
PHYSICAL REVIEW D VOLUME 44, NUMBER 11 1 DECEMBER 1991
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We obtain an expression for the Dalitz plot of semileptonic decays of charged baryons, including radi-
ative corrections with all the terms of the order n times the momentum transfer. The model dependence
of the radiative corrections is kept in a general form which is suitable for model-independent experimen-
tal analysis. The bremsstrahlung contribution is given in two ways. The first one leaves the triple in-

tegration over the photon variables to be performed numerically and the second one is completely ana-
lytic. Our result is suitable for high-statistics decays of ordinary baryons as well as for medium-statistics
decays of charm baryons.

I. INTRODUCTION

In a previous paper [1] we have obtained the radiative
corrections to the Dalitz plot of semileptonic decays of
charged and neutral hyperons. Those corrections were
calculated within the approximation of neglecting terms
of the order of aq/mM, (with q the four-momentum
transfer and M, the mass of the decaying baryon). This
approximation makes those results reliable up to a
theoretical precision of around 0.5% over most of the
Dalitz plot of non-heavy-quark decaying baryons, e.g. ,
X ~nev, = ~X ev, etc.

Of course, those results must be improved for high-
precision measurements, at, say, 1% experimental pre-
cision over most of the Dalitz plot or when the four-
momentum transfer is large, and it can no longer be
neglected in radiative corrections. This is the case with
heavy-quark semileptonic decays such as in charm de-
cays.

It is the purpose of this paper to improve our previous
result. We will include all the terms of order aq/AM& in
the radiative corrections to the Dalitz plot of semilepton-
ic decays of charged hyperons.

In the process of including all such terms, we en-
counter the difFiculty that the model dependence of the
radiative corrections appears. In the virtual part this can
be handled by defining efFective form factors in the un-
corrected amplitude [2]. The eff'ective form factors have
a new dependence in the electron and emitted baryon en-
ergies other than the ones in the q dependence of the
original form factors. In the bremsstrahlung part the sit-
uation is more favorable. The Low theorem [3] allows us
to know all the aq/~M, terms. There is no model
dependence if we know the experimental values of the
electromagnetic static parameters of the baryons.

In Sec. II we deal with the virtual radiative correc-

tions. We basically adapt previous results [2] for the Dal-
itz plot. In Sec. III we give the bremsstrahlung ampli-
tude with all the aq/mM, terms included. Also, we han-

dle the infrared divergence, identifying carefully all the
finite terms that come along with it. At this stage we ar-
rive at a result ready for a triple numerical integration.
In Sec. IV we integrate analytically over the photon vari-

ables, obtaining a closed expression for the bremsstrah-
lung part of the Dalitz plot. Section V is devoted to col-
lecting our partial results into a final analytical expres-
sion. Therefore, we end with two choices for obtaining
the radiative corrections to the Dalitz plot of the semilep-
tonic decays of charged baryons. The first one leaves the
triple numerical integration over the photon variables to
be performed numerically, but with the infrared diver-

gence and the accompanying finite terms already in-

tegrated. The second one is completely integrated into a
closed analytic result.

II. VIRTUAL RADIATIVE CORRECTION

We shall begin this section by first introducing our no-
tation and conventions, and next we shall obtain the vir-
tual radiative corrections. The four-momenta and masses
of the particles involved in baryon semileptonic decays

A ~B+e +v,

will be denoted by p, =(E„p,), p2=(E2, p2), l =(E,l),
and p =(E,p„) and by M&, M2, m, and m„, respective-
ly. We shall assume throughout this paper that m =0.
p2, l, and p will also denote the magnitudes of the corre-
sponding three-momenta when we specialize our calcula-
tions to the center-of-mass frame of A. There will be no
confusion because in this case our expressions will not be
manifestly covariant. The uncorrected transition ampli-
tudes for process (1) is
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Gv-
Mo = —U~ IV„UA UlO„V, ,

2
(2)

O„=y„(1+ys), and q =p, —
p2 is the four-momentum

transfer. Our metric and y-matrix conventions are those
of I.

