
PHYSICAL REVIEW D VOLUME 44, NUMBER 11 1 DECEMBER 1991

Electric dipole transitions of f(3770) and S-D mixing between f(3686) and f(3770)
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Various E 1 transition rates for tb(3770) and other cc states are calculated in a QCD-motivated poten-
tial model. Relativistic corrections are found to be substantial. While a good agreement between theory
and experiment is achieved for the rates of f(2S)~y)(,z and y,z~yg(1S) (J =0, 1,2), the calculated
rates for li(3770)~yy, J are smaller by a factor of —2 than their experimental values obtained by the
Mark III Collaboration. The S-D mixing efFects are further considered and are found to be important.
The mixing angle 0= —10 is favored and 9=30' is ruled out. While most observed transition rates may
be explained in the theory, the disagreement between theory and the f(3770)~yy, data still remains to
be clarified.

The study of electric dipole transitions of heavy quar-
konium may provide useful information on the inter-
quark forces. In particular, some dipole transitions of
charmonium are sensitive to the relativistic corrections
which depend mainly on the spin-dependent forces of
quarks through the wave-function corrections. Dipole
transitions of the g(3686) and the g(3770) are particularly
interesting, because they are sensitive not only to the rel-
ativistic corrections but also to the 2S-1D mixing.
Indeed, the study of these transitions may be helpful in
determining both the sign and size of the 2S -1D mixing
angle. In this paper, we investigate the effects of both the
relativistic corrections and the 2S-1D mixing on the di-
pole transitions of P(3686) and, in particular, g(3770).
We will first concentrate on the relativistic corrections to
the wave functions, and then discuss the 2S -1D mixing.

Recently, the electric dipole (El) transitions for the
charmonium D& state, 1b(3770), into PJ states, yo, y&,
and yz, have been measured by the Mark III Collabora-
tion [1] and branching ratios of (2.0+0.5)%, (1.7 +0.7)
%, and ~0.2% (90% C.L.) are obtained respectively.
With the total width of (25+3) MeV for 1b(3770) [2], the
partial widths for the above E1 decays are 500+200 keV,
430+180 keV, and ~ 500 keV.

It is well known that the QCD-mo4;ivated potential
model of heavy quarkonium has been successful in
describing the mass spectra and many transition process-
es for the charmonium and bottomonium families [3].
According to the generally accepted point of view, the in-
teraction between heavy quarks can be considered as a
short-range one-gluon-exchange potential (Lorentz vec-
tor) plus a long-range confining potential (Lorentz scalar).
There are many phenomenologically successful potentials
in the literature. As a simple choice, we prefer to use the

following scalar potential S(r) and vector potential V(r)
[4]:

S(r) =kr,
8' 1 1 Ar-Vr=
25 r lnAr 1+Ar (2)

This V (r) has the following characteristics. When
r~0,

8~ 1V(r)~
25 r lnAr

which represents a Coulomb potential with a running
coupling constant; and when r increases up to the range
comparable to the scale of the 1b family, the coefficient of
the Coulomb potential approaches a fixed constant, i.e.,
V (r)~ Plr, and P—=0.50 (e.g. , for A-0. 47 GeV,
P=0.50 in the range r —1—5 GeV ').

Adopting such a potential is based on the following
consideration. The calculations in the lattice QCD show
that the interquark potential is indeed the sum of a
Coulomb potential and a linear potential when r «0. 5
GeV '. Under the approximation which neglects the
dynamical effects of the light quarks, the coeKcient of the
Coulomb potential is about 0.2—0.3 [5], which will in-
crease after these effects are further considered [6]. It is
possible that the vacuum-polarization effects of the light-
quark pairs make the coeKcient increase up to about 0.5
[7]. The Coulomb potential adopted by us embodies just
the characteristic that the Coulomb potential with a run-
ning coupling constant at short distances turns gradually
into a Coulomb potential with a constant coefticient at
long distances. When r increases up to, say, 10 GeV
the coefficient of our Coulomb potential will slightly
reduce and then P=0.42 (for A=0.47 GeV). Since at
such a large distance the screening effects of the light
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H =Ho+Hi+
2

