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An order-o, calculation of pp ~ W Z + X is presented. Results are given for the total cross

section and differential distributions for Fermilab Tevatron, CERN Large Hadron Collider, and
Superconducting Super Collider energies. The calculation utilizes a combination of analytic and
Monte Carlo integration methods which makes it easy to calculate a variety of observables and to
impose experimental cuts.

I. INTRODUCTION

The production of tY+Z pairs at hadron supercollid-
ers will be an important process for testing the stan-
dard model [1]. The observation of W+Z pairs provides
a test of two crucial parts of the standard model that
lack experimental verification, namely, the gauge-boson
self-interactions and the electroweak symmetry-breaking
mechanism. In order to perform these tests it is impor-
tant to have precise calculations of W+Z production to
compare with the experiment, al measurements.

In the standard model t, he W, Z, and p are t,he gauge
bosons of a local SU(2) x U(l) symmetry which governs
the interactions between t, he gauge bosons. There are im-
portant cancellations in t, he standard-model amplitudes
for W Z production which rely on the gauge structure
of the WN'Z trilinea. r coupling. Anoma. ious couplings at
the R'tVZ vertex will lead to enhancements in the $V+Z
cross section at high invariant masses [2].

The W and Z bosons acquire masses due to the spon-
taneous breakdown of the SU(2) x U(1) symmetry. Al-
though the mechanism responsible for spontaneous sym-
metry brealcing is unknown, there are two possibilities:
either there is a. scalar particle much lighter than 1 TeV or
the longitudinal components of the 8 and Z bosons in-
teract strongly at, center-of-mass energies of order 1 TeV
or more [3]. Strongly interacting W and Z bosons would
be signaled by enhanced production of longitudinally po-
larized tV 8 +, ZZ, and N~+Z pairs. If no eHicient
method is available for determining the polarizat, ion of
the 8 and Z bosons, then the standard-model process
qi q2 —l4 Z, which produces N' and Z bosons primarily
of tra.nsverse polariza, tions, is an irreducible background
to strongly interacting W Z production. The process
q~q2 ~ W Z is also a background to techni-rho mesons
[4] which appear in technicolor models of electroweak
symmetry breaking; the techni-rho mesons decay primar-
ily to lV W+ and W Z fina. l states,

In hadron collisions tV+ Z pairs are produced via
quark-antiquark annihilation which proceeds via, t'- and
u-channel quark excha. nge a.nd s-channel lV-boson ex-
change [5]. Until now W+Z production has been calcu-

lated only in the leading-logarithm approximation and
the order-a, corrections have only been estimated [6] us-
ing the soft-gluon approximation [7]. A complete next-to-
leading-logarithm (NLL) calculation of hadronic W+ Z
production is presented in this paper, At the parton level
this involves computing the contributions from the 2 ~ 3
real emission processes qiq~ ~ W Zg, q~g ~ R"+Zq2,
and q~g ~ W Zq~ as well as the one-loop corrections to
the 2 ~ 2 process q~q~ ~ W+Z.

The NLL calculation presented here makes use of a
combination of analytic and Monte Carlo integration
methods. The same methods have been used to perform
NLL calculations for lia.dronic ZZ and W W+ produc-
tion [8, 9], direct photon production [10], photoproduc-
tion [ll], symmetric dihadron production [12], and W
production [13]. The Monte Carlo approach to NLL cal-
culations has many advantages over a purely analytic cal-
culation. The Monte Carlo approach allows one to calcu-
late any number of observables simultaneously by simply
histogramming the appropriate quantities. Futhermore,
it is easy to tailor the Monte Carlo calculation to differ-
ent experimental conditions, for example, detector accep-
tances, experimental cuts, and jet definitions. Also, with
the Monte Carlo approach one can easily study the NLL
corrections for diAerent, observables, the variat, ion of the
NLL corrections in diferent, regions of phase space, and
the dependence of the NLL cross section on the choice of
sea, le.

The procedure for the NLL lV Z ca.lculation is identi-
cal to the procedure used in Refs. [8] and [9] for the NLL
ZZ and N~ lV+ ca.lculat, ions, respect, ively. In fa.ct, most
of the expressions for the lV+ Z case can be obtained from
the corresponding expressions for t,he ZZ case by simply
replacing the ZZ Born cross sect;ion with the R" Z Born
cross section. The only exception to this rule is the finite
virtual correction, which must be calculated anew. Thus
only the Fina. l expressions for the NLL W Z calcula, tion
will be given in t, his paper. Details on the derivations of
these expressions can be found in Ref. [8].