In order to obtain the virtual radiative correction to
I

f2('q ) f3(q')
W„=f,(q )y + o.„,q + q„M,

g2(q') g3(q')+ g, (q )y„+ o q, + q„ys, (3)

Mv =Mo+M.
where

(4)

the Dalitz plot, we can follow the discussions and adapt
the results of Secs. I and II of Ref. [2]. Thus there is no
need to enter into details here. %'e only point out that
the virtual radiative corrections can be separated into a
model-independent part M and into a model-dependent
part. M is given by Eqs. (7) and (8) of Ref. [2], and it is
finite and calculable. The model-dependent part can be
absorbed into Mo through the definition of e6'ective form
factors. This will be denoted by putting a prime on Mo
(see below). The decay amplitude with virtual radiative
corrections is given by

M, = [Mo@(E)+M 4'(E)] .
2~

The model-independent functions @(E)and @ (E) containing terms up to order aq/nMl are explicitly given by

(5)

@(E)=2 —arctanhP —1 ln
1 1——(arctanhP) + L—1 2P 1 2P——L

P M, /E —1+P

+—arctanhp 1+ +—ln
1 E(1—P) 3

1

3

M) 11 1 2P
8 P M /E —1+P

M)
ln

1

—arctanhP

—arctanhP 1+
] 1

The second matrix element in Eq. (5) is given by

Gv
Mq = — U R2l' (p2pl2)UA Uipl03 V, .

2 mM,

Above, we use the definitions p=l/E, L as the Spence
function, and A, as the infrared-divergence cutoK This
latter will be canceled by its counterpart in the brems-
strahlung contribution. N and N' go correspondingly to
p and p' of I if we neglect terms of order aq/nMl and

(aq/~M, )ln(q /M, ).
The Dalitz plot with virtual radiative corrections is

now obtained by standard trace calculations. %'e leave as
the relevant independent variables the energies E2 and E
of the emitted baryon and electron, respectively. The de-
cay rate is compactly given by

and baryon B three-momenta and is given by

(Eo )2 2 l2

2p21

where

E =M) —E2 —E . (15)

f', (q,p l)=f, (q )+—a(p l),

The Q; (i =1, . . . , 5) are long quadratic functions of
the form factors. They are given explicitly in I in Eqs.
(16)—(20). We will not repeat them here.

As it was pointed out in Ref. [2], if we consider contri-
butions up to first order in q, the model dependence can
be handled by defining e6'ective form factors in Mo.
These eA'ective form factors are

dI v=dQ Ao+ (BI@+8",@')—
g 1 (q p+ l ) =g l(q )+ o (p+ 'l )

where

~ o =B
l Qspzlyo(p2+lyo),
' —Q3l(p2yo+ l)+ Q4E p2lyo

B l' =Q, EE —Q2Ep2(p2+lyo),

(10)

(12)

f2(q, p+ l)=f2(q )+ b, —

g2(q, p+ l)=g2(q )+ b', —

f3(q,p+ l)=f3(q )+—c,cx

6 dE dEdQ, dy
2 (2m)

(13)

Here yo is the cosine of the angle between the electron

g 3(q',p+ l ) =g 3(q')+ c', —
and within our approximations 6, b', c, and c', are con-
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stant. Only a and a' are functions of p+ l=(p, +p2) I.
These quantities are the only energy-dependent contribu-
tions of the model dependence to the virtual radiative
corrections. In the rest frame of A, p+ l takes the form

p+ 1=(M, +E2 )E —
pz lyo, which shows the direct

dependence on E2 and E and an indirect dependence
through yo. The primes in Eq. (9) will remind us that the
above primed form factors are the ones that appear in it.

For applications, the emission of real photons must be
added to Eq. (9). We turn to this in the following sec-
tions.

