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We discuss the propagation of muons of energy above a TeV through rock and stress the importance
of correctly accounting for the Auctuations of the energy loss in radiative processes. Accounting for

these Auctuations affects the major types of underground muon Auxes in the opposite way from a naive

treatment that neglects the muon straggling. The rates of downward atmospheric muons are increased,

while the Aux of upward neutrino-induced muons is decreased. The paper analyzes the causes of these

effects and gives helpful parametrizations for the muon ranges applicable to the two types of muon rates.
We also extend our calculations to muon energies of 10 TeV and discuss the uncertainties in the muon

energy loss at extremely high energy. An appendix gives a short review of the analytic techniques used

to solve the problem of straggling and presents a toy model that displays the role of fluctuations in muon

propagation. In another appendix we introduce an interesting technique for the generation of approxi-

mate energy, angular, and lateral distributions from the muon survival probability.

I. INTRODUCTION

The propagation of TeV muons through large depths
of rock is an important tool in underground muon and
neutrino physics. A good knowledge of the probability
that a muon generated with energy Ep will not be ab-
sorbed in X g/cm of rock (survival probability P,„,„) is
necessary to understand the most basic experimental
result —the rate of single muons. The range distribution
for muons arriving at the detector with energy E and the
angular distribution of these muons is crucial for esti-
mates of expected rates of upward-going, neutrino-
induced muons of different origin. All these parameters
plus the lateral displacement of the muons during propa-
gation are needed for the analysis of the results on muon
groups in terms of the chemical composition of the
cosmic-ray Aux.

The main energy-loss processes for TeV muons
theoretically well understood. They are (i) ionization, (ii)
bremsstrahlung, (iii) production of e+e pairs, and (iv)
photoproduction. While the ionization loss is only slowly
logarithmically increasing with energy, the radiation pro-
cesses cause a loss which in the high-energy limit is pro-
portional to the muon energy. The average loss is usually
expressed as

where a is due to ionization and P is the sum of the frac-
tional radiation losses. If we assume that a muon of ini-
tial energy Ep traversing each thin layer ~ of a materi-
al, always loses the expected average: ( b E(E„))
=(dE(E )/dX)AX, we can calculate the "range of the
average loss" as

&0 dEP

(dE(E„)/dx)
1=—ln 1+

E'

In the last equation we consider a and P energy indepen-
dent, and define E=ct/P as the muon critical energy at
which the ionization loss equals the radiation loss. This
is a good expression for the muon range when most of the
energy loss is due to ionization and is thus continuous,
i.e., for E„&e. At higher energies the energy loss due to
radiation starts to dominate. Fluctuations are inherent to
the radiative processes and they replace R&zE& with a
distribution of ranges. Some muons propagate much far-
ther than R &&E& but the majority do not and the average
range (R ) becomes smaller than R &zz&. This effect has
been considered long ago in connection with the range of
the electron.

The account for the Auctuations in the muon energy
loss has two main consequences for the application to the
underground muon and neutrino physics. First, muon
propagation effects are energy dependent. The higher E„
is, the bigger role fluctuations play. Correspondingly the
R distribution becomes wider, and the ( R ) /R ( t,z &

ratio
decreases. Second, the muon range distribution affects
the estimates of the rate of down-going muons of atmos-
pheric origin and the rate of upward-going neutrino-
induced muons in the opposite way.

In the latter case the rate of upward-going muons ex-
plores the full muon range. It is thus sensitive to the
average muon range, and accounting for the Quctuations
will decrease the rate.

In the case of down-going muons one samples muons
at a certain depth of rock X, and the steep cosmic-ray
spectrum weights very heavily the Auctuations of the en-
ergy loss. The rate is JdE„dN/dE„P, „,„(E„,X). A
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small probability that relatively low-energy muons sur-
vive in the propagation is compensated by the much
higher flux of such muons. The rate of muons is dom-
inated by the small P,„„tail, and it is thus sensitive to
the width of the range fluctuations, rather than to the
average range. The accounting for the fluctuations
should, correspondingly, increase the rate.

Analytic treatments of the fluctuations of the muon en-
ergy loss are only possible under the simplifying assump-
tion that both a and /3 in Eq. (1) are energy independent.
In fact a rises logarithmically with the energy. In the re-
gion up to 10 TeV, which is of utmost importance for
deep-underground experiments, the high-energy limit
(P= const) is not yet reached. Strictly speaking it is never
reached as the energy loss to photoproduction increases
logarithmically with energy. For this reason the analytic
estimates of the muon range will always be inexact and
approximate. A Monte Carlo propagation program, on
the other hand, should be able to predict precisely not
only the range, but all related parameters such as the
muon energy distribution, angular and lateral spread at
the observation level.

The analysis of experimental data from contemporary
deep-underground experiments requires the use of Monte
Carlo muon propagation codes, which are able to give
good estimates of all these parameters. In this paper we
discuss the features necessary for compiling of a good
Monte Carlo program and describe our code in Sec. II.
In Sec. III we present the basic results from runs of the
code for standard rock and introduce some useful param-
etrizations. Section IV discusses the main applications of
the results for underground muon physics. Section V con-
tains an analysis of the uncertainties in the muon energy
loss at extremely high energy. General conclusions are
given in Sec. VI. We also present a compilation of ana-
lytic results on the muon propagation and a toy Monte
Carlo model that demonstrates the importance of the
fluctuations in Appendix A, and a fast algorithm for
muon propagation in Appendix B.

Our Monte Carlo code, as well as a much faster code
that samples from the results of the full Monte Carlo
code to generate muon energy, angle, and lateral dis-
placement after propagation on depth X, are available on
request.