The remainder of this payer is organized as follows.
Section II describes the techniques used in the Monte
Carlo approach to NLL calculations. The NLL calcula-
tion of H~+Z production is described in Sec. III. Results
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are presented in Sec. IV and summary remarks are given
in Sec. V. Finally, there is an Appendix containing loop
integrals which arise in the calculation of the virtual cor-
rect, lons.

II. MONTE CARLO FORMALISM

The Monte Carlo formalism for NLL calculations has
been described in detail in Refs. [8—13] so the discussion
here will be brief. The basic challenge is to design a pro-
gram which retains the versatility inherent in a Monte
Carlo approach while ensuring that all of the required
cancellations of singularities still take place. In order
to discuss the technique for isolating the various singu-
larities, let the four-vectors of the two-body and three-
body subprocesses be labeled by p1+ p2 ~ p3+ pq and
p&+p2 ~ p3+p&+p5, respectively, and define the Lorentz
scalars s,

&

—(p, + p& ) and t;&
—(p, —

p& )2 . The W+ Z
calculation contains infrared (IR) and collinear singular-
ities but no ultraviolet, (UV) singularities. Dimensional
regularization [14] is used to isolate the singularities.
First, three-body phase space is partitioned into singular
and finite regions by introducing soft and collinear cutofI'
parameters b, and 6, . The soft region of phase space is
defined to be the region where the gluon energy in the
subprocess rest frame becomes less than 6, +s&&/2. The
collinear regions of phase space are defined to be those
regions where any invariant (s,&

or t;&) becomes smaller
in magnitude than b, s12. Next, the squared three-body
matrix elements are approxima. ted in the singular regions;
the soft-gluon and leading-pole approximations are used
in the soft and collinear regions, respectively. The re-
sulting expressions are then integrated over the singular
regions of phase space. At this sta.ge the integrated ex-
pressions contain finite two-body contributions as well as
singular pieces. 'lhe singularities from the soft region
will ca.ncel the virtual IR singula. rities while the singular-
ities from the collinear region will be factorized into the
parton distribution function. The remainder of three-
body phase space contains no singularities and the sub-
processes can be evaluated in four dimensions.

The ca.lcula. tion now consists of two pieces —a set of
two-body contributions and a. set, of three-body contri-
butions. Each set consists of finite parts, all singularities
having been canceled or factorized. At this stage both
pieces depend on the values chosen for the two theoretical
cutofI's b, and b, so that each piece by itself has no in-
trinsic meaning. However, when the two- and three-body
contributions are cond&ined to form a suitably inclusive
observable all dependence on the cutofI's cancels. The
cutoffs merely serve to distinguish the regions where the
phase-space integrations are done by hand from those
where they are done by Monte Carlo simulation. @~hen
the results are added toget, her, the precise location of the
boundary between t, he two regions is not relevant. The
results reported below are stable to reasonable variations
in the cutoAs, thus providing a check on the calculation.

III. NEXT- TO-LEADINC-LOGARITHM
FORMALISM

A. Born process

'" = b;„, e p Vq, q, e"„(ps) e*,(pq)

x 5 g
'" ' V(p~)P T"'U(p ) (2)

where b, „, is the colo. r tensor (iq, i~ are color indices
for quarks 1 and 2), e is the electromagnetic coupling
constant, p is a. mass parameter introduced to keep t, he
couplings dimensionless, Vq, q, is the Cabibbo-I&obayashi-
Maskawa (CKM) quark mixing matrix, e*„(ps) and e*(p4)
are the N — and Z-boson polarization tensors, and P, de-
notes the left-right-projection operator P, = 2(1+ q.ps).
In the Feynman gauge t, he tensor T"" is

The Feynman diagrams which contribute to the Horn
amplitude for the reaction

qg(p)) + qg(p~): N (ps) + Z(pq)

are shown in Fig. 1. The Born amplitude in N dimensions
ls

q

KJX/hr 'qv %/XIV z

~pv q&Zqz p, ~1 ~4 v q&Zqz v 1 ~-~ p

—(Qi —Q2) s —M~2+ iI'g M~
"[(Ps —Pq)g" + 2p47 —2ps7"]

where Qq and Q2 are the electric charges of quarks 1
and 2 (in units of the proton charge e) and (Qq —Q2) is
the charge of the W boson. The right- and left-handed
weak-boson-to-quark couplings are denoted by g+

q&q.