We shall first give the amplitude of this process, and right
afterwards we shall extract the infrared divergence.
Next, we shall obtain a complete expression for the
difFerential bremsstrahlung decay rate that together with
Eq. (9) gives the Dalitz plot with radiative corrections of
process (1).

What we want is the amplitude of process (16) with all
the aq/mM, terms. These terms can be obtained in a
model-independent fashion by virtue of the Low theorem
[3,4]. The amplitude for process (16) is given by Eq. (4) of
Ref. [5] and can be split into three contributions:

III. BREMSSTRAHLUNG AMPLITUDE
AND INFRARED DIVERGENCE

In this section we turn to the emission of a real photon:

A —+B+e+v, +y . (16)
I

M~ =A. , +AC 2+ Jkf, 3,

with

(17)

c.-l ~ »~,=eM
Pi'

eG~ y„k—s„U~ WqU„Ui " 0 VP 2l k

Gv — — e~~&r„Pi+Mi /2+Mr
JR3 —U/0$ V E„U~

"—~, Wq cr„k +K20P~k 'k IVg

(19)

+e p).k
f3 f2-

75

+e
Pi„vk f2+g2xs", —p„. (~~.+y~. ) (20)

K
&

and ~2 are the anomalous magnetic moments of A and
B. Mo and W& are given in Eqs. (2) and (3). e„ is the
photon polarization four-vector, k is its four-
momentum, and co its energy. The electromagnetic ver-
tices of A and B are given (at zero momentum transfer in
the form factors and at the order which interests us) by

U, I „U, = U, (e, y„+a,o„k ) U;, (21)

with i =A, B. In terms of the observed total magnetic
moments p;, the anomalous ones are given by

e,-M
Pi (22)

e M;

where ~,. and p, are in units of p~ (the nuclear magne-
ton). ez and M are the charge and mass of the proton.

Equation (17) gives the complete amplitude of process
(16) to order aq/AM, ; it has no model dependence. The
latter will appear only after terms of order aq /mM& or
higher are included.

Because we are interested in the radiative corrections
to process (1) and not in the process (16) itself, we restrict
ourselves to the three-body region of the Dalitz plot of
(16) (see the Appendix also) defined by

Emin & E & Emax
2 — 2 — 2

m «E&E

with

M2/max, min — (M g+/)+
2 ' 2(M, E+I)—

E =(M, —M2+m )/2M, .

As in I, we will use a coordinate frame in the rest sys-
tem of A with the z axis along the electron three-
momentum and the x axis oriented so that the final
baryon three-momentum is in the first or fourth qua-
drants of the x-z plane.

It is easy to see that A, 3 of Eq. (20) is one order in q
higher than JN,

&
of Eq. (18) and A, 2 of Eq. (19). This is the

reason why the Mz of I only contains AL, and AL2. In ad-
dition to A, 3, we have another source of order aq/mM&

terms. The weak vertex 8 & contains, apart from the q
dependence in the form factors, terms of order (q) and q.
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In I we eliminated the order-q terms; in the present case
we have to keep them and employ the complete expres-
sion Eq. (3) for Wz both in At, and JK2. Nevertheless, be-
cause of the above reason, in JR3 we can still neglect the
terms proportional to fz, f3, g2, and g3 in Wz.

In order to calculate the bremsstrahlung contribution

to radiative corrections including terms up to order
aq/m. M&, we shall trace a close parallelism with the cal-
culation of I. We shall first extract the infrared diver-
gence, which is entirely contained in AL, .

The square of Mz summed over spins can be split, after
trace calculations, into the sum of three contributions,

y IMMI'= y AI'+ y (2AI AI +Al', )+ y 2(At Af +Al, &, ) .
spins splns spins spins

The term A13 will contribute to order aq /mM, and higher, and thus it is not included in (23).
The first summand in (23) is explicitly given by

e'G,' 4M, 4g(~ ~ I )'
[Q,EE~

—Q,Ep2 (pz+ I ) —Q3 I (p2+ I )+Q&E~ p2 ~ IM, mm.splns

—Q, Ee—QzEp~ k —Q31 k —Q4cop2. 1] .