II. MUON INTERACTION CROSS SECTIONS
AND MONTE CARLO ALGORITHMS

In a Monte Carlo treatment there is a significant
difference between the ionization energy loss and the loss
due to radiation. The fluctuations associated with the
mechanism of ionization are relatively small. It is there-
fore a good approximation to treat this mechanism as
"continuous, "describing it by the mean value of the ion-
ization loss per unit material thickness given by the well-
known Bethe-Bloch formula [1] and accounting for the
density effect.

The mechanisms (ii), (iii), and (iv) involve the radiation
of a real or virtual photons. A complete description of
these radiative processes is given by the differential cross
sections do.„d(u, E )/du, where

Ep —Ep Er(*)
E (3)

is the fraction of the muon energy transferred to the pho-
ton. The shape of do„d(u, E)/du determines the magni-
tude of the fluctuations in the muon propagation. The
average energy loss for each radiative processes can be
easily calculated as

dE X 'm» do. U, E

X is the Avogadro number, 3 is the mass number of the
material, and U;„, U,„are the minimum and the max-
imum kinematically allowed fractional photon energies.

The cross section for pair production is always finite,
while the cross section for bremsstrahlung and nuclear
interactions diverge logarithmically when integrated over
all possible values of U. This divergence corresponds to
an infinite probability of radiating infinitely soft photons.

In the choice of cross sections we fo11ow the compila-
tion of Lohmann, Kopp, and Voss [2]. The original cal-
culation of the differential cross section integrated over
the directions of outgoing particles can be found in Ref.
[3] for bremsstrahlung, Ref. [4] for pair production, Ref.
[5] for photonuclear interactions. We will discuss the
propagation of muons in "standard rock" ( A =22,
Z =11, p=2. 65 gem ). The formulas and parameters
that fully define the ionization loss can be found in Ref.
[6].

Asymptotically the differential cross sections for
bremsstrahlung and pair production are energy indepen-
dent and it is common to define

do„d(u, E)
dU U

0 dU

In Fig. 1 we show a graph of the quantities
/3b„„P&„„P„„„andof their sum. An important point to
consider is that the asymptotic values (full screening) of /3

for the purely electromagnetic processes is reached only
at very high energy (E„=100TeV). For example, in
standard rock at 0.1, 1, 10 TeV /3„„, is 1.15, 1.47, and
1.63 [in units (10 g 'cm )], P „,is 1.56, 2.10, and 2.27,
while the asymptotic values for the two processes are 1.70
and 2.32.

The contribution of the energy loss due to photonu-
clear interactions does not reach a constant value of /3 be-
cause of the expected growth of the photon-nucleon cross
section 0 ~~ with energy: in the same units /3„„,=0.41 at
1 TeV, and grows to 1.18 at 10 TeV. The photonuclear
cross section is the most important element of this calcu-
lation that is not under complete theoretical control. We
will discuss uncertainties related to this fact in Sec. V.

The general problem that we have to solve can be de-
scribed as follows: we have a monoenergetic beam of
muons of energy Eo all moving along the z axis. We want
to calculate the fraction of the flux that will reach the
"detection" level X{P,„,„(EO,X)), and the distribution of
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kinematical properties of these muons after crossing
depth X of a certain homogeneous medium of density p
and well-defined composition. A detected muon can be
fully defined by its energy E, angle 0, and lateral displace-
ment l. In general we can define a distribution function
F(E,8, 1;Eo,X) that describes fully the surviving muons.
There are strong correlations among these variables, low
final energies E correspond to large scattering angles and
large lateral displacements.

The distribution function can be reduced to one dimen-
sion by integrations over the angular deviation and la-
teral displacement of the muon, obtaining the final energy
spectrum F(E,Eo,X). Integrating further over all ener-
gies we obtain the "survival probability" P,„,„(Eo,X), or
in general integrating from threshold energy E;„we can
define a survival probability above a certain threshold
P,„„(EII,E;„,X ).

In the literature there are several analytic solutions of
the one-dimensional problem, and in Appendix A we
briefly discuss these efforts. An analytic treatment is,
however, possible only through approximations that are
not completely adequate for high-prec''sion studies. A
full three-dimensional treatment is in practice only possi-
ble with Monte Carlo techniques.

An important, though trivial, requirement to a Monte
Carlo procedure is that it has to implement all cross sec-
tions extremely precisely. Muon propagation to depths
of 10 —10 g/cm takes thousands of samplings and a
minor deviation from the true cross section easily adds up
to large factors. Otherwise it is a straightforward prob-
lem. The complication connected to the divergent cross
section can be avoided by the introduction of a
"quasicontinuous" energy loss that represents very soft
radiation. Therefore we can decompose the average ener-
gy loss into a "soft" part that is in the radiation of pho-
tons with energy below a certain threshold (u (v,„,),
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that will be treated as a "continuous" loss and a "hard"
part (u ~ u,„,) that will be treated stochastically:

r

dE dE dE

rad soft hard

+ NE I
d do(v, E)

Note that the cross section for "hard radiation"

do(v, E).
cut V

is now always finite.
A muon of energy E crossing a thin layer of the

medium of thickness dX will lose "continuously" due
to soft radiation and ionization, dE„« =

& a(E )

+(dE/dX)„«)dE, and will have probability dX/A, „„d
[with AI,„d=(o.I,„dN/A ) '] of radiating a photon of
fractional energy U U,„„, the probability of radiating a
quantum of energy U being proportional to the differential
cross section d o. /dv.

An important question is what is a good value for U,„,.
Through trial and error we chose v,„,=0.01 for the cal-
culation. Smaller values increase the computing time,
that is proportional to cTI,„d- I /v, „,. Larger values
would begin to introduce a systematical bias in the esti-
mate of the fluctuations.