Ho= +S(r)+ V(r),

(3)

(4)

Hi =HsD+Hsi,

(3V' —S')(S,+S2) L+ Si S2V V
2m 7 3m

2 [3(S, r)(S2 r) —S, S2] V"—
3m r

(6)

p4 1 2
Hs, = —

3
+ —V'L +[p, V rV']-

4m 4m

+2( V —r V')p +——V'+ V" rV"'—
2 T

(7)

where HsD and Hs, represent respectively the spin-
dependent and the spin-independent Hamiltonian up to
the first order. Note that in our model for the scalar
confining potential only the Thomas precession term,
which is also indicated by the lattice QCD result [9], is
included in Hso, and no other spin-independent terms
are taken into consideration in Hs, . Indeed, theoretically
it is still unclear how to deal with the spin-independent
corrections arising from the confining interaction, and
practically it is found [4] that those corrections to the
mass spectrum are unreasonably large if naively treating
the confining potential as a scalar particle exchange, un-
less the linear potential is compensated by a large nega-
tive constant term, as suggested in Ref. [10].

We first use Ho to solve the zeroth-order Schrodinger
equation and then treat H, as perturbation to calculate
the first-order relativistic corrections to the energies and
wave functions. When taking the parameters

quarks to the potential between the heavy quarks are im-
portant, the assumption of a Coulomb potential plus a
linear one itself will be a very rough approximation. We
believe that the Coulomb potential as a whole should be
dominated by a Lorentz vector, in spite of the possibility
that a part of the Coulomb potential at large distances
might arise from a Lorentz scalar, i.e., the transverse
zero-point oscillations of the string. We also note that
our Coulomb potential in the range r —1—5 GeV ' al-
most coincides with that used by the Cornell group [8].

Under the nonrelativistic approximation, the Hamil-
tonian of the heavy-quarkonium system can be expanded
in powers of p /m (m and p are respectively the mass
and the momentum of the quarks in the center-of-mass
frame), and reads

tion width and the matrix element are given by (see, e.g. ,
Ref. [10] for detailed discussions)

I (El)= e&a~(f~r~i )~ (2Jf+1)Sfk4
27 ~

(f~r~i) =I Rf(r)R;(r)r dr,
0

(10)

TABLE I. The electric dipole transitions for the charrnoni-
um. The states represent the following physical states
1 'S, Q(3097); 2 'S, 1((3686); 1 'P y, 0134015); 1 'P, y„(3510);
1 P2g, 213555); 1 D, g(37701. The widths without parentheses
are the results calculated by using the zeroth-order wave func-
tions and the values in the parentheses are calculated by using
the first-order relativistically corrected wave functions. Experi-
mental values are taken from Refs. [1,2].

where k is the energy of the emitted photon, 8 (r) is the
radial wave function, and S;f is a statistic factor. The
transition widths I (E 1) calculated in our model and the
corresponding experimental values are shown in Table I,
where the widths without parentheses are the results cal-
culated by using the zeroth-order wave functions and the
values in the parentheses are calculated by using the
first-order relativistically corrected wave function. The
experimental values for P(2S)~yy, J and

g,j~yg(1S)(J=0,1,2) are taken from Ref. [2].
It can be seen from Table I that the widths for