uW d dW'u

~2 sin Onr

uR'd dW u
p+ + 7

FIG. 1. Feynman diagrams for the Born subprocess
q&qz ~ l VZ. The straight, ~vavy, and curly lines denote
quarks, electro~veak bosons, anc3 gluons, respectively.

rpq

sin Op@ cos Ogg&

g+
———Qq ta.n Ogy,qZq

—Qq tan 0~,

where Qq and Ts denote the electric charge and the third
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component of weak isospin of quark q, and 0~ is the weak
mixing angle. The kinematic invariants s, t, u are defined
by

the kinematic invariants, and the number of space-time
dimensions is N = 4 —2e. For the process ud ~ W+Z
the A, factors are

s = (p& + p~) t = (p&
—ps) u = (pi —p~)

As explained in Ref. [8] (see also Refs. [15] and [16]),
the p5 matrix can be eliminated from all traces, thus
mal&ing it straightforward to evaluate the traces in N
dimensions. The algebra for this paper was evaluated
using the computer algebra. program FORM [17].

The squared amplitude summed over final-state polar-
izations and initial-state spins can be written

6

e p
'

lv~, ~. l
(y~' ~')"") A, B, ,

where N~ is the number of colors, A, contains coupling
and propagator factors, B; are dimensionless functions of

Ag —(g" ")
A~ = Ag(u ~ d),

A = t'8 s2

(.—M )+(r M )
'

tc Ztc dzd4=g g

(s —M~~)2+ (1wMw)2 '

A, =A, (u d),

and the 8; expressions are

(7)

tu —M~ A&IZ2 1 1 2 2
B& —

2 „+(1 —e) —2(tu —Mw Mz) + 2s ~ + 2
—e(1 —e)—2(tu —Mw Mz) ~

M~2 Mz M~2 Mz2 u

B2 ——Bg (t ~ u),

(t + u) tu —Mw2Mz (t+u) 1 1 8, 2 8 2 2Bs —— , , w, z +(1 —e) 2 + — (Mw + M—z)+ —.(« —MwMz)s2 Mw Mz2 Mw2 Mz' s s"

tu —Mw2Mz s q 2 ( 1 1 8B4= 2 g 2 +(1 e) 8 (Mw+Mz) —4sl 2 + 2 I e(1 —e) (tu MwMz)
M~2 MZ2 tu q Mw2 Mz2) 'tu

+ u Su —&~Iw2MZ2
Bs = —2 2 2 + (1 —e) —(Mw + Mz) ——(tu —MwMz) —4(t + u) I 2 +

s M~2 MZ2 i Mw2 Mgy

Bs — Bs(t ~ —u) .

(8)

For the charge-conjugate process du ~ fV Z, the A; fac-
tors are obtained by interchanging u ~ d and replacing
cot Ow ~ —cot Ow in Eq. (7) and the B, expressions are
unchanged,

The Born subprocess cross section is

do. '"(qgq2 ~ IVZ) = ———IM '"I d492s
where the factors —and —are the spin average and color9
average, respectively, and two-body phase space is

4m 1 M~, Mz

xv '(1 —v) 'dv, (10)

with v =
2 (1+cos 0). IIere A is the two-body phase-space

function

A(z, y, z) = z +y + z —2zy —2zz —2yz.

It is convenient to decompose the squared Born ampli-
tude into three terms corresponding to the power of e

tha. t a.ppea. rs in the squa. red amplitude:

l~"'"I' = l~"""I'+el~"""I'+&'l~"""I (»)

%lith t, his decomposition the Born cross section can be
written

d~Borll d~Born + ~ d~Born + 2d - Born

This decomposition will be useful later for writing the
virtual and soft corrections.

The leading-logarithm (LL) cross section is obtained
by convoluting the subprocess cross sect, ion with the par-
ton densities and summing over the contributing partons,

o.""(pp IVZ) = )
QIi g2

do '"(qgo2 WZ)[Gq, (p(zg, M )Gq, ]p(zg, M"-) + zg ~ z2]dzgdzg . (14)
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B. V'irtual processes

q

AJ~JX~ z

q W

q. = %JX/'v z

q

The order-n, virtual correction to qgq2 ~ WZ comes
from the interference between the Born graphs of Fig.
1 and the virtual graphs shown in Fig. 2. The inter-
ference between these amplitudes has been evaluated in
N dimensions using the Feynman parametrization tech-
nique. There are two mitigating factors which simplify
the q~q~ ~ WZ virtual calculation. The first is that
the calculation does not contain UV singularities since
the graphs in Fig. 2 do not contribute to the renormal-
ization of the strong, electromagnetic, or weak coupling
constants. The second is that the self-energy insertions

on the external quark lines vanish due to the cancellation
of the UV and IR divergences [18]. Basically, what hap-
pens is that the UV and IR poles cancel when one does
not distinguish between then'.