(23)

(24)

dI =dI "+dI' +dI"+dI '" . (25)

dI'~ and dI z contain the infrared-divergent and conver-
gent terms of (24), respectively. dl"~ and dl'i" contain

The coellicients Q;, i =1, . . . , 4, are the same as in Sec.
II. With respect to the corresponding result of I, the new
terms that arise are those proportional to Q2 and Q~.
They do not introduce new features. The Arst four sum-
mands of Eq. (24) contain all the infrared-divergent
terms.

In order to handle the infrared-divergent terms sepa-
rately from the convergent ones, let us write the
differential decay rate of (16) as

dI""= B,I ( )d—A+dI (26)

The argument u is evaluated at ~=M, (1+yo)/k.
Here B,=B ', and B ', and d Q are given in Eqs. (11) and
(13), respectively. Explicitly, d I ~ is given by

the contributions from the second and third summands in
(23).

dI z can be dealt with in the same way as drub of I.
There is no need to reproduce the details here, since they
can be traced in exact parallelism with I. We only write
the result

1 — 2

dI ~ =—— ' f dpk f dx ln(M, f')2' 2 o —i (1—Px )2

, I3'(1+yo) i 1 —x'
+B,C+p 1(2Q E2+Q 3Q4E ) f dx dQ,

(1—Px)

where f ', Io, and C are given by Eqs. (47), (51), and (57) of I, respectively.
After having extracted the infrared divergence and the finite terms that accompany it, we turn to the other terms in

d I ~. To obtain d I'ii, d I'ii, and d I i,",we use Eq. (38) of I. The results for them are

2 1 2

dl ii= — dQ f d—x f dy f Q, E+Q2E(D E„lx)+Q3Ix—+Q4p—2ly
2m —i 2 (1 —Px)2 —i o D

(29)

dl ~"=—dQ ' f dx f dy~ f dy, ~M" ~' .
0 i 4D2

(30)

The squared matrix elements are rather long and tedious:

(Q,E +Q2p2. p, ) oi+(1+P k)E — +(Q3p„+Q4E pz). (E+ )k+oiI — k
J

(31)
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Px D E lx+(Pz+1).l
1 —Px co E(1—Px) co

EO—(1+Px ) +P
6) 1

, , i —x' &E
~M" ~'= —(f, —g, )'P' +(f, +g, )'E

1 Px co

E„lx +(p2+1).1
+2f, (f3 f2)E—— —+ —+

1 —Px co E (1—Px) co 1 /3x—

—2(f i
—gi)'E. +(f i g—i » —2f i(f3 —f2)(2E.—»

2M)K) Px 2 Px 0 721&+1
e

(g, +f,g, )
— D+ E, 2'—+ 4f, g—,E,

( f —) — D+ E„—2'+ +4f igiE
e ' ' '

1 —Px 1 —/3x
" E(1—Px)

gi(g2 —f2)
(2fif2 g lg2 gif 2)EV+ (Ev+PP23 +PI )

1 —x

—f~(fi+g»+
I

D —2fz(f i g i—)~

p&( I x &) E p (D E)x ——/ —
p2y—2E (f f gg 2g —f ),— —1 +(f f gg2+2f —gi)—

(32)

In all of these expressions, E =F. —co is the energy of
the neutrino in process (16).

Our preceding partial results are still collected in Eq.
(25), namely,

d I =dI" +dI ' +dI "+II "',
where now dI z, dI ~, dI ~, and dI &' are explicitly
given in Eqs. (26)—(30).

We wish to stress that, despite its detailed length, the
bremsstrahlung decay probability is organized in a rather
easy-to-handle compact expression through Eq. (25). As
it stands now, it is ready for numerical integration.