g(2S)~yy, z and g,J~yg( IS) with the relativistic
corrections are in rather good agreement with data,
which shows that the relativistic correction is not negligi-
ble for the cc system. Although the velocity of the quark
in such a system is quite low (v /c =0.2), the relativistic
corrections can be rather large, since the rates of some El
transitions are very sensitive to the small variation of the
wave functions. This is particularly evident for the tran-
sition g(3686)~yy, o(2 S,—+I P&&). In addition to the
attractive effects of the spin-independent part of the first-
order Hamiltonian Hi, the spin-orbit term from one-
gluon exchange contributes a strong attractive force to
the Po state, which makes the radial wave function con-
tract towards the origin, and thus suppresses the matrix
element (2 S& ~r~ 1 Po ) and the width of the dipole tran-
sition. Since the matrix element is sensitive to the over-
lap between the wave functions of the initial and the final
states (in particular, when these wave functions have
different numbers of nodes), the relativistic corrections to
the widths could be substantial in some cases. Concern-
ing the relativistic corrections for 2 S,~1 PJ and
1 PJ ~1 S&, our results are qualitatively consistent with
other authors' [10], although the potential used by us as

k =0.22 GeV, A=0.47 GeV,

m, =1.84 GeV, m„=5.17 GeV,

(8)

(9)

a good agreement between calculated (with relativistic
corrections) and observed mass spectra for both cc and bb
states can be obtained, which have been briefly reported
in Ref. [4] and will be discussed in detail in another publi-
cation. Here only the El transition processes for the
charmonium will be concerned.

Under the nonrelativistic approximation the El transi-

Process

2 Sl ~ 1 Po
2 S(~1 P,
2'S, ~1'P,
1 PO~1 Sl
1 Pl ~1 Si
1 P2~1 Sl
1 Dl ~1 Po
1 D)~1 Pl
1 DI —+1 P2

k (MeV)

261
172
128
303
389
429
338
250
208

SI

1

1

1

1

1

1

2
1/2

1/50

I (keV)

42(25)
36(28)
25(22)

141(104)
299(216)
401(282)
312(199)

95(72)
3.6(3.0)

Expt. (keV)

23+4
21+4
19+4

95+37
& 350

350+ 160

500+200
430+180

~ 500
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well as the method to deal with the relativistic correction
is different.

For the currently interesting transitions 1 D
&

—+1 PJ,
the results in Table I show that the relativistic correction
is again important. For the D& state, there exist both at-
traction and repulsion in the first-order Hamiltonian H&.
The spin-orbit term from one-gluon exchange,
—(3/2m )(V'/r), is an attraction and the Thomas pre-
cession force from the scalar confining potential,
——(1/2m )(S'/r), is a repulsion. The former decreases
more rapidly than the latter as the radius of the bound
state increases. In the spin-independent corrections, in
addition to some attraction terms, the repulsion term
(1/4m )(2/r)V'I. increases as the quantum number of
the angular momentum increases. The relative enhance-
ment of the repulsions in the D, state plays a part in
balancing the attraction, so that the total relativistic
correction has a less effect on the wave function of the
D, state. However, for the Pp state, the attraction is

dominant in H, and the relativistic correction makes its
wave function contract towards the origin evidently.
Therefore, the overlap between the wave functions of D,
and Pp decreases after the relativistic correction is taken
into account, which results in the suppression of the ma-
trix element ( 1 D, ~

r
~
1 Po ) and the width. The calcu-

lated results show that the relativistically corrected
widths for 1 D~~1 Pp and 1 D~~1 P& are smaller by
a factor of -2 than their experimental values.

Of course, it should be noted that there exist some un-
certainties in the theory. The first is concerned with the
quark mass. The quark mass adopted by us is the same
as by the Cornell model [8] and by the authors of Ref.
[10]. When we take such a large quark mass and then
make the relativistic correction to get further suppres-
sions, the obtained transition widths for P(2S)~yy, J
and y,J ~yg(1S) become compatible with the data. If a
smaller charm quark mass is taken, although the transi-
tion widths for 1 D

&

—+1 PJ can increase, the widths for
2 S& —+1 PJ and 1 PJ~1 S& will accordingly increase.
In fact, for many models [11,12] which use a smaller
quark mass, the calculated widths for g(2S)—+yy, ~ are
substantially larger than the data.