The angular deviation of a muon is dominated by
Coulomb multiple scattering, and for this reason we have
neglected the angle of the muon acquired in the radiative
processes using differential cross sections already in-
tegrated over all directions of the final particles. We have
treated the multiple-scattering process in the Gaussian
multiple-scattering approximation: a muon of initial en-
ergy E crossing a thin layer of material hX (gem ) will
emerge with a direction (8„,8 ) and lateral displacement
(/„, I ) distributed according to correlated Gaussians [7]
(the initial direction of the muon is along the z axis, and
the deviations in two orthogonal planes are independent):

80
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FIG. 1. Plot of the quantities P„d=&dE/dx)„d/E for the
three radiative processes in standard rock as a function of the
muon energy E. The solid line is for bremsstrahlung, dashed
line for production of e+e pairs, and the dotted line for pho-
toproduction. The thick solid line shows the sum of the three
processes.

the widths o @ and ca& are given by the well-known expres-
sions:

2

'=&8'&=&8') = ~ms AX
e x y

1

', = &I„')= & I„'& =—,', =— &8'„), (lO)3E pX 3 p

where p is the density, A.„ is the radiation length, and
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e,=0.014 GeV (if the muon is not ultrarelativistic E has
to be replaced with PP).

These expressions are valid if the layer is thin enough
so that the energy of the particle can be considered as ap-
proximately constant, for a finite layer X, we have to con-
sider the energy loss. Equation (8) is still valid but o s and
o.

I are obtained from expressions

2
~ms & 1og= dX E(X)'
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cr'=(l'&= '
J dX

E(X)
(12)

(X is chosen so that X=O is the point where the particle
emerges from the scattering medium). In the case of the
angular deviation the contribution of each layer
b,X( b.8) =&6,X /E(X) is summed quadratically as in a
standard random walk, each contribution is proportional
to E(X) '. In the case of the lateral separations the con-
tribution from layer X is weighted by a factor (X/p) the
geometrical distance of the layer from the detection
point.

The muons surviving at depth X will have a strongly
non-Gaussian angular distribution with long tails. This
qualitative result is true even if multiple scattering is
treated in the Gaussian approximation because the Auc-
tuations in the energy loss will induce large differences in
the energy E(X) of the muons at depth X. On average
there is a nearly inverse proportionality between the ener-

gy of the emerging muon and its deviation angle, because
most of the deviation is accumulated in the last part of
the particle trajectory close to the detection level (see Ap-
pendix B for a more complete analysis of this point).

At very high muon energy the "continuous" energy
loss and the angular and lateral displacements can be ac-
counted for on one free path for "hard" loss. At energies
comparable to e the mean free path increases, while the
multiple Coulomb scattering becomes more important,
and the longitudinal step should be controlled so as not
to distort the angular and lateral distribution. Since the
angular deviation is inversely proportional to the muon
momentum, a good way to do this is to use a step corre-
sponding to a fixed fractional energy loss.

2 2.5 3.5

log&0 E„(GeV)
4 4.5

FIG. 2. Energy distribution of muons of Eo =10' GeV after
propagation in standard rock to depths from 1 to 9 km. w.e. The
numbers by the histograms show the corresponding depth.
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ization of the histograms at different depths reAects the
survival probability for these depths. At depth of 1

km. w.e. a significant fraction of the muons still carry a
large fraction of Eo as could be expected from the aver-
age energy loss. Certain number of muons, however,
have already lost 2/3 of their energy. The distribution is
wide and asymmetric with a very long tail toward low en-
ergy. At greater depths the distribution becomes even
wider preserving the long low-energy tail.

In Fig. 3 we plot the survival probabilities P,„„(EO,X)
for Eo from 1 to 10 TeV. The difference of the shape of
P,„„is easily noticeable. The curves become Aatter with
increasing Eo, which reAects the increasing inAuence of
the radiative energy loss and correspondingly the Auctua-
tions in the energy loss. It is interesting to discuss these
results in terms of the range of the average energy loss
R &~E ~, which is indicated with an arrow by the corre-
sponding survival probability curve.

III. RESULTS FROM THE MONTE CARLO PROGRAM

It is impossible to present in a journal article enough
results from the Monte Carlo propagation of high-energy
muons to provide sufficient information for detector
design or data analysis. For these reasons we only
present here a limited number of results to demonstrate
the effect of energy-loss Auctuations on the muon propa-
gation and encourage the reader to use the Monte Carlo
for all essential estimates.

A. Monoenergetic muon beam
0

0 10 15 20

X (~.~.e.)
25 30 35

Figure 2 shows the distributions of E„at depths, 1, 3,
5, 7, and 9 kilometers of water equivalent (1 km. w. e.
=10 g/cm ) for muons with ED=100 TeV. The normal-

FIG. 3. Survival probabilities of muons of energy from 1 to
10 TeV in standard rock. Eo is indicated by each curve. The
arrows show the range of the average energy loss R

& qz &.
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Although sometimes the range of the particle is longer
than the "naive" definition (2) and sometimes shorter, a
crucial point, important for the application of neutrino
astronomy, is that the average range ( R ) is smaller than
the naive definition. The effect of fluctuations is thus not
only to broaden the range distribution, but also to shift
the average value estimated from Eq. (2).

If we neglect fluctuations, then the three quantities
(EO, Ef,X), the initial and final energies of a muon cross-
ing a depth X, are related by a well-defined condition

.8—

I I I I
I

I I I I
I

I I I I
i

I I I I
t

I I I I

dEX= P

E ( dE (E„)/dX )
(13)

E = (Eo+e)exp( —PX ) —e, (14)

and any of the three variables can be expressed as a func-
tion of the other two. Knowledge of the function
(dE(E&)/dX) is then sufficient to fully describe muon
propagation (neglecting the "three-dimensional" effects
of multiple scattering). For an explicit example, if the
quantities p and a in Eq. (1) are independent of energy,
and defining e=a/p, the relation between the quantities
(Eo,E,X) takes the very simple form

-3 -2
I I I I I I I I I I I I I I

-1 0 1

log, o 8 (degrees)

FIG. 5. Angular distribution of muons from a power spec-
trum with index y=3.7 at depths of 3 (thick line) and 10 (thin
line) km. w.e.

