (p)p— (2.4)
150—

where coupling constants are run numerically using P
functions and where each explicit factor of P has been
scaled through its anomalous dimension y using

100—

G(P) =exp —f d(in/)y(g(P))
M

(2.5)
50

In order to examine processes by which our vacuum
may decay, we will need the full effective action rather
than just the effective potential. The leading-order Eu-
clidean effective Lagrangian is [13]

&,s= 2G'(p)(&p) —
—,'p'(p)G'(p)p'+ —,'&(p)G (Q)p

(2.6)

0
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FIG. 5. The line separating a stable electroweak vacuum
from one that is merely metastable, as a function of the cutoff
scale A in GeV.
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the running of the top-quark Yukawa gr. ) Our choice of
a, at the scale cr =247 GeV is 0.100. [Our initial value of
a, (o ) corresponds to A&cD (4 fiavors) =260 MeV for the
two-loop modified minimal subtraction scheme (MS)
value (ignoring the top quark). But we have simply used
erst orde-r P-functions to evolve to higher scales since our
calculation does not consistently include next-to-leading-
order effects in a, . The evolution above o. includes the
top quark and so assumes six flavors. Lowering AQcD to
100 MeV gives an initial a, (cr ) =0.088 and decreases our
final bounds on I, by up to 5 GeV. ]

III. NUCLEATION BY QUANTUM TUNNELING

The WKB amplitude for false-vacuum decay by tun-
neling may be found by formally examining the Euclide-
an path integral and expanding it about the "bounce"
solution to the Euclidean equations of motion [15]:

(3.1)

The bounce solution is an O(4) rotationally symmetric
solution and so solves

a,'+ —a, y=2 3
s ' dP

(3.2)

where s =(tE+r )' . There is a solution which takes on
some value Po at s =0, probing the unstable region of the
potential, and which falls to the false vacuum o. as s ~ co.
When viewed as a function of Euclidean time tE, the
bounce solution P(s) interpolates between the false vacu-
um P(tz ~—~, r) =o and a zero-energy bubble
P(tz=O, r), which is large enough to then expand on its
own classically. The full Euclidean bounce solution dou-
ble counts the transition by returning back to the false
vacuum P(tz~+ ~, r) =o.. The Euclidean action of the
solution yields the exponential suppression of the rate for
false-vacuum decay:

The false vacuum at /=0 is classically stable against all
small, local perturbations because of the contribution of
the gradient term —,'(VP) to the energy density, which is
responsible for the "surface" energy of small bubbles of
/&0. The Euclidean bounce solution is the Fubini in-
stanton [16]

' 1/2
2

p(~) =
K

2R 8m

S2+R 2 3g
(3.5)

8m
Sz=, a,ir=max[ —A(P)] & 0,

3~et
(3.6)

where the maximum is restricted to scales P below the
cutoff scale A. This approximation generally matches the
full numerical calculation of the bounce action to within
a few percent.

The rate for false-vacuum decay per unit volume has
dimensions of [mass ]. Since the only mass scale in the
toy-model problem is 1/R, which is the same as P (0) up
to powers of the coupling constant, the approximation
(3.6) used to obtain the rate may be slightly improved by
writing

—= max [P exp( —Sz)] .
V x(y) &o

(3.7)

A more accurate calculation of the prefactor would re-
quire expanding the Euclidean path integral in small Auc-

200
Vacuum Tunneling (T=O)

The solution is degenerate with respect to the choice of
an arbitrary scale length R, reflecting the scale invariance
of the potential (3.4). In the real standard model, howev-
er, this scale invariance is broken by the runing of A, , and
R should be chosen to maximize the tunneling rate. (We
continue to ignore the mass term, which also breaks scale
invariance. ) So

rate-exp( —SE) . (3.3)

v($) = —
—,'aP (3.4)

The prefactors of the exponential, if desired, may be corn-
puted by an appropriate expansion of the Euclidean path
integral about the bounce solution.