Because the loop integrals associated with the four-
point function from the box diagrams in Fig. 2 are very
diKcult to evaluate when powers of the loop momenta
appear in the numerator, it is advantageous to first mul-
tiply the Born amplitudes times the virtual amplitudes
and evaluate the resulting traces, The numerator of
the resulting expression can then be rewritten, using
momentum-conservation relations, such that propagator
denominator factors cancel with identical factors in the
numerator. This way the fo«r-point functions with pow-
ers of the loop momentum in the nunierator are reduced
to a four-point function with a constant numerator and
three- and two-point functions which are easier to evalu-
ate. The loop integrals can be reduced to a. set of twelve
integrals which were given in Refs. [8] and [9] for the
case of equal-mass weak bosons. For the present case of
unequal-mass weak bosons, four of the twelve integrals
must be generalized and are given in an Appendix.

The order-o, virtual contribution to the qiqq ~ WZ
cross section is

GW Cl g 476'p I= CI.-
dn 2~ s 1 (1 —2~)

d&Born 2 &~&Born
X

cfv 6 clv

3 g&Born
0

dv

q

'X/V v z

q

z
q, %/XJX~ z

q,

q, = %D./'v z

g

q ~j~/~i w
q,

z

FIG. 2. Feynman diagrams for the virtual subprocess
qq qq ~ N~Z. Not shown are the diagrams obtained by in-

terchanging the lV and Z.

FIG. 3. Feynman diagrams for the real emission subpro-
cess qq q2 ~ WZg. Not shown are the diagrams obtained by
interchanging the W and Z.
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where dosB "" and daP "" are defined by Eq. (13) and
C~ —

s is the quark-gluon vertex color factor. In the last
term, which is the order-o. , finite virtual correction, the
A; are the coupling factors defined in Eq. (7) and the V,

are dimensionless functions of the liinematic invariants.
The V; expressions are too lengthy to reproduce here;
however, to facilitate future comparisons with the present
calculation, the finite virtual contribution to the NLL
cross section will be plotted in the results section.

C. Soft-gluon emission

The Feynman diagrams for the real-emission subpro-
cess

'gl (pl ) + 92(P2) I4 (P3) + +(p4) + g(p5)

are shown in Fig. 3. In the soft-gluon region of three-
body phase space, which is defined by Fs ( b, gsi2/2,
the soft-gluon contribution to the cross section is

d&soft f 4&+2 I'(I &) 2 d&Born 2 P d&Born d&Born )+-
i
-»n(b. )

' +
2qr ( s I'(1 —2e) c dv e q

'
dv dv )

d&Born d~Bol n d~Bol n

+4 ln(b, ) —4 ln(b, ) + 2
dv dv dv

(17)

where b, is the soft cutoff parameter defined in Sec. II.

D. Hard collinear corrections

The 2 ~ 3 real-emission processes have hard collinear singularities when ti5 ~ 0 or $25 ~ 0. These singularities
must be factorized and absorbed into the initial-state parton distribution functions. The collinear regions of three-
body phase space are defined to be those regions where any invariant (s,&

or t,~) becomes smaller in magnitude than
b, s~2, where 6, is the collinear cutofI' parameter defined in Sec. II. After the factorization is performed, the remnants
of the hard collinear singularities take the form

d0 d0

dv (qi q2 ~ WZ) =
27(' d5

x Gq, gp(zi, M )
2'2

—Q-,/„—,M Pqq z + G, /p zi, M Q M2 P z

+ Gq, ip(z2, M )

+ Gq„(p(z2, M ) —G /, —M P z (18)

with

1 —z s l
P~(z) = P~(z) In b, „~ —P,' (z) —AFGF~(z) .