Eo =(E+e)exp( +PX )
—e, (15)

E0+eX=—ln
P E+e (16)

B. Power spectrum muon beam

Figures 4 —6 show the energy, angular and lateral dis-
tributions of muons surviving to depths of 3 and 10

The simplicity of this approximation is tempting, unfor-
tunately the effect of fluctuations is not negligible, and for
any quantitative estimate must be taken into account.

km. w.e. These two depths bracket the depth range where
we can expect reasonable statistics from the current
deep-underground muon detectors. The primary muon
beam has an KEo differential energy spectrum, close
to the one expected for muons generated by ~ and K de-
cays in cosmic-ray cascades in the atmosphere. In the
figures all distributions are shown normalized to unit
area, the absolute normalization is discussed in Sec. IV A.

Let us first discuss the energy distributions. They are
quite similar at the two depths, with the spectrum slight-
ly harder at 10 km. w. e. (E„) is 225 GeV at 3 km. w.e.
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FIG. 4. Energy distribution of rnuons from a power spectrum
with index @=3.7 at depths of 3 (thick line) and 10 (thin line)
km. w.e.

FIG. 6. Lateral distribution of muons from a power spectrum
with index @=3.7 at depths of 3 (thick line) and 10 (thin line)

km. w.e.
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Px(1 —y)[E + ( 1
—Px) ]

—
I

dE„
(17)

where y is the spectral index of the primary beam. The
spectrum will initially harden with the depth to reach a
constant slope at very large depths. This picture is not
only qualitatively true, but also quantitatively very close
to the Monte Carlo output. It should be remembered,
however, that the most important factor in Eq. (17) is the
spectral index y, which determines the overall shape of
the local energy spectrum.

Figure 5 shows the local angular distribution of the
muons at the two depths. The effect of the depth is now
inverted, with a narrower distribution corresponding to
the harder energy spectrum at 10 km. w.e. This effect is
fully consistent with the general features of the multiple
Coulomb scattering, which predict that the angular dis-
tribution will be determined during the last stages of the
propagation. The lateral distribution of Fig. 6 is more
complicated, since it reAects both the angular deflection
and the total path length of the muons. We discuss in
more detail the relations between the local energy, angu-
lar and lateral distributions in Appendix B.

IV. APPLICATIONS TO UNDERGROUND PHYSICS

A. Downward-going muons

In the case of downward-going muons we have an ini-
tial fiux of muons Po(EO) and we want to calculate the
rate in an underground detector. In this discussion we
are considering a fixed zenith angle, at large energies the
atmospheric muon Aux depends on the zenith angle 0 ap-
proximately as ~(cos8), we are leaving this zenith-
angle dependence implicit. Integrating over all scattering
angles and energies we can calculate the depth-intensity
relation. The underground intensity at depth X is

r(x) = f dE, y„(E,)r,„,„(E,,X) . (18)

and 325 GeV at 10 km. w. e. Qualitatively the average
values are similar to what one would expect in the case of
no fiuctuations. Using Eq. (13) and a power-law energy
spectrum for the primary beam the muon energy spec-
trum at depth X will then be

@=2.0 could be relevant in case of prompt muons pro-
duction from an exotic primary from an astrophysical
source.

A simple parametrization for I(X) is suggested by the
following considerations: if we assume that Auctuations
in the energy loss are negligible (they are not), the
survival probability is then a step function
P,„,„(EOx)=8[ED —E;„(X)], where E;„(X) is the
muon energy corresponding to range X. If we make the
further assumption that E;„(X)is well approximated by
the form [8]:E;„=e(exp(13X) —1) we can easily perform
the integration in (18) obtaining the result

(19)

This expression is a good parametric form for the depth-
intensity relation because it automatically reproduces
some of the important qualitative features of the exact re-
sult. At large depths we can approximate the expression
(1—e ~

) with 1, and we obtain a depth-intensity rela-—X/Xotion that falls exponentially with depth: I(X)~ e
with a slope Xo= [13(y—1)] ' related to the primary
muon spectrum. The correction factor (1—e ~

)
~+' is

always larger than 1 and therefore I(X) approaches the
asymptotic exponential behavior from above. The rela-
tion (X—lnI ) shows a curvature in the region below =5
km. w.e. with a positive second derivative. We will use
the parametrization (19) to describe the results of a de-
tailed numerical integral. We emphasize that the quanti-
ties P and e have to be considered as simple parameters
without a direct physical meaning.

In Fig. 7 we show the results of a calculation of the
depth-intensity relation for power-law spectra
$0(EO) =(y —1)EO (Eo is in TeV, the normalization is
chosen to have an integral spectrum of value 1 at one
TeV), with y=3. 7, 2.7, and 2.0. The points in the figure
correspond to the integration (18) of the muon spectrum
weighted by the survival probability, the curves are two
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)
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In general, for a detector with an energy threshold E,h,
we can calculate the intensity above a given threshold:
I(X,E,h„). It was shown in the previous section that the
typical energy of the underground muons is of order of a
few hundred GeV, and therefore if the threshold of the
detector is of the order of a few GeV, or a fraction of a
GeV, the intensity is not very sensitive to the exact value
«Eth'

Many of the expected sources of high-energy muons
will have an initial differential energy spectrum that is a
power law Po(EO) =KEO, and it is interesting to discuss
the depth-intensity relation induced by these spectra.
y =3.7 is a good approximation of the shape of the bulk
of atmospheric downward muons above 1 TeV; y=2. 7
corresponds to the expected energy distribution of muon
produced by a prompt mechanism such as charm decay,

.01

'0
4
04

.001
a

.0001
10

FIG. 7. Depth-intensity relations for muon spectra of
different spectral index. The points are results of numerical in-
tegration over the Eo spectrum and P,„„.The lines show the
fits described in Sec IV A.
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parameter fits of form (19). The results of the fits are
P=0.383 and @=0.618 for y =3.7, /3=0. 418 and
e=0.557 for y =2.7, and P=0.465 and e=0.569 for
y =2.0. The fits have errors less than 4%%uo for depths be-
tween 3 and 10 km. w.e. In comparison the fit of Gaisser
and Stanev [8] overestimates the intensity by -20%%uo at
shallow depths and crosses over our fit for y =3.7 at 9
km. w.e.