At this point, the rate for the decay of the electroweak
vacuum at zero energy may be found simply by solving
(3.2) numerically, using the effective potential discussed
earlier, and computing the Euclidean action. However,
as discussed in Ref. [6], there is also a simple but accurate
approximation to V,~ which produces an analytic result
for the bounce solution. The effective potential does not
generally become unstable until P is exponentially large
compared to o.. For such large P, the quadratic P term
may be ignored compared to the quartic P term. In the
unstable region, A,(P) varies only logarithmically with P
and so, in first approximation, may be treated as a nega-
tive constant ( —~) over any given decade in P. This in-
spires the toy model defined by
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FICx. 6. For various choices of the scale A for new physics
beyond the minimal standard model, the region below the corre-
sponding line is excluded because our vacuum would have al-
ready decayed by quantum tunneling at zero temperature.
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e4" max
A, (P) &0

exp
Sm (3.8)

tuations about the bounce solution, which we shall not
attempt. To decide whether the vacuum would survive
10' yr, we must multiply by the space-time volume of
the past light cone of the observable Universe, which is
roughly e jo . The dividing dot-dash line in Fig. 3 is
then determined by the criteria that

Figure 6 shows how this line depends on the cutoff scale
A.

IV. NUCLEATION BY THERMAL EXCITATION

At finite temperature, the one-loop potential should be
evaluated using finite-temperature Feynman rules. For
each species of particle that runs around the loop, the
contribution of a nonzero temperature to the effective po-
tential is simply the free energy of an ideal gas of such
particles [1,17]:

d k
V, i(rT, P)=V,tr(0, $)+g+n, Tj in[1+ exp[ —P+k +m, (P)]],(2~)' (4.1)

where the sum is over all species i, n, is the number of de-
grees of freedom associated with each species, the upper
(lower) sign is for bosons (fermions), and m, (P) is the
efFective mass of species i in the presence of P. For exam-
ple,

the high-temperature limit, where [17,18]

V,s(T, P)= V,s(0,$)+ ,'g T P +co—nst,

g' —= —,', ( —,'g', +—9g,'+3gi, +6k, ) .

(4.3)

(4.4)

mw(4)=-, 'g2(t &w=6

mz(P)= —,'(g, +g2)'~ P, nz=3,

m, (P) =gag/V'2, n, = 12 .

The details of the scalar contributions, however, are
gauge dependent. The gauge dependence disappears in

We shall see later that, for processes which thermally ex-
cite the phase transition, either the high-temperature lim-
it is valid or else k is order g and the gauge-dependent
scalar effects are ignorable. In fact, for the bounds on the
top-quark and Higgs-boson mass, the high-temperature
limit will always be adequate. For more general numeri-
cal work, we shall take the finite-temperature corrections
to V,s. to be given by (4.1) with the scalar contribution re-
placed by its high-temperature limit:

d k
V,~(T,P)=V,~(0,$)+ ,'AT P2+ g—+n,TI in[1+exp[ P+k +rn; (P—)]] .

i=wzt
(4.S)

We shall evaluate coupling constants at the scale P as be-
fore. As we shall see below, the optimal temperature for
thermally exciting phase transitions is roughly the same
order as the P probed in the nucleation process, and so
there will be no serious ambiguity associated with which
scale to use for coupling constants.

The location of the false vacuum of V,~ is temperature
dependent. At low temperature, it is at o. ; at high tem-
perature it is at zero. Using the effective potential of (4.S)
and (2.8), the phase transition is first order, as shown in
Fig. 7. However, the dominant contribution to false-
vacuum decay will be at suKciently high temperature
that it will be insensitive to the possibly complicated de-
tails of the phase transition.

