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We consider the process yy~m m within the quark model. We find small corrections to the lowest-
order result obtained from chiral loops. These corrections are very similar to those found in vector-
meson-dominated models, and too small to be tested with the present data. We use this result, together
with a simple pole model, to find the amplitude for KL —+m. yy and use this to estimate the CP-
conserving part of Kl ~~ e+e . For this last process we find a branching ratio -2.3X10
significantly smaller than the CP-violating contribution.

I. INTRODUCTION

The framework of chiral perturbation theory [1—3] has
proved extremely useful for analyzing low-energy pro-
cesses involving the pseudoscalar-meson octet and pho-
tons. At low energies, the strong and electromagnetic in-
teractions of these particles can be adequately described
with a chiral Lagrangian with up to four derivatives. The
most general chiral Lagrangian to this order has been
written down by Gasser and Leutwyler [2]. It consists of
two terms at leading order (p ), and of ten more at the
next order (p"). All these 12 arbitrary coupling constants
have been fixed from experiment [2].

In a similar way chiral Lagrangians can be used to re-
late different weak decays. In the standard model, the
dominant

~
b,S

~

= 1 operators in the eff'ective weak Hamil-
tonian transform as (81, lz ) or (271, 1~ ) under chiral ro-
tations. Empirically we know that transitions induced by
the octet operators are significantly enhanced. We can
then write a chiral representation for these leading opera-
tors. The lowest-order term encountered in chiral pertur-
bation theory contains two derivatives and is unique.
Hence, to this order there is only one unknown coupling
constant which can be determined from a measurement
of, say, K —+a~. Unfortunately the situation is much
more complicated at the next order, where a very large
number of operators and therefore of unknown coupling
constants has been identified [4].

The interest of the process yy —+m. n. lies in the fact
that it receives no contributions from local operators up
to order p in an energy expansion. There is, however, a
finite one-loop contribution to it at this order. This re-
sults in a unique prediction from chiral perturbation
theory containing no unknown constants, which can be
compared to experiment [5]. Tree-level contributions
start at order p and therefore expected to be smaller. Of
course, in chiral perturbation theory we do not know the

couplings that appear at order p and hence we cannot
explicitly confirm this conjecture. Within the context of
specific models, however, we can predict the higher-order
constants. Since there exists experimental information
for this process [6], it is of interest to study the predic-
tions of different models. In particular, the quark model
has given surprisingly good results [7—10]. (There are
many versions of the quark model, and many calcula-
tions; we list only a few recent ones. )

The case of KL —+~ yy is even more important, be-
cause this mode, with the subsequent conversion of the
photon pair into an e+e pair, represents a potentially
large CP-conserving background to the process
ECI —+m e+e [11—15]. The Cp-conserving contribution
to the latter is estimated from the absorptive part of the
two-photon intermediate state. The p terms in
Xl ~m yy are such that their contribution to
EL —+m e+e is suppressed by powers of the electron
mass. Hence, the main contribution is expected to come
from the terms or order p . As has been emphasized in
the literature, a complete calculation of El —+~ yy re-
quires the knowledge of direct weak counterterms in ad-
dition to the usually considered pole diagrams [14]. A
calculation of these counterterms within the quark model
is beyond the scope of the present paper, and we will con-
tent ourselves with the usual pole model result as an esti-
mate for the full amplitude.

In Sec. II we briefly review the chiral quark model, and
we then apply it to the processes yy —+~ ~ and
KL —+m yy in Secs. III and IV.

II. THE MODEL

The chiral quark model is a model that describes
effective interactions between constituent quark fields and
the octet of pseudo Goldstone bosons. The approach [7]
consists of the description of strong interactions below
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the scale of chiral-symmetry breaking ( —1 GeV) in terms
of an SU(3)i, multiplet of quark fields, the pseudoscalar-
meson octet, P, and perhaps gluons. These quark and
gluon fields are not to be interpreted as the fundamental
fields that appear in the QCD Lagrangian, but rather as a
set of effective fields. Using the theory of nonlinear reali-
zations of chiral symmetry one constructs the interac-
tions of these effective fields, and organizes them as an ex-
pansion in powers of external momenta [16].