Note that the fitted parameters P and e depend on the
exponent y, that is on the shape of the incident spectrum.
This may seem surprising if we naively think of the quan-
tity e(e~ 1) as —the threshold energy for a muon to
penetrate to the depth X, which would lead us to con-
clude from the results of the fit, that muons with a
steeper spectrum are somehow more penetrating than
muons with flatter spectra. The qualitative behavior of
the parameters can actually be easily understood. In the
definition of the intensity (18) there is no sharp lower lim-
it E;„(X),and the integrand, which is the product of
two factors, one vanishing and the other rapidly growing,
goes slowly to zero. The tails of P,„„arevery important
and muon energies that have survival probabilities of or-
der 10, 10 give still important contributions to the
intensity because of the big enhancement due to their
higher flux. Spectra of different shape give different
weight to these tails, and this effect is absorbed in the
fitted parameters P and e. For a spectrum such as E
where the flux falls by a factor of 5000 per decade the
muon straggling results in an "effective threshold"
significantly lower than for a flatter spectrum such as
E 2

The importance of the tails also explains why the net
effect of fluctuation is to significantly enhance the intensi-
ty over what one could calculate neglecting fluctuations.
Note that the effective parameters P and e are obtained
by fitting a certain spectral shape and, if applied to esti-
mates of intensity produced by a different source of
muons (of difFerent y) would result in large errors.

B. Neutrino-induced muons

Y (E„;E„'") =N„ f dX f dE„(E„;E)
0 0 dEp

XP,„„(E„;E„'",X),
(21)

where X is the distance (in gem ) of the neutrino in-
teraction point from the detector. The integral over the
interaction point of the neutrino X can be performed first
with the result

where

R,fr(E„;E„'") = f dX P,„„(E„;E„'",X)
0

(23)

is a transparent equation because each produced muon is
weighted by a production cross section and its range.

Note that if the survival probability has the form

P,„,„(E„;E„'",X)=0[R &~~ &(E,E„'")
—X]

then the yield can be rewritten as

(24)

F-. d o.
Y (E;E„'")=N~f dE„(E„;E)

o "dE„
XR&q~)(E„,E„'") . (25)

While Eq. (25) will overestimate the yield Y because it
uses the range of the average energy loss
R &zF &(E„,E„'"), the use of R,lr in Eq. (22) accounts ex-
actly for the fluctuations in the muon energy loss and is
equivalent to taking the double integral of Eq. (21). Fig-
ure 8 shows R,ff as a function of E„ for
E min=1, 10, 10, 10, 10, and 10 GeV. Apart from

do ~
Y (E,;E„'") =N„ f dE„(E„;E)R,ff(E„,E„'"),

o "dE„
(22)

The muon yield Y(E„) of a neutrino of energy E is
defined as the average number of muons produced by the
neutrino that will reach a detector, assuming that there is
an infinite amount of material between the neutrino
source and the detector and neglecting the absorption of
the neutrinos. The detected muons will all be produced
in the vicinity of the detector because even the highest-
energy muons do not travel more than —10 km, and
therefore the assumption of "infinite amount of material"
is essentially always well satisfied for directions below the
horizon. The number of muons produced by a neutrino
coming from nadir angle t9 can be written in the factor-
ized form

30

25

20
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10O
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n„= Y,(E )exp[ —ol,(E„)X(g)], (20)

where X(0) is the column density of the Earth.
A muon detector will in general have an energy thresh-

old for detection, and it is necessary to specify the yield
of muons above this threshold as Y(E; E;„). In gen-
eral we can write

0
1000 10000 10 10

E„(cev)
10 10 10

FIG. 8. Effective muon range as a function of Eo. Curves
correspond to E,h, {from top to bottom) of 1, 10, 10, 10, 10,
and 10 CzeV.
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the threshold effects at E„=E„'",R,z is essentially linear
with 1nE„. The slight curvature at high E„values is due
to the increase of the relative energy loss at very high en-
ergy. The diFerent curves have approximately the same
slope. For large values of the threshold energy E„'"the
curves are also nearly equispaced, this reAects the fact
that when radiative processes are dominant a muon of en-
ergy E will on average lose a fixed fraction of its energy in
a depth X approximately independent of E. When E„'"is
sufIiciently small, ionization losses become important and
the distance between the curves decreases (note that there
is no curve for E„'"= 10 GeV).
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Although not experimentally studied at TeV energies
the muon energy loss is theoretically very well under-
stood. Our calculations are thus very reliable when the
muon beams to be propagated have a steep energy spec-
trum and the major contribution is from few to few tens
of TeV. This is the case of muons generated in cosmic-
ray atmospheric cascades. There are, however, predic-
tions of astrophysical [9] or cosmological [10] neutrino
cruxes that extend to energies of 10 TeV and are detect-
able mostly through the muons (approximately with the
same energy) that they generate in deep-inelastic scatter-
ing. At such extreme energies there are two eFects that
could alter the energy-loss formulas used in this paper.