We want to point out that the infrared divergence is
completely extracted. The coe%cient of this divergence is
opposite to that of the virtual part, as required for the
cancellation of such divergence. The Anite terms that ac-
company it are included analytically in d I"s of Eq. (26),
in the term 8&C. All of the remaining contributions
[Eqs. (27)—(30)] can be evaluated numerically without
infrared-divergence ambiguities. Nevertheless, the
remaining integrations involved can also be performed
analytically. We shall proceed to do this in the fonowing
section.

IV. ANALYTICAL INTKGRATIQNS

f dy yk, =2m g~(x)— (33)

and

part of the eft'ort required has already been done in I, and
what remains, although still not negligible, can be reason-
ably accomplished.

We shall choose the axis of coordinates as in Sec. III.
Also, we shall endeavor to stay in an as close as possible
parallelism with the corresponding calculation of I. The
most delicate point to keep in mind is the pitfall
represented by the double signs that appear in some ex-
pressions. These double signs arise because in some
places it is necessary to take the positive square root of
(x —xo) .

The order of integration is, erst, over the azimuthal an-
gle of the photon yk, second, over the cosine of the polar
angle of the final baryon y, and, third, over the cosine of
the polar angle of the photon x.

The integrals over y& are the same that appear in I.
They are five and are given by Eqs. (63)—(67) of I. We
shaH not repeat them here. With respect to the variable
y, we have two more integrals in addition to the same in-
tegrals as in I [Eqs. (68)—(70) there] The tw. o new in-
tegrals are

Our result contained in Eqs. (25)—(30) is ready to be
used in the bremsstrahlung contribution to the Dalitz
plot of process (1). We can perform a numerical evalua-
tion of the integrals contained in Eq. (25), but as before
in I, its analytical integration presents no in-principle
diiculty. All the integrals that appear are standard and
can be explicitly performed. However, the major
dif5culty comes from the very long detailed expressions
involved in Eqs. (25)—(32). Fortunately, a substantial

3'0f F'k, dy —= 2m [ g, (x)+41'[(E + lx)(1 —3x ')

—2p2yox ]g,(x) ] .

g, (x) is given by Eq. (72) in I. The other g's are

(34)
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$4(x)=—

~0
(x —xo), x H( —l, xo),

E +(1 —p2)x

(x —xo), x E(xo, 1),
Pz

(35)

g~(x) =41 (E ) (x +a+) (E ) (x +a )

2p~l (x +a+ ) 2p21(x +a )

E„(xo+a+)
2p21(x +a +

)

3x(x —xo) E (E +1xo)+EO +
P2 l

E (xo+a )

2p21(x +a )

3x [E,+ (1 —
p~ )x ] (E', )'—2(1+y )+0 l2

(36)

where

P9'0+ l
XO—

jV p0+
a —=

l
In performing the y integration, it is necessary to take

the positive square root of (x —xo), and because xo is al-

ways between —1 and 1, this leads one to divide the
range of x as indicated in Eq. (35). Similarly, the upper
sign in Eq. (36) must be chosen when x E( —l, xo) and
lower sign when x E(xo 1).

The integrals over x contain the same ones as I, 0,
(i =0, . . . , 9) given by Eqs. (87), (88), and (80)—(83), as
well as seven new integrals. The latter are

g dx X2 (37)

d rB =d rB+d rIB+drIBI+d rBII (42)

with

13
dr", +dr,'= dn g—H, e, ,

i=0
(43)

To avoid repetitions the result of the explicit integra-
tion of Eqs. (37)—(41) will be given at the end of this sec-
tion.

Once we have identified all the different integrals, we
have to substitute them in Eqs. (25) —(32) of the preceding
section. After some straightforward, albeit long and tedi-
ous algebraic steps, we obtain compact expressions for
the several bremsstrahlung contributions to the Dalitz
plot. The result is

(4(x )
(913 „—— dx, n =0, 1,2,

(1—Px)"
1

dxx 2X

g1~= dx 3 x—1

(39)

(40)

15

d r,"= dn y H—, +I4e, ,
0

16
dry'= d+ g Hi+3ooi .