To do this one introduces the matrix
/=exp[i(A, QI2F )], where F =93.3 MeV, and defines
U by the transformation properties of g under
SU(3)1 XSU(3)~:

/~I. gU = UgR (2.1)

One can then adopt a fermion multiplet that transforms
under the chiral group as

(2.2)

for the case of the m (as well as a possible coupling with
two m and one photon). Similarly, there are no direct
couplings of photons to the neutral pseudoscalars.

A more familiar version of the quark model is obtained
by choosing a set of fermions with left- and right-handed
components transforming separately under the chiral
group as (3L, 1& ) or (1L,3+ ). With this set of fermions,
one obtains a Lagrangian with no derivative couplings
provided g~ =1. This is why in practice calculations are
simpler when gz =1. We give the relevant couplings in
this case, noting that with this choice, the coupling of
Fig. 1(c) no longer vanishes:

X= —i u y5u 77 + —'r)s +v 2dyssK
. m p 1 —

p

3

p+dysd —m. +
3

X=4[iy (r)"+v" g~ —a"y, )
—m ]4,

v„=,'(g'a, g+ g„g'),
(2.3)

to find that the most general Lagrangian with up to one
derivative is [3] ++2sysdE —sy5s71s

—0 2
v'3

+ rr rr (uu+dd) .
2I'

(2.5)

This contains the couplings of the pseudoscalar octet to a
set of quarks with constituent mass m and effective axial
vector coupling g~. Typical values are m —320—360
MeV [17]. Recently, Weinberg [18]has argued that these
effective quarks should have gz =1 as ordinary funda-
mental quarks do. Furthermore, the analysis of ~—~
scattering within this model sho~ed that the results were
not very sensitive to the value of gz provided it did not
deviate too much from 1 [8]. With this motivation, and
since in practice it is much simpler to work with quarks
that have g~ = 1, we will use that value for the rest of the
paper. We can then write the neutral-meson —quark cou-
plings that follow from Eq. (2.3):

The two realizations of chiral symmetry ought to give the
same results (this is because we are interested in a
nonanomalous process) and one is free to choose one or
the other for convenience. We have verified our results
using both sets of fermions.

nI. yy

The amplitude for this process starts at order p in the
energy expansion and, at this order, it only gets contribu-
tions from pseudo-Goldstone-boson loops. The general
form of the amplitude as required by gauge invariance for
the process y(qi ei)y(qz, e2)~'rr (p)m (p') is

1

2F uy y,u r)„~p+ a„qs +v'Zdy„y, s()„zpP

+dypysd Bp~'+ —a 98P

+ 2sy„y dr)„& — —sy„y sr)„q . (2.4)
3

This then determines all the couplings such as Fig. 1(a).
Notice that our couplings do not have SU(3) breaking.

To introduce electromagnetic couplings we require the
Lagrangian to be gauge invariant under electromagne-
tism, which is accomplished as usual with the introduc-
tion of covariant derivatives r)„~r)„+ieQ A in the
quark kinetic term and t)„~r)„+ieA„[Q, ] in the terms
v„,a„containing the pseudoscalars (Q is the diagonal
matrix with elements Q„,Qd, Q, ).

One can easily convince oneself that the couplings that
would appear in the vertices of Figs. 1(b) and 1(c) vanish

(c)
7r

FIG. 1. Quark-model couplings: (a) to one pion (b) to one
pion and one photon; (c) to two pions.
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M =d", (q, )ez(q2)M„„,

B(s, t, u)
m

(m t)(m—„—u )
gpv PpPv

s
M„,= 2 (s, t, u) ——g +q~2q,

2
(3.1)

This result can also be obtained from more general
methods where the quark fields are formally integrated
out to produce an effective action. We have checked our
result with this method without obtaining the full
effective action but just those terms that contribute to the
process at hand. Using the techniques described by Ball
[19] we find the effective Lagrangian with two photons
and two pions:

+(m —t)qz~ +(m —u )p„q„

4e2 s m~
AcL(s, t, u) = F

16~ F
s, s

2 +-.F
m m&

where s, t, u are the usual Mandelstam variables. Notice
that the second form factor 8 only appears at order p .