At very high energy and materials as dense as standard
rock the Landau-Pomeranchuk-Migdal [11] (LPM) effect
becomes gradually important for the muon radiation pro-
cesses. The effect is due to interference between the
atomic fields of single atoms when the interaction region
becomes comparable to the radiated photon wavelength
and results in a suppression of the radiation cross sec-
tions. It affects first the radiation of soft photons, and is
therefore most important for the bremsstrahlung energy
loss. We did a calculation of the bremsstrahlung energy
loss of rnuons in standard rock using the formulas of
Migdal [11].The effect becomes noticeable at 10 TeV
and leads to a 10% decrease of Pb„, , at 10 TeV. Con-
sidering the extreme muon energy, the moderate effect,
and the theoretical uncertainties we decided not to ac-
count for the LPM effect in the current calculation. An
account for the effect would have of course slightly in-
creased the muon range at 10 TeV.

A potentially more dangerous effect might arise from
the photoproduction cross section. The real photon cross
section on nucleons o.

z& is an explicit part of the muon
photoproduction cross section. If o.

z& has a strongly
energy-dependent QCD component, due to a certain
gluonic content of the photon [12], then the muon pho-
toproduction energy loss will be strongly affected and
might become the major energy-loss process. Figure 9
shows the average energy loss to photoproduction in
three assumptions for the energy behavior of o.z&. The
solid line is the cross section [5] used in this calculation
which has a small ln (s) term. The dotted line is a low-
energy ftt with a In(s) term, while the dashed line uses an
eikonalized QCD cross section [13] with the photon
structure functions of Drees and Grassie [14]. It is simi-

FIG. 9. /3~h„ in different assumptions for o~+. See text for
the codes of the difterent curves.

lar to the photoproduction cross sections calculated with
the same structure functions by Gandhi et al. ', who also
predict a much faster growth with a difFerent set of struc-
ture functions. Such photoproduction cross sections
would turn muon photoproduction into the most impor-
tant energy-loss process. It would also afFect the energy
loss at moderate energies —10 TeV. Most recent con-
siderations [16], however, seem to rule out such fast
growth of o.~~.

VI. CONCLUSIONS

We have shown that accounting for the fluctuations in
the muon energy loss is essential for the estimates of the
muon range and for the calculations of the muon rates in
deep-underground muon detectors. The effects of muon
straggling on the rates of atmospheric and neutrino-
induced muons are in opposite directions. The calcula-
tion of the rate of neutrino-induced upward-going muons
is sensitive to the entire distribution of muon ranges,
whose average is decreased by the fluctuations in the en-
ergy loss. The estimate of the rate of atmospheric muons,
on the other hand, involves the tail of the survival proba-
bility, and is thus increased in comparison with estimates
neglecting the straggling.

We have performed Monte Carlo calculations of the
propagation of multi-TeV muons through large thickness
of standard rock and have fitted the results to simple use-
ful parametrizations. The analysis of muon data, howev-
er, requires a full Monte Carlo treatment, which can gen-
erate the correlations between the local muon energy, an-
gular and lateral distributions and account for the rock
composition at the detector site, which can cause the big-
gest uncertainty in the propagation of TeV muons. The
Monte Carlo code for muon propagation is available on
request.

At extremely high muon energies, relevant for the
detection of diffuse fIuxes of ultra high-energy neutrinos,
one should be aware of the uncertainties in the muon ra-
diation cross sections caused by the LPM effect and the
photon interaction cross section.
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Xo
N (. id der(u)

(A3)

and we can measure depth in units of radiation lengths
t =X/Xo.

The propagation problem in approximation A can
be easily solved, at least formally. The Mellin transform
of the differential and integral spectra F and
G [P,„,„(EO,t ) =G(0,Eo, t ) ] have the simple expressions

APPENDIX A: ANALYTIC SOLUTIONS
AND A TOY MODEL

Several authors have discussed how to calculate with
analytic methods the differential or integral spectrum of
the muons of initial energy Eo that reach depth X. These
efforts have a long history. Already in 1934 in their origi-
nal work on electron bremsstrahlung, Bethe and Heitler
[17] suggested an analytic solution for the spectrum of
electrons after propagation to depth X neglecting the "re-
generation" of electrons due to pair production. Their
elegant solution (A8) is not a bad approximation for
very-high-energy muons. The mathematical techniques
used to tackle this problem are identical to those used in
the study of electromagnetic shower theory [18]. In fact
this problem is formally identical to a very simplified ver-
sion of shower theory where photons do not produce
e +e pairs.

The function F(E,Eo, t)dE, that describes the proba-
bility of finding a particle at a depth t with energy be-
tween E and E+dE after the propagation of a muon of
initial energy Eo satisfies the integrodifferential equation

(3F(E, r )

at
= —f dv F(E, t)(p(u, E)

1 EF,t g U,
1 —

U 1 —
U 1 —

U

()[a(E)F(E,t ) ]
BE (A 1)

with the boundary condition F(E,O) =5(E Eo). In this—
equation a(E ) is the energy loss for ionization and
(P(u, E) is the differential cross section (summing over all
radiation processes) for radiating a fraction v of the ener-
gy:

X~ d o.„
q(u, E)= g „(v,E) .

„d dv

Solutions to Eq. (Al) can be found using two approxi-
mations, that are equivalent to approximations 2 and B
of shower theory. Approximation 2 consists of two as-
sumptions:

(i) (p(v, E ) is considered independent of E.
(ii) The ionization loss is neglected.
In approximation B, the second assumption is replaced

by the following.
(ii') The ionization loss a is a constant.
In both cases it is possible to unambiguously define an

energy-independent radiation length,

M~(s;Eo, t)= f dEE'F(E, Eo, t)
0

=Eoexp[td (s)],
Es+1

MG(s;Eo, t)f dEE'G(E, Eo, t)= exp[tA(s+I)],
0 s+1

(A5)

where

A(s)= f du[1 —(1—u)']y(v) .
0

(A6)

The inversion of the Mellin transform requires an in-
tegral in the complex field:

6+i ~f(x)= ds x ' "M&(s)
27Tl 6—i oo

(A7)

and in general cannot be performed analytically. The
standard technique is to evaluate the integral (A7) with
the saddle-point approximation method [18].