7r i=0

(44)

(45)

g5(x)
16 dX (41) The lengthy detailed expressions involved in Eqs.

(43)—(45) now follow:

Ho =(Q3 —Q4E'. V»1

H1=B1,
p21E (1— )

[QI+Q3 —(Qz+Q4)«'. +E)1

P2/E
I2(Q, —Q~E +Q4E)+(3 —p )[Q3 —Q2E —Q~(E +2E)]j,

p2lE
2 [Q, +2Q~ —(Q2+2Q~)(E +2E)+Q4E(1+p )],

H5 = — [Q2E —Q3+Q4(E„+2E)], H6 =H7 =Hs =H9 =0,
l

II10 H 13
P2

H, 3=Q~p21 /2,

H„=(1 /3 )H, 3, Hl—p= —2HI3,
HO

~14 ~ ~15 ~27
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p2l(1 —
/3 )

[
—(Q, —Q2E+Q3)(E +E)+Q (E +2E)(E„+E)+(Q,+Q„)p,lyo+Q, p', ],

p~l 1 — - 1—
Hi7= (Q, +Q3) E+E,+E —Q3E„(1—pxo) —

Q2 p2lyo+p2+E(E +E)+ E(E +3E)

+Q4 E(E—+E)+p2/3E yo — E(5E +7E)
2

p~l E(E,+E)
H iii

= —Q i E/2+ Q3(E —E/2)+ Q2

+Q4[ —p2lyo+E(E +E)/2+(4 —3p )E /2 —(Eo)2]

j' 2

Hi9 [Qi+Q3+Q2(E E, )+—Q4(E 5E, )—]4

p2l(1 —p )
H20=

4 [Ql+Q3 —(Q2+Q4)(EO+E)],

p, l 2E —E'
+(Q2+Q4)[ pP2yo 2(E„+E) E(1—p )]+Q2p2/E+Q4(E0+E)2/E

pal
H22 [Q i +Q3

—Q2(E „+2E)+Q4(E E)]—
4

[ —Qi —Q3+(Q2+Q4)(E„+E)],
j' 3

(Q2+3Q4), H2~ = —(1—P2)H26,

I p~l p~l
H26 2 Q4 ' H28 Q2 ~ H29 (Q2+Q4)

4 '
8

B+
3o

= p~IE +
2M' Mi

p2lE (1 —
)

H33= [(E +E)B EB+]—
1

p2lE(1 —
/3 )+

M)
Eo [ A +g, (f2 g2)] 2Eg, (f—2+g2)—+M, (E,+2E)

e

p~lE
H34 [ —(E +E)B +EB++p2PyoC ]

1

+ Mi [E +2E(1 p )]+Mi p E+E [gi(f2+3g2) (fif2+gig2)(1+pxo)]
p~lE g +

2 o

M) e e

+E[(1 /3')(f if2+4g i g2 g—if2) —fif2+gi(3f—2
—2g 2)]

j' 2

H3~ = [(E E)B +EB++E C —]
1

(E,+2E) M, 2E +E (—2fif2+3gig2 gif2)+2Egi(f2+—g2)
e e

p~l p&IE(1—p2)B + Mi (E'+p'E+p2Pyo) —E'(1—Pxo)gi(g2 —f2) —E(1—/')~
1 2M) ' e
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H38 =

H40 =

H42 =

H43 =

H44 =

h—3M, +3f,f~+4g, g~
—3g,f2e

p2l 0 p2l E~
(E —2EO)B + M)(2h —h+) —E [2f)f2 —g)(f2+g2)]+E&

1 2M) e

p2l p2l h +
(2B +C )+ —2M'

2M) M) e

p2 + p2 h
2l2 2j'2

B + M) + A —g)(gq f2)—
2M& M& e

p2l2 p2l2
C — M, +f2(f~+g))

1 1

p2l
2 2M' Mi

l l

4M) 2M)
—Mi +fr(f i

—g i)
h

" 4M,
h+

+gi(g2 —f»
We have used the definitions

= f )f2 g)g2+2g—)f2, h*= —g)(v)+v2)+f )g)(x2 —x)),
B—=(f, +g)) +2f, (f3 f2), C —=f )