The second uncertainty is concerned with the higher-
I

~

P' ) = 2 S, )cosg+ 1 D, )sing,

~P") = —~2 S, )sing+ 1 D, )cosg .

(12)

(13)

According to the expression of the E1 transition width,

I(i f+y)= ', ae&k ~(f~—r~i)~ (14)

for the g'~yjy and g"—+yJy transitions [yJ being the
PJ state (J=0,1,2)] we find

order relativistic corrections, for which to give a quanti-
tative estimation is still very dificult at present. In any
event, because of the rather low velocity (v /c =0.2) of
the quark in the charmonium system, the first-order rela-
tivistic correction should make sense and it is not expect-
ed that the higher-order relativistic corrections could
give an enhancing factor more than 2.

The third one is concerned with the coupling effects
with the decay channels [8], which, in general, always
reduce the proportion of cc and increase the proportion
of the continuum states such as DD, etc. , in the physical
states (if the 2S 1D m-ixing from the coupling-channel
eff'ects is not considered for the moment), and thus only
play a role to suppress the E1 transition widths.

The last one is concerned with the 2 S]-1 D& mixing.
The g(3770) has an appreciable leptonic decay width
I „=0.26+0.05 keV [2]. This indicates that g(3770)
must contain a component of the S

&
state. Considering

f(3686) and g(3770) as two mixed states of 2 S, and
1 D &, the interference between S and D states will
strengthen some transition processes and weaken some
others. These effects are not only dependent on the quan-
tum numbers of the initial and the final states, but also
dependent on the sign of the mixing angle. The degree of
strengthening and weakening is dependent on the magni-
tude of the mixing angle. The sign and the magnitude of
the mixing angle are dependent on the mixing mecha-
nism, e.g. , by the coupling channel or(and) by the tensor
force. Evidently, the El transition processes for P(3686)
and P(3770) will provide very useful information on the
2 S

&

- 1 D, mixing, which is worth studying.
In the following we assume g' =g(3686) and

g"—:P(3770) to be admixtures of 2 S, and 1 D, cc states
and

I (P' —+goy)= 4, ae&k (cos 8(1 Po~r~2 Si ) —2+2cosgsing(1 Po~r~2 Si )(1 Po~r~ 1 Di )+2sin 8(1 Po~r~ 1 Di) ),
(15)

I (g'~yiy)= —,ae&k (cos 8(1 Pi ~r~2 Si ) +&2cosgsing(1 Pi ~r 2 Si ) (1 P, ~r~ 1 Di )+—,'sin 8(1 P, ~r~ 1 Di ) ),
(16)

(18)

I (g'~y2y)= —'„'ae&k (cos 8(1 P~ ~r~2 Si ) —(+2/5) cosgsing(1 P2~r~2 S, )(1 P2~r~ 1 Di )

+ —,
' sin 8( 1 P2 ~

r~ 1 D, ) ),
I (@"~goy) =

—,', ae&k (2cos 8(1 Po~r~ 1 Di ) +2&2 cosgsing(1 Po~r~ 1 Di )(1 Po~r~2 Si )

+sin 8(1 Po~r~2 S, ) ),
I (g"~yiy) = 4ae&k ( —,'cos 8(1 PI (r 1' Di ) —+2cosgsing(1 PI (r(1 Di ) (1 P, )r[2 Si )+sin 8(1 P, (r(2 Si ) ),

(19)
I (it/'~y2y)= '„ae&k [ —,

' cos 8—(1 P2~r~ 1 Di ) +(+2/5) cosgsing(1 P2~r~ 1 Di )(1 P2~r~2 Si )
+si 'n(81' P~r~ 2'

S, )'], (20)
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where the definition of (f~r~i ) is as in Eq. (11). From
(14) to (20) we see that for most transitions the S-D in-
terference terms which are proportional to cos0 sinO
make substantial contributions. Therefore the sign of the
mixing angle 0 will be very important. Because the value
of the matrix element ( 1P~ r

~
2S ) is negative and

(1P~r~ 1D ) is positive, for 8)0 the rates of g'~goy and
g"~y, y would be enhanced, while that of g'~yiy and
g"~goy would be suppressed; whereas for 8(0 the
rates will be shifted in the opposite direction.