The Altarelli-Parisi splitting functions in N = 4 —2e
dimensions for 0 ( z ( 1 are

1+ z'
Pqq(z, e) = Q~ —e(1 —z) ~

Pqq(z, e) = [='+ (1 —z)' —
&]

1+z
I

1 —z'I 3 1

1 —z z ) 21 —z
+2z+3 )

(22)

Fqq(z) = — [z + (1—z) ] ln
~
+ 8z(1 —z) —1=1 2 1 —zl

W

which defines the P functions. The functions I"qq and
F«depend on the choice of factorization convention and
the parameter Apc specifies the factorization conven-
tion; Ai;c=0 for the universal [modified minimal subtrac-
tion (MS)] convention and Ai-c=l for the physical [deep-
inelastic-scattering (DIS)] convention. For the physical
convention the factorization functions are

and can be written

P,~(z, c) = P;~(z) + ~P," (z), (21)

The parameter M~ is the factorization scale which must
be specified in the process of factorizing the collinear
singularity. Basically, it determines how much of the
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collinear term is absorbecl into the various parton dis-
tributions.

The upper limit on the integrals appearing in Eq. (18)
is determined by requiring that the hard collinear term
not overlap with the soft, region previously discussed. If
such an overlap were to occur, then that region of three-
body phase space would be counted twice.

E. Soft collinear subtraction term

The 3&I2-dependent subtraction piece which is used to
absorb the collinear singularity into the parton distribu-

tion functions involves an integral over splitting functions
with the upper limit corresponding to z = 1, not 1 —6, .

Therefore, there is one last piece to be subtracted which,
for the f15 case, tal'es the form

d(T's der "" n, 4qrp, 2 ' 1(1 —e)
du d v 2qr &if" - I'(1 —2e)

dz z
x Pqq('') + AFCFqq(z) Gq(p

sZ

('23)

Inserting P&& and F&& encl integrating yields

dC n' 4ll/I I (I E) I 3

)
trng

F +21n b,
dv 2qr s I'(1 —2e) c 2 dv

(24)

3 d~Born d~Born
+ —+'2\ (b n)In .( ., )

' +

9 &2 3 dBorn
+A1;c + + 1n(b,.) —ln(6, )

'

v here terms proportional to a. power of the soft cutoff b, have been discarded. The soft collinear singularity in the
0 region yields an identical result.

F. Next-to-leading-logarithm cross section

The 5 I.L cross section, ~vhich consists of two- and three-body contributions, can now be assembled from the pieces
described in the previous sections. Tile two-body contribution is

o~V.~, (pp- «Z) = ).
~t 11&)2

d~NLL do.
v d+1 d~2 Gq1/p +1

&
M +q& jp +2& M $1/2 tvZ + +1 +2 +

where the sum is over all contril&uting quark flavors, do/dv is definecl in Eq. (18), and

(q1qz «Z) =
dv

d&Born

dv

d
- virt d" soft

dv dv

do-" dc "
dv dv

The —', and —, poles cancel when the terms in Eq. (2(&) are summed [see Eqs. (9), (15), (17), and (24)].
The three-body contribution to the cross section is

osbodv(PP ~ «Z+ X) = ) do(al& ~ lrVZc)[G, (&(z1, M ) G1,~1, (z2, M ) + (z1 ~ z2)]dz1 dz2,
a, b, c

where the sum is over all partons contributing to the
three subprocesses qlq2 —H~Zg, q1g ~ N~Zq2, and
q2g WZq1. The squared matrix elements for the
2 —3 subprocesses were evaluated numerically via he-
licity amplitude methods as described in Ref. [19]. The
integration over three-body phase space and dz1 dx2 is
done numerically by standard Monte Carlo techniques.
The cinema, tic invariants s;& a.nd t,&

are first, tested for
soft and collinear singularities. If an invariant for a sub-
process falls in a, soft or collinear region of phase space,
the colltribution from that, subprocess is not included in
the cross sect, ion.

IV. R,ESU I TS

The numerical results presented in this sect, ion have
been obtained using the two-loop expression for n, . The

@CD scale AqcD is specified for four flavors of quarl s
by the choice of parton distribution functions and is ad-
justed whenever a heavy-quarl~ threshold is crossed so
that n, is a. continuous function of Q . The heavy-quark
ma. sses were taken to be mg ——5 GeV and I& —140 GeV
(Ref. [20]). The standard-moclel parameters were taken
to be Mz ——91.17 C~ev, M(1r —80.0 GeV, and n(&rI11r) =
1/128. These mass values are consistent, with recent mea-
surements at, the Fermilal& Tevatron [21], the SLAC Lin-
ear Collider [22], and the CERN e+e collider LEP [23].
The soft and collinear cutoff parameters were taken to
be 6, = v x 10 '- and bc = 10 . The part, on sub-
processes have been summed over u, d, c, and s quarles
and the Cabibbo nlixing angle has been chosen such t, hat
cos 0~ ——0.95, Except where otherwise stated, a. single
scale Q'-= M~yz, where M(1rz 1s the invariant mass of
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TABLE I. Predicted cross sections (in pb) for W Z production with no cuts at various colliders and for different sets of

parton distribution functions. The leading-logarithm (LL) and next-to-leading-logarithm (NLL) results are given.