—g)+2f)(f3 f2) . —

The functions 8O
. . 89 are given in Eqs. (95), (96), and (99) of I. The result of the integration of the other 8, is

8, = (T,++T; ),
pz

with

T,o
=

—,'(xo+1)ln(1+xo)+ —,'[(a+) +1]ln(1+a ) ——,'[xo+(a ) ]ln[+(xo+a+)]
+ —,'(1 —xo)(a kl) —

—,'(xo+l)[l —(a ) ],
T~+) =T)) = [Eo[(1 Pxo)J4 J)] (PE +I p2)I4+(I pq)I)

1

p2

(46)

1T (2
—T &2 [E (1 ~pxo )J) +2E~ +o2( 1 p2 ) (pE +l ~p2 )I& ]

2pz

T ~+3
= T,~

= — E (1—x )
1

p2

T+,4 =E [1+xo+—2a—(xo+ 1)+a—(xo+a*)(Iz~ RJz )],
T—+ =

15

(EO )2—p2(1+yo)+
2l

Tip =41 [2(1 —p2+E xo)+pE (1—xo)]+3

2 2

3E,[2pz(1+yo)+l(l —xo)] (E, ) (xo+a*)—(J3 +I3*) 2lE (xo+a*)a*(J2—+I2 ), —

3(l —p2+ pE, )

2 2

(E„)(xo+a*)
(pJ, +J2 +pI, +I2 )+

21 ( 1+Pa *)
3E (1—Pxo) (E ) (E,+Ixo)+ J)

2P2

where I&, I2, I—3, I4, J&, J2, J3, and J4 are given at the
end of Sec. V of I.

With Eqs. (43)—(46) we have a full analytic result for
the bremsstrahlung part of the Dalitz plot of the semilep-
tonic decay of charged hyperons [Eq. (42)]. This result is
model independent and contains all the aq/mM& contri-

butions. These properties are a direct consequence of the
Low theorem.

V. FINAL RESULT AND CONCLUSIONS

Now we are in position to obtain the Dalitz plot of
process (1) with radiative corrections up to order
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aq/AM, . Our complete result is given by the sum of
d I & and d I &, namely,

dI (A Bev)=dI y+dl ~ . (47)

dI ~ is given in Eq. (9) and dl ~ is given by Eqs.
(25)—(32) or by Eqs. (42) —(45). As we have stressed all
along in this paper, we have two choices for dc@~. We
can perform numerically the triple integration involved
in Eq. (25), or we can use the analytical results of Eqs.
(43)—(45) in Eq. (42). As expected, the infrared diver-
gence no longer appears in the sum of Eq. (47), and the
finite terms that accompany it have been extracted
analytically and are included both in Eq. (25) [in the
terms B&C of Eq. (26)] and in Eq. (42) [in H&8& of Eq.
(43)].

For easy reference we shall now collect our final
analytical result for the complete radiatively corrected
Dalitz plot. It is compactly summarized in the expres-
sion

dI ( A ~Bev)= A o+ —H', (&+8,)+BI'N'+H080

with

16

+ gH, '8,
l —2

(48)

H =H+H i+4+'H +30 (I'. =0&. . . 13)

H:H + ~g+H&+30 (l = 14& 15)

0 i6 =046
where the 0 s were given in the previous section. N, N',

Ao, B", , and dQ are given in Eqs. (6), (7), (10), (12), and
(13), respectively. The functions 8,O, . . . , 8,6 are given in

Eq. (46). The others 8; are given in I [8o, 8&, and

8,. (i =2, . . . , 9) are given in Eqs. (95), (96), and (99) of I].
Equation (48) improves the result obtained in Eq. (108)

of I, because in it we have incorporated all the terms of
order aq/mM, . Equation (48) has the same virtues as
Eq. (108) of I. It has no infrared divergences, it does not
contain an ultraviolet cutoff, and it is not compromised
by any model dependence of radiative corrections. As
discussed at the end of Sec. II, this model dependence is
absorbed into the already existing form factors. In the
case that aq/~M, ~0, the model dependence amounts
only to two constants that are respectively summed into
f &

and g&, but if aq/mM&%0, we have to sum a function
of p+ l=(p, +p2) I to f, and another function to g, .
The other form factors are modified only by additive con-
stants.