We now need to find the energy barrier for the phase
transition, corresponding to EI, in Fig. 4. Note that the
bubble corresponding to EI, is a static, unstable solution
to the classical equations of motion: a bubble unstably
balanced between expansion and collapse. This bubble

may be found by solving the static equations of motion

Making a spherical ansatz, this becomes

a'„+—a„y= „'2 dVa
r

%'e are now in a position to find the thermal decay rate
exp( PE&) of the vacu—um by solving this equation nu-
merically and computing the solution's energy E&.
Again, we search for a solution that probes unstable
values of P at r =0 and falls off to the appropriate
(temperature-dependent) vacuum as r +~. —

Figure 8 gives an example of the dependence of the ex-
ponent /3E&(T) for a particular choice of top-quark and
Higgs-boson mass. Anderson [2], who was the first to
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ous jump in Fig. 8 at T, is due to the discontinuous
change in the vacuum state in a first-order phase transi-
tion.

As before, there is a simple approximation to V,ff

which produces a simple equation for Eb. Let us again
approximate the zero-energy effective potential by——'aP, and now approximate the finite-temperature con-
tribution by its high-temperature limit

y(y) tg2T2y2 t y4

Now scale out masses and coupling constants by replac-
ing

P~g TQ/&ir, r ~ r /(g T) .

The energy functional then becomes

(4.6)

E = f d r[ '(VP) +—'P 'P—]—— (4.7)
FICx. 7. A qualitative picture of the e6'ective potential as a

function of P for various temperatures covering the phase tran-
sition at T, . This figure shows only the behavior near and
below cr; for large m„ there will also be the instability of V(P)
at very large P as in Fig. 2. Except at low values of mH, the
phase transition is much weaker than depicted here.

and so Eb is proportional to gT/~. The constant of pro-
portionality may be found by solving the equations of
motion numerically:

look seriously at thermal excitation of false-vacuum de-
cay in this context, examined the process at temperatures
below the symmetry-restoration temperature T, . He
found the corresponding local minimum of 13E and used
it to estimate the maximal decay rate due to thermal exci-
tation. His bounds on the top-quark and Higgs-boson
mass are shown by the dotted line in Fig. 3. However,
Fig. 8 shows that the rate is much greater at tempera-
tures very large compared to T, . The resulting bounds
on masses are generally much stronger. The discontinu-

giving [20]

13Eb =(6.015)m.g/x' . (4.&)

From (4.6), the size of the bubble is order 1/gT and the
typical P is order gT/&ir. In this toy model, the ex-
ponent PEb is independent of the temperature T.

In the real standard model, this independence of scale
will again be broken by the running of couplings, and we
should look for the temperature that minimizes
g(T)/ A, (T) when A,(T) is negative. As before, we have
essentially one scale in the problem, and the rate per unit
volume will be roughly T exp( PEb). As d—iscussed by
Anderson, we should now multiply by the volume our
current horizon had when at temperature T, which is

600
V( T) -(10' yr) X (3K/T ) (4.9)

400

and by the amount of time the Universe spent at tempera-
ture T, which is

t-M i/T (4.10)

800

Putting it together, the solid line in Fig. 3 is then deter-
mined by the condition

e max
A(T) &0

cr 6.0~g( T) (4.11)

0 i

iridal

ioi 102 i03
T [GeV]

io4

FIG. 8. The Maxwell-Boltzmann exponent 13E(T) as a func-
tion of temperature for a particular choice of mH and m, . The
numerical discrepancy below T, with Fig. 3 of Ref. [2] is due to
the sensitivity of the maximum of t/', & to the Higgs-boson mass.
The resulting bounds on mH and m„however, are relatively in-
sensitive.

where g (T) is given by (4.4) and the maximum is restrict-
ed to scales T ~ A. Note that, if coupling constants are
sufficiently small, the exponent of order g/~A,

~

for
thermal excitation should always beat the exponent of or-
der 1/~A,

~
for tunneling at zero temperature. Indeed, our

numerical results bear out this conclusion.
Figure 9 shows the dependence of the bounds on the

scale A for physics beyond the minimal standard model.
Anderson's results for processes below the symmetry-
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Thermal Excitation
200

~

I I I I

)

I I I I

A= 10
1012

10
10
10

100—

50

l, , , , l, -, ;; I

75 100 125 150
m(top) [Gev]

175
I,

200

FIG. 9. As in Fig. 6, but for decay of the false vacuum by
thermal excitation at high temperature. The dotted line is the
bound of Ref. [2] from processes below the temperature of sym-
metry restoration. The total bound from thermal excitation is
the union of the dotted curve with the appropriate high-
temperature curve.

restoration temperature T, are again shown by the dotted
line. Consider again the behavior of the Maxwell-
Boltzmann exponent PE depicted in Fig. 8. At very low
mH, PE for T) T, never drops below the local minimum
for T&T, . In this case, Anderson's bound beats the
high-temperature bound, as shown in Fig. 9.