For the mixing angle we have limited information only
at present. If naively assuming the leptonic decay width
of g(3770) is entirely due to its S-wave component, we
would get

(23)

Note that 0= —10' is consistent with the result of cou-
pled channel models [8,14], whereas the mixing caused
purely by the tensor forces is much smaller [8].

We may also calculate the mixing angle in our model
by virtue of the nonrelativistic formulas for the leptonic
decay widths [15]

+
(21)

I (g'~e+e )

and 181=19 . (22)

If further considering the D-wave component contribu-
tion to the leptonic widths, some calculations [13] give
two solutions:

0= —10 or 0=30' .

2 1cos8R 2S(0)+sin8
2

R",D(0) I'
+ — 2

2 2m~
I (g'~e+e ) =4a

3 M(g')
(24)

I (f"~e+e ) =4a
3

l
»n8R»(0) —cos8

2
R",D(0) l'

2 2m~

M(g")
(25)

where R2S(0) is the radial wave function at origin of the
2S state, and R",D(0) the second derivative of the radial
wave function at origin of the 1D state. With (1), (2), (8),
(9), we find for the zeroth-order wave functions

Rzs(0) =0.892 GeV

R",~(0)=0.202 GeV ~

(26)

(27)

0= —13' or 0=26 (28)

Comparing the values in (26) and (27) with that calculat-
ed in the Cornell model [13],

R2s(0)=0.963 GeV, R",D(0)=0.314 GeV ~

we see that our R",i, (0) is significantly smaller than the
Cornell model, and this difference is due to the fact that
our interquark potential is asymptotically free at short
distances and is therefore less singular at origin than the
typical Coulomb potential used in the Cornell model.
With a smaller D wave contribution, the obtained values
for the mixing angle will shift from the Cornell value
8= —10 or 8=30 given in (23) towards 8= —19 or
8=19 given in (22) by entirely neglecting the D-wave
contribution. This is expected to be a rather general ten-
dency for a wide range of interquark potentials which are
softer at short distances than the Coulomb potential.
Therefore we may view the Cornell value 0= —10' or
0=30' as two rather extreme values for the mixing angle
determined by the ratio of leptonic widths in the S —D

Because of large QCD corrections, (24) and (25) cannot
be used to determine the absolute values of lepton-
ic widths, but they are useful in determining the ratio of
the two leptonic widths. With the experimental value for
the ratio of I (g'~e+e ) =2.15+0.21 keV to
I (g"~e+e )=0.26+0.05 keV [2], we then find two
solutions for the mixing angle:

mixing model for P' and g".
We choose 0=0', 0= —10, and 0=30 as three tenta-

tive values for the mixing angle and use (14) to (20) to cal-
culate the El transition widths of P(3686) and g(3770).
The results are shown in Table II. The transition matrix
elements are calculated by using the zeroth-order wave
functions without relativistic corrections. Comparing the
results with experimental data, we And

(1) 8=30 should be definitely ruled out, because it
would give an excessively large value (=135 keV) for the
g'~goy width.

(2) 8= —10' works well for the required suppression of
P'~goy. It makes this transition rate close to the data
even without any relativistic corrections. 0= —10' also
enhances P"~goy, which is also favored by the prelimi-
nary data. However, 8= —10' will enhance f'~g&y and
suppress f"~y, y, making these rates deviate further
from the data.