The result from kaon and pion loops has been obtained
in the literature [5]:

—5e X,
(t) m. der F F ——'t) m t)"m F F ).

432F m
P& 2 )M aP

From Eq. (3.S), one can reproduce the A and B ampli-
tudes of Eq. (3.4). However, we disagree with the result
of Ref. [19](see Ref. [20]).

For comparison, we also quote the result obtained in a
vector-meson-dominance model:

Bci.(s, t, u) =0,
where the function F(x) is

2
4 . &x

I ——arcsin
X 2

x&4,

(3.2)
A vMD(s, t, u )—

BvMD(s, t, u) ——

e8hv 5 2m
F2 9 mv

e Shv 10 2m
9 mv

'2

s —4m

(3.6)

F(x)= '

1+ 1
1

1 —&1—4/x +.1+—ln +l&1+&1—4/x

'2

x)4 .
(3.3)

The kaon loop contribution represents a small correction
to the pion loops.

To obtain the tree-level contributions that appear in
the quark model at order p and higher, consider the dia-
grams of Fig. 2. The result at order p is given by

eX, 5 s —4m
M(s, t u)=—

(3.4)
e N, 10

BQM(SI tI u)
16m F

where X,=3 is the number of colors and we will always
take m =350 MeV.

I I I
I

I I I I
I

I I I
I

I I I

15.0

0 07y 7T T

i
cos 0 i(.B

10.0
b

where Mv=M and hv=3. 7X10 is extracted from
the decays V—+~y.

The different predictions are compared with each other
and the experimental results in Fig. 3. We have used the
same angular cut of the experimental results. The energy
scale is extended only to &s =600 MeV, since

0(„)
'Y 1 5.0

~ ~

\ ~

0(„)

0.0
0.2 0.3 0.4 0.5

M (GeV)
0.6

r
~ ~

0(„I)

FICx. 2. Loop diagrams giving yy —+~ m in the quark model.
{There are three more diagrams such as these).

FIG. 3. Cross section for yy~m. ~ at low energies. The ex-
perimental numbers are from Ref. [6]. The solid line gives the
predictions of chiral perturbation theory to order p, Eq. (3.2);
the dotted line includes also the quark-model results, Eqs. (3.2)
and (3.4); and finally the dashed line represents the results of a
vector-dominance model, Eqs. (3.2) and (3.6). We have used the
same angular cut of Ref. [6].
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IV. KL ~m yy

We begin by computing the amplitude for an off-shell
pion, )r (p) with p Wm, to decay to )r yy. The ampli-
tude for )r (p)~)r (p —q, —q2)y(q„e, )y(q~, e2) is re-
stricted by gauge invariance to be of the form (again the
form factor B appears only at order p )

M = e", (q, )e~(qi )M„

M„=A(x„x2)( —m s,2g„+q~zq, ) (4.1)

scattering data tell us that chiral perturbation theory is
breaking down by this scale. The data are quite Bat for
&s —350—600 MeV and none of the predictions have
this feature. However, the prediction of chiral perturba-
tion theory for yy~~ m has no free parameters and so
it is gratifying that it is within 2o. of the data. The
corrections due to quark loops are quite similar to the
contributions from vector-dominance models, but the
difference between the two is too small to be tested with
the current data. (A diS'erent treatment of this process
can be found in Ref. [21].)

deformation model" of Ref. [14].
A nice way to include all the poles is to simultaneously

diagonalize all the terms bilinear in meson fields appear-
ing in the lowest-order strong plus weak Lagrangian.
(See the first paper in Ref. [22].) In terms of KL and ig-
noring CP violation this amounts to

2 2m~F„
~ ~m +2

2 2G8KL
m~ m

' 1/2
1

98 I8

m~I' „
2 2 G8+Lm„—m&

(4.5)

E~ EI 2 68m +2 — 68g8,3 m~ m~

where 68=68 =9.1X10 GeV if there is no CP
violation.