We are now in a position to check under what condi-
tions the high-temperature limit needed to justify our toy
model is a good one. This limit of the effective potential
(4.1) is valid when T is large compared to the particle
masses m;(P)-gP. In our solution, grtp-g Tjv'~A,

~ by
(4.6), and so the high-temperature limit is valid if A ))g .

The best test of the approximation is simply to com-
pare the mass bounds to those derived using the full po-
tential of Eqs. (2.8) and (4.5), solving numerically for the
static solutions. This is computationally expensive, and
so we have only checked a few representative values. The
approximation for the A=10' GeV curve is valid to
within a few GeV in m, . The approximation gets worse
at small A, and the exact definition of A itself becomes
crucial, as seen by the variation of the curves in Fig. 9
with A. Physically, the scale A of new physics is not a
precisely defined quantity, and only its order of magni-
tude is relevant. For the purposes of testing our approxi-
mation, however, let us define it by considering only tem-
peratures where the solution for the energy barrier has
P(0)(A. (Such solutions also have T(A and I/R (A.)

The A= 10 curve is then valid to about +5 GeV in m, .
This is likely the same size as corrections due to next-to-
leading-order effects, which have not been included I14].

Is it worth computing the curves of Fig. 9 more accu-

rately, by both using exact numerical solutions and by in-
cluding next-to-leading-order effects? Since the precise
value of A is not physically meaningful, the curves in Fig.
9 are intrinsically fuzzy by variations of A by roughly an
order of magnitude. Corrections to the curves will not be
meaningful unless they exceed this variation. The most
important application for corrections is then for the case
of very large A, where the variation is small. Next-to-
leading-order effects would include corrections to the P
functions, corrections to the finite-temperature potential,
and the full computation of small fluctuations about the
bubble solution P(r). Other issues that must be addressed
at higher order are the gauge dependence of the effective
potential and the fact that it can be complex valued. We
are currently investigating the calculation of these next-
to-leading-order corrections.

We should mention one correction whose smallness
may not be obvious. At finite temperature, particles have
thermal masses of order gT (related to Debye screening)
which may be of the same order as their P-dependent
mass of gP. Such a contribution should be included in
the computation of the effective potential (4.1) [21]. In
the high-temperature limit, valid when

~
A,

~
))g, the

thermal contribution to the total mass just adds an unin-
teresting constant to the effective potential and may safe-
ly be ignored at leading order. If, on the other hand,
~A,

~
-g, then our bubble has P-gT/v'~ A, —T/g and the

ratio of the thermal mass to the P-dependent one is
(gT) j(gP) -g. The thermal mass can again be ignored at
leading order.

V. CONCLUSIONS

We have shown that the strongest bounds on the stabil-
ity of the electroweak vacuum come from decays induced
by thermal excitation in the early Universe. These
bounds are sensitive to the scale A up to which the
minimal standard model and the standard big-bang
scenario may be good effective theories of nature. If the
top quark and a Higgs candidate are found in a region
that is excluded when A is the Planck scale, then Fig. 9
can be used to read off an upper bound on the scale A of
new physics beyond either the minimal standard model
or the standard big bang. If the masses are also in a re-
gion excluded by the zero-temperature limits of Fig. 6,
then a weaker upper bound on the scale of A can be read
off that is independent of the big-bang scenario. Finally,
there is the intriguing possibility that we may someday
discover that the minimal standard model is a good
effective theory up to 10 TeV or so and discover masses
in a region where our vacuum is metastable for A~ 10
TeV. We would then know our vacuum will someday de-
cay, billions of year hence.
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