Equation (48) is very useful for processes where the
momentum transfer is not small and therefore cannot be
neglected. To first order in q this leads to terms of order
o.q/m-M, in the radiative corrections. The expected error
by the omission of higher-order terms is of the order of
aq /~M

&
=0.0006 in charm decay. If the accompanying

factors amount to one order-of-magnitude increase, then
we can estimate an upper bound to the theoretical uncer-
tainty of 0.6%. This is acceptable even with an experi-
mental precision of 2 —3 %. This precision will not be at-

tained experimentally in the immediate future in the case
of charged charm baryon decays. We may then expect
our result to remain useful for a long time.

We have limited our calculations of the bremsstrah-
lung part to the Dalitz plot of the nonradiative semilep-
tonic decay. Because of the experimental error in the
determination of the energies of emitted particles, the
events of the purely radiative decay that lie outside but
near the boundary of the Dalitz plot will not be experi-
mentally discriminated. Since it is at this boundary that
the infrared divergence appears, one may wonder if Eq.
(25) or (42) can be used safely to account for those prop-
erly radiative events. The answer is in the afhrmative.
This is discussed in detail in the Appendix.

There are no other analytical results available in the
literature to which we can compare our expressions
(42) —(46). There is a numerical analysis available [6],
though. In this respect we can say that our procedure is
similar to that of Ref. [6], except that there the anoma-
lous magnetic moments of particles A and B were ig-
nored, while in this paper they have been included. A de-
tailed comparison must be done numerically. We shall
try to do this sometime in the near future.
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APPENDIX

In this appendix we show that the bremsstrahlung
differential decay rate in the three-body region (TBR),
given by the Eq. (42), can be used in the four-body region
(FBR) if we are near the boundary between them. A
graph of the Dalitz plot showing clearly this boundary
may be found in I.

First, we note that the bremsstrahlung amplitude Mz,
given in Eq. (17), is the same for the TBR and FBR.
Next, we note that the bremsstrahlung differential decay
rate has, in both cases, the form

M2mm p2l dE2dE d 0,( dy2dI ~=
(2~) 2

kx f' dx f'dq f'dy "

In the TBR the upper limit Y of the integral over the
variable y is the yo given by Eq. (14), while in the FBR Y
is one.

The infrared divergence in the TBR comes from a term
of the form ln(yo —y), which diverges when y =yo.
Within the FBR there is no infrared divergence because
yo is greater than 1 and the range of y is restricted to be
between —1 and 1. This divergence is only present on
the boundary between the TBR and FBR, where yo
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equals 1, but this is just the infrared divergence of the
TBR reached from the FBR side. If we did not reach the
same divergence, it would amount to counting twice the
boundary.

Since the rest of Mz is finite, one can easily convince
oneself that the bremsstrahlung decay rate is connected
continuously and smoothly in going from the TBR to the
FBR. One can therefore use Eq. (42), which was special-
ized to the TBR, in the FBR as long as one stays close to
boundary. The error introduced goes as the difference
between the bremsstrahlung differential decay rates in the
TBR and FBR, namely,

M2mm p2l dE2 dE d QI dy2dI ~
—dI

(2m )

kXf d~f dq f dy

But as we approach the boundary from the FBR and yo
approaches 1, this difference becomes negligible. In prac-
tice, this difference will be proportional to the experimen-
tal energy step of the bins that fall on the boundary. As
long as this step is of the order of 10 or 15 MeV, the error
introduced is smaller than our error of order aq /mM, .
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