In any event we cannot explain the entire data by just
setting 0= —10 although it is favored. We emphasize
that g ~goy is the process which is particularly sensitive
to the S-D mixing because the coe5cient of the S-D in-
terference term is very large in this transition. Therefore
the study of g'~goy will provide useful information on
the S Dmixing. In add-ition, P ~goy is also particularly
sensitive to the relativistic corrections. Obviously, a
combined study of S-D mixing with relativistic correc-
tions is needed.

With both S-D mixing and relativistic corrections con-
sidered, if keeping 0= —10, a smaller quark mass, say,
m, —l. 5 GeV will be expected to fit the data of g'~goy,
because a larger quark mass such as m, =1.8 GeV would
oversuppress the rate of g'~goy when both 8= —10
and relativistic corrections are taken into account. Ac-
cordingly, with 0= —10' and m, —1.5 GeV, the disagree-
ment between theory and data for g"~goy may then be
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removed. But the disagreement for 11'~X,y and
P"~X&y may still remain.

The conclusions of the paper are as follows. In the
framework of our charmonium model, considering the
relativistic effect but neglecting the 2 S& 1 D

~ mixing,
it is very dificult to make the experimentally observed
transition widths for g(2S)~yX,J and X,J~yf(1S) con-
sistent with the one for g(3770)~yX,J.

If we desire that the theory can give transition widths
for g(2S)~yX,J and X,J~yg(1S) which one compatible
with the data, then the predicted widths for
ttt(3770) —+yX,z will be a factor of -2 smaller than their
t'.xperimental values obtained by the Mark III Collabora-
tion. When further considering the S-D mixing, we find
substantial effects of the S-D interference on the transi-
tion rates. 0=30 is ruled out, and 0= —10 or a slightly
smaller value is favored by the g'~yXo and g"~yXo
data. However, even with both S-D mixing and relativis-
tic corrections, the calculated excessively large rate of
g'~yX& and the excessively small rate of ll"~yX, are
still incompatible with data. The coupled-channel effects
may suppress the ll'~yX, rate but are hard to enhance
the lt"~yX, rate, even if the X, state has a large com-
ponent of virtual open charm-meson pairs. We believe
that further theoretical studies of these problems are
needed. At the same time we suggest making more accu-
rate measurements of the electromagnetical transitions
for 11(3770)on the Beijing Electron-Positron Collider.

Note added t nproof'. Very recently the E760 Colla-
boration has presented pp annihilation results for precise
measurements of the total widths of x„(3510) and

X,2(3555) [see S. Palestini, talk given at the Joint Interna-
tional Lepton-Photon Symposium and Europhysics
Conference on High Energy Physics, Geneva, Switzer-
land, 1991 (unpublished)]:

I „,(X, ) =0.88+0. 11+0.08 MeV,

I „,(X2)= 1.98+0.17+0.07 MeV .

TABLE II. The electric dipole transition widths for g(3686)
and 11(3770) in the S Dm-ixing model, where g'=11(3686),
t(l"—:11(3770). The widths are calculated by using the zeroth-
order wave functions for three cases 0=0', —10', and 30'. The
experimental values are taken from Refs. [1,2].

Process

xoy
xiy
x2y
xoy
xir
x2y

I (keV)
0=0'

42
36
25
312
95
3.6

I (keV)
0= —10'

19
47
22
363
60
13

I (keV)
0=30'

135
6.0
23
110
188
12

Expt.
(keV)

23+4
21+4
19+4

500+200
430+180

+ 500
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Together with the observed branching ratios [2]

8(x,~y J/g) =(27.3+1.6)%

g(x2 —+yJ/g) = (13.5+ l. 1)%,
one gets

I (X—+yJ/ll ) =(240+40) keV,

I (X„~yJ/lit)=(267+30) keV .

Compared with all other model calculations [3,10,11,12],
our results, i.e., relativistically corrected values for these
radiative widths of X, X2, as well as Xc (see Table I) are in
good agreement with data. This indicates that relativistic
corrections for transitions 1 PJ~1 S&(J=0,1,2) are
rather substantial.
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