In the quark model we obtain a cancellation between
the ~ and g8 poles for the u-quark loop. The results for
the d- and s-quark loops, as well as the K pole diagrams,
combine to give (with degenerate u, d, and s quarks):

+B(x„xi)(—m x,x~g„—s,~p p

+x,q2„p +x2p„q, ),
where we have now adopted the notation of Ref. [12],

A QM(X f exp )

BQM(X f tXP )

(4.6)

e X, g
Gs (x, +x2 2r~ ), —

16~

e X,
16~2 27

P'9. 9'l 9'2
r&=

m m m
(4.2)

(4.3)

e X, 2OB(x„x2)=—
16 I

but we have used the constituent quark mass m for nor-
malization. We can easily obtain A (x „x2 ) and
B (x &, x2 ) in the quark model to order p:

e X,
A (x &,X2)= — (x

&
+xz 2rz ), —

16m I"

where we have used the Gell-Mann —Okubo mass formula
3(m „—m~)=m)r —m

For comparison, the result obtained from vector-
dominance models is

(2m)' 64hv
~ VMD(X1 X2 ) = —e Gs 2 (x

&
+xz —2' )

m~
(4.7)

(2m)2 128hv
BvMD(X»X2) = —e'G,

m~

The full result for the lowest-order (p ) amplitude
KL ~n y y, obtained from chiral loops, is [22]

K I
7r

0
7i ZL ...g..

8

T

e 2~& '~2
ACL(x„x2) = Gs I'

4~ m~

2/i g2
2

mir-

BcL (X„X))=0 .

m 2

1 ——
2ql g2

m~+m2 2

--1
2/i g2

(4.4)

&) d

0
7r

To this lowest-order result we will add the next-order
terms that appear in the quark model contributing
through pole diagrams only. This pole model for
Ki —+~ yy consists of considering the diagrams of Fig.
4(a) and of ignoring possible direct weak counterterms
depicted schematically in Fig. 4(b). These counterterms
are in general expected, and their effect on the overall
amplitude can be significant, as is the case in the "weak

K L

FIG. 4. Diagrams contributing to EI ~~ yy. (a) Pole dia-
grams (the photons are attached in all possible ways to the
quark lines), and (b) possible direct weak counterterms.
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~v
8~v'2 2m

Taking m&=770 MeV, g„=1, and I=350 MeV ives

We find a total branching ratio for KL ~~ yy of

(4.8)

We agam compare these results with experiment [23]
in Fig. 5. In this figure we have normalized the predic-
tions to the experimental branching ratio. The shape of
the distribution is affected very little by the small p
corrections. The corrections (both in the quark model
and in the vector-dominance model) tend to increase the
number of events to be expected for the lower values of
the photon pair invariant mass. Thi h
small effect, and is difficult to check due to the different

M [23].
acceptance the experiment has for diff tr i erent regions of

rr
It is interesting to notice that the quark-model and the

vector-meson-dominance results have exactly the same
form at lowest order. If we require the two models to
give the same result we can use the vector-dor- ominance
mo e to predict the ratio I/g~ [to lowest order the
eff'ect of keeping g~%1 is simply to multiply the form

2) d B(xi,x2) by g„] or we can use2

this ratio from the quark model to predict the strength of
the coupling hz..

7.0
I

I 1 I

We
5.0

C3

4.0

3.0—

0KL~7r

1.0

Q Q

0.0 0.| 0.2 0.3 0.4
M (GeV)

FIG. 5. Rate for K —+or Kl —+~ yy. The experimental result is tak-
en from Ref. &23 . The . & j~. e solid line is the lowest-order prediction
from chiral loo s' t ~ ~

uark
p, e dotted line includes the result f th

q model; and the dashed line contains the result of the
VMD model for comparison. Th d'e pre ictions have been nor-
malized to give the same branching ratio as the data.