In their original work [17] Bethe and Heitler
approximated the shape of (P(u ) with the form
(p( u ) = —[ln2 ln( 1 —u ) ] ', then A (s) = ln( 1+s ) /ln2, and
the final result can be calculated exactly as

[ln(E /E ) ](t/in2 —i )

F(E,Eo, t ) =
Eo I t/ln2

(A8)

The solution of Eq. (A 1 ) in approximation B is
significantly more complicated. As in approximation A
the steps are to first calculate the Mellin transform of the
energy spectrum and then to use a saddle-point approxi-
mation method to invert it. The functions M~ and MG
can be written as power series. Two different expansions
are useful. One possible expression [19,20] for Mz and
Mz is appropriate for depths that are small compared to
Xo, and involves an expansion in powers of t. A different
expression [20] is appropriate for depths large compared
to Xo and involves an expansion in power of e/E where
E'= 0!Xp~ We refer the reader to the original literature for
the explicit formulas and a more complete discussion.

Some remarks are due.
(1) The saddle-point approximation method introduces

small numerical errors in the final results, especially when
t is small, a numerical inversion of the Mellin transform
requires a knowledge of A (s) in the complex field and
complicates significantly the evaluation of the spectra.

(2) The approximations (i) and (ii') are not fully
justified in the region (EO,X) that is important for under-
ground studies and introduce small but significant biases
in the calculation.
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( )
= 1 tE. - (A9)

Neglecting fluctuations the range of the average loss is
R &zz& =ln(l+E). To study the effect of fluctuations we
will consider the artificial form

y(U ) =(n + 1)(n +2)(1—v )", (A10)

where n is a free parameter. The cross section for radia-
tion in units (radiation lengths) is cr„d=(n+2), and
the average fractional energy of a radiated quantum is
(v ) = I/(n+2). The average energy loss for radiation
(dE/dx )„,d=E(U )cr„dX/A is independent from the
exponent n, but increasing n corresponds to more fre-
quent radiation of softer quanta. The limit (n ~ ~ ) cor-
responds to a differential cross section q&(U ) —+5[v j/u, or
to the infinitely frequent emission of quanta of vanishing
energy, i.e., to continuous energy loss with no Auctua-
tions.

The survival probability in this model can be easily cal-
culated by Monte Carlo or analytic techniques. This al-
lows us to study how the result is affected by fluctuations
in the energy loss, that critically depend on the shape of
the differential cross section.

In Fig. 10 we show the survival probability P,„„(E,X)
for a particle with 100 times the critical energy, and four
values of exponent (n =0,2, 10, and 100). We can verify
three important qualitative effects.

(1) The effect of fluctuations is stronger for a harder

1.2 t «&
I

& &»
(

~ ~ ~ ~

j

A toy model

As an example that is easier to visualize we want to
brieAy discuss a toy model of the propagation of a hy-
pothetical particle that loses a constant amount of energy
to "ionization" and suffers "radiation" loss that is de-
scribed by an exactly scaling differential cross section
do(U)/dv. Choosing the units in an appropriate way:
depth measured in radiation length and energy in units of
the critical energy a=0.Xo the average energy loss can be
written as

radiation spectrum, or correspondingly for smaller values
of n.

(2) The effect is not only to broaden the distribution
but to shift the average range of the particles.

(3) There is a tail of particles that have ranges longer
than the naive expectation R &&z &

=ln(1+E ) and this tail
is more pronounced for harder radiation spectra.

APPENDIX 8: AN APPROXIMATE ALGORITHM
FOR MUON PROPAGATION

We have made conscious efForts to develop a Monte
Carlo code that runs reasonably fast, but the amount of
computations necessary for the simulation of the muon
signal in underground detectors remains large. It is easy
to calculate with great precision the survival probability
P,„,„(EO,X ) in given material and interpolate from a ta-
bulation in muon energy and material thickness, it is
however much more complicated to parametrize in a de-
tailed and precise way the function F(E,8, 1;Eo,X) that
describes the distribution of energy E, angular deviation
0 and lateral displacement l of those p's of initial energy
Eo that survive at depth X. For many physical applica-
tions a precise knowledge of this distribution function is
of great importance, and the only practical solution is a
direct Monte Carlo calculation of the desired distribu-
tions. This calculation is very expensive especially be-
cause (as a consequence of the steepness of the cosmic-ray
spectrum) a large fraction of the underground muon sig-
nal is produced by muons with small P,„„,and each sam-
pling of the distribution function I' requires the propaga-
tion of many particles. The idea of devising "shortcuts"
to the full Monte Carlo propagation that are sufficiently
precise is therefore very appealing.

In this appendix we discuss algorithms that allow us to
calculate with good approximation and in a negligible
computer time the distribution function F(E,0, 1;EO,X),
assuming a precise knowledge of the survival probability
P,„,„(EO,X). The fundamental ideas behind these algo-
rithms are two: (i) the shape of the survival probability
contains in integral form information about the muon en-
ergy spectrum at all depths; (ii) the energy distribution at
a given depth allows the reconstruction of the three-
dimensional distribution of the muon signal.

1. Energy distribution

0
0 3 4 5

t (radiation lengths)

FIG. 10. Survival probabilities in the toy model described in
Appendix A.

Let us consider the muons with initial energy Eo pro-
pagated to depth Xo. At this depth there will be a num-
ber F(EI,EO Xo)dE/ of muons with energy between E/
and E&+dE&. If we can neglect the fluctuations in the
energy loss (this in general is not true, but it is approxi-
mately correct for muons below a few hundred GeV), and
R(E) is the range of a particle of energy E, then these
muons will range out after traveling an additional thick-
ness between R (EI ) and R (E/+ dE/); therefore,
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F(Ef', EO, XO)dEf =P,„,„[EO,XO+R(Ef )] P—,„„[EO,XO+R(Ef+dEf )]

GjP,„„
(X,EO}

X=XO+R(Ef )

dR(E)
f a

dE f
(B1)

Using the approximate but explicit expression of the energy-range relation [Eq. (16)] we obtain the result

F(Ef 'Eo Xo }=
dPsurv

(
1 1

dX X=X +O1/pin(1+Ef /e) p Ef +6
(B2)

In other words, the shape of the survival probability
curve for X ~Xp can be used to describe the energy dis-
tribution of the muons surviving to depth Xp. If we
know P,„,„(EO,X) for all values of X ~XO we can gen-
erate the energy spectrum at Xo according to Eq. (B2)
with the following steps.

(1) Computepo=P, „,„(EO,Xo).
(2) Generate a probability p Ilatly distributed between

limits: 0 ~p ~pp.
(3) Solve the implicit equation: P,„„(EO,X)=p for X.

P(x —xo )
(4) The quantity Ef =e(e ' —1) is now distribut-

ed according to Eq. (B2).
The algorithm we have described is correct only if the

spectrum F(E;Eo,X) vanishes for E larger than a few
hundred GeV, because then for the muons that are
present at depth X (and have already underwent large
Iluctuations in the energy loss) radiative processes are rel-
atively unimportant, and the approximation of neglecting
Auctuations in the remaining part of the trajectory is ade-
quate. The fraction of cosmic-ray muons above 1 TeV in
deep-underground experiments is of the order of 5% and
therefore this approximation is good in many practical
circumstances. The results obtained with the algorithm
described above for the propagation of muons with a
power-law spectrum are in good agreement with the re-
sults obtained with a complete Monte Carlo procedure.

The algorithm just described deforms the true energy
spectrum if a significant fraction of the rnuons present at
the depth Xp are above 1 TeV. This is the case for very
high energy or for a very small depth. To understand the
failure of the algorithm it is instructive to apply it to the
extreme case of Xp=0. In this case the true energy dis-
tribution is a delta function 5(E Eo), while the—algo-
rithm described above gives a finite width distribution.

2. Angular deviation and lateral displacement

The solution of the unidimensional propagation prob-
lem allows us also to solve (always in an approximate
way) the three-dimensional propagation problem. If we
continue to neglect the fluctuations, we can assume that a
particle that reaches the detection level Xp with energy
Ef had energy E(t)=[(Ef+e)e~' e] at depth (X—o

—t).
If we treat multiple scattering in the Gaussian approxi-
mation in each layer, and the energy loss is continuous,
then the final deviation of a particle is still distributed as
a Gaussian. Inserting this explicit form of E(t) in Eq.
(11)we obtain the result

Xo
era(E, XO) = f dt

o E(t)~
2

fs(E,XO) (B3)

with

Ep+efs(EO, XO) = — +
Ep

Ep+e

Eo+e(1—e ')

+ln 1+ (1—e ')

It is interesting to note that the limit

E
lim fg(Ef, XO}= +ln

xo ~ '
Ef Ef+@

(B&)

is well defined and finite, and that actually it is reached
rapidly. The physical significance of this fact is that the
multiple scattering of a muon is accumulated in the last
part of the trajectory because the multiple-scattering an-
gle in each layer is inversely proportional to E(t). For
suKciently large Xp one can neglect the initial part of the
trajectory. The overall angular distribution will be the
superposition of many Gaussians, each corresponding to
a certain final energy, and will be strongly non-Gaussian.

The approximation we are discussing is good if most of
the muons at the detection level Xp have energies low
enough so that the radiation processes are not very im-
portant. The multiple-scattering angle is accumulated
not too far from the detection level, and the large Auctua-
tions in the energy loss have already played their role
producing a broad energy spectrum, and are therefore
correctly taken into account by the use of the true energy
distribution at the detection level.

It is worth stressing that the angular distribution is
really dominated by the large Auctuations in the radiative
energy losses. The tails of the angular distributions are
populated not so much by particles that underwent un-
likely very-large-angle scatterings, but mainly those parti-
cles that are close to ranging out. The essential in-
gredient in a calculation of a correct angular distribution
is a precise calculation of the low-energy part of the
muon energy distribution at the detector level. This con-
sideration helps to understand why in a full Monte Carlo
code the use of more sophisticated treatments of the an-
gular deviations in a thin layer of material (Moliere
scattering instead of Gaussian scattering} has a very small
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cri(EI, Xo ) =
X 2

ms o t
dt

p'A. „ fo E(r )'

Pxo 2

dz
e P p A,„o [( I +EI le)e' 1]—

(B6)

The final integration cannot be performed analytically

eft'ect on the final distributions.
A similar argument can be developed for the lateral

displacement. The lateral distribution of particles with
final energy Ef can be well approximated by a Gaussian
of width that depends essentially only of Ef. Inserting
the expression E(t)=(e+EI)e~' e—in Eq. (12) we can
calculate the width o.

I
..

but can be easily calculated numerically, and it also con-
verges [somewhat sower than Eq. (B3)] for Xo~ ~.

For completeness we note that if we use for E(t) the
simple expression E(t )=EI+at that is approximately
valid for low energy we have

2

o i(EI,X)= 1+ ——ln(1+y )
~ms X 1 2

p'k„cz' &+y y
(B7)

where y =aX/Ef. It is easy to check that the expression
in large parentheses goes to zero when y —+0 as y /3, and
then the expression has the correct form for X~O.

We have a code FRopFAST that uses survival probabili-
ty tables in standard rock to return the quantities
(EI,O„,O~, l, l ), that kinematically completely describe
a muon of primary energy Eo after propagation at depth
X, using the algorithms described in this appendix.
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