6.7X10 '
B(KL ~m yy)= 6.0X10

6.0X10 '

for pion loops only,

for pion plus quark loops,

for pion loops plus VMD .
(4.9)

If we put a cut on the invariant mass of the photon air M )2
results), then we find

p o on pair, r~ )280 Me& (which is the cut imposed on the experimental

5.7X10 for pion loops only,

B(K —+m )= 5yy — .2X10 for pion plus quark loops,

5. 1X10 for pion loops plus VMD .
(4.10)

I

gives a lower limit for the branching ratio from the CP-
conserving amplitude:

Thhese numbers must be compared with the experimental
ranching ratio of (2. 1+0.6) X10 for M )280 MeV

from the CERN group and (1.86+0.6+0.6) X 10 from
Fermilab [23]. The predictions are smaller than the data,
although they are not inconsistent with errors.

Bcp(KI —&m e+e ))2.31X10

T is is of course very close to the VMD de pre iction of

er than the CP-violating contribution.

V. KL —+m. e+e

Finall we can use the previous answer to estimate the
rate for the CP-conserving part of the E

bution from the absorptive part of the two-photon inter-
me iate state. The contribution from A (x&,x2) is
suppressed by m, and can be neglected. Using Eq. (4.6)
we find a simple result ifB(x„x2 ) is constant or if it onl
depends on (x, +x2):

i i ony

VI. CONCLUSIONS

We have computed the order p contributions to the

Both processes are dominated by the pion loops as is ex-
pected in chiral perturbation theory. The next-to-
eading-order corrections found in the quark model are

quite small so it is not possible to test them against
present data. Their size, however, gives us confidence in
t e predictions from chiral perturbation theory for these

4

After squaring and integrating over phase space, this

A~as(KI (p)~sr e+(k')e (k)) =— p (k k')j—2P QPU
m
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two processes. More significantly, the corrections are
very similar in size (and have the same form) as those ob-
tained in vector-meson-dominance models. As an appli-
cation we estimated the CP-conserving rate for
I(L~m e+e and found a result that suggests that this
mode will be predominantly CI' violating.

We conclude by comparing again our results with
those found in the literature. In Ref. [22] the p contri-
bution to KL —+~ yy was calculated in chiral perturba-
tion theory and found to be unique. The same applies for
Ref. [5] and yy~sr tr . These are the lowest-order pre-
dictions for these processes and should always be includ-
ed. The pion rescattering calculation of Ko and Rosner
[15] takes the leading part of the chiral-perturbation-
theory (ChPT) result, the pion loops, and treats it phe-
nomenologically. Doing so they have included some
higher-order terms. Since the lowest-order m. +~ yy am-
plitude is a very good approximation to the experimental
result, they reach essentially the same conclusions of
ChPT. The next-to-leading-order terms for both process-
es, p, contain free parameters that ChPT cannot deter-
mine. They can be fixed from a ~ector-meson model
treated in the SU(3)t, limit (all masses equal). This is
what we and the the authors of Ref. [14] have done, and
we agree with their result. They can also be fixed within
the chiral quark model, and this is our main new result.
Our calculation shows that both models yield essentially
the same prediction. The p predictions (in both models)
can be supplemented with additional assumptions (such
as nonet symmetry) to include the effects of the tl' and
g-g' mixing, which are formally of higher order, but can
be phenomenologically important. However, as it was
mentioned in Ref. [14], one can think of several other

effects that occur at higher order. The inclusion of these
effects is straightforward but very model dependent; since
it would parallel the discussion of Ref. [14], we have
chosen not to include them. The papers of Ko and Seh-
gal use a more phenomenological approach that does not
separate the different contributions. They include
SU(3)t, -breaking effects into the pole model, such as tl'
and g-g' mixing. They also include some other higher-
order terms by keeping the complete vector-meson prop-
agators. If one studies their amplitudes carefully, one
notes that the terms of order p in the strong vertex (in
the pole model) are essentially the same as those of Ref.
[14]. Their different results follow mainly from the way
they have introduced the g' and the g-g' mixing, since
the amplitude for KL —+m yy is very sensitive to these
effects.

Note added in proof. Recently, Morgan and Pen-
nington [24] have explained why the lowest-order chiral
perturbation theory prediction for y y —+m ~ is not accu-
rate. Their method allows for an improved prediction of
the rate using dispersion relations. Our main con-
clusions, that the tree-level O(p6) terms are unimportant
in the low-energy region and that the quark model and
vector dominance models give remarkably similar predic-
tions, are not contradicted by this work.
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