Collider

Tevatrou
Teva. tron

LHC
LHC

SSC
SSC

~s (Tev)
1.8
1.8

LL
NLL

LL
NLL

I-IM RSE

1.09
1.42

14.4
21.8

33.9
55.9

HMRSB

1.01
1.33

16.8
25.6

43.1
71.3

DFLM160

0.941
1.29

17.0
27.0

43.7
74.5

DFLM260

0.868
1.21

18.2
29.2

51.2
87.8

DFLM360

0.806
1.14

19.0
30.6

58.1

99.6

the WZ pair, has been usecl for the reuormalizat, iou scale

p and factoriza, tion scale AtJ-'. Vor comparison, leading-
logarithm (LL) preclictions ohtained with the two-loop
running coupling for o, are also given. Using the two-
loop running coupling foi bot, h the LL and NLL results
provides a consistent expansio» parameter so that one
can judge the degree of convergence of the results. The
results presentecl here for I&V Z production are qua, lita, —

tively similar to the results for ZZ and W tV+ produc-
tion [8, 9].

In order to get consistent NLL results it is necessary
to use parton distribution functions which have been fit
to next-to-leading order. The dependence of the tot, al
cross section on the choice of parton distribution func-
tions is shown in Table I where the total cross section
for W+ Z production at t, he Tevatron, t, he CERN Large
Hadron Collider (LHC), ancl Superconducting Super Col-
lider (SSC) are given for the IIMRS [24] sets E and B and
for the DI'LM ['25] sets corresponding to A: =160, 260,
and 360 MeV. The variat, ion in the cross sect, ion increases
with the center-of-mass energy; at the SSC energy the ra-
tio of the extreme values for t, he cross sect, ion is 1.8 (1.4
if the HMRS set E clistributions are disregarded). The
HMRS set B distributions will be used for the remain-
der of this section since they fit the present data the best.

Note that the HMRS distributions are defined in the uni-
versal (MS) scheme whereas the DFLA'I distributions are
defined in the physical (DIS) scheme. The factorization
defining parameter AFC; in Eqs. (19) and (24) should thus
be AFc = 0 (1) for the II%'IRS (DFLlVI) distributions.

One of the motivations for performing NLL calcula-
tions is that the result, s often show a less dramatic de-
pendence on the reuorrnalization and factorization scale
than the LL result. This is true for the present calcula-
tion. The scale dependence of' the total cross section is
illustrated in Fig. 4 where the total cross section for W+ Z
production is plotted versus the scale Q. The scale Q has
been usecl for both the renorn1alization and factorization
scales. Parts a), b), ancl c) of Fig. 4 are for the Teva. —

tron, LHC, ancl SSC, respectively. The NLL result at
the Tevatron shows only a. slight decrease in scale clepen-
clence, while the NLL results at, the LIIC' ancl SSC show a.

significa, nt clecrea. se in sca.le dependence. Tlute qualita, tive
difIerences between the results at, the Tevatron ancl SS(".
a.re due t,o the cliN'erences between pp versus J.q:~ sca.t, t, ering
ancl the ranges of t, he x values. At the Tevat, ron, O'+Z
production in pp collisions is clominated by va, lence-qua. rl~

int, eractions. The va, lence-qua. re dist, ribut, ious decrease
with Q' for the z values probed at the Tevatron. On
the other hand, at the LIIC ancl SSC, sea;quasi. interac-

2.0 I I I I IIII 40 I I I I IIII I I I I I I II

80 NLL
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b
0.5 PP
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FIG. 4. Total cross section for W Z production as a, function of the scale q. The solid curve is the NLL result a, nd the
dashed curve is the LL result. Parts a), b), and c) are for the Tevatron, LHC, and SSC center-of-mass energies, respectively.
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FIG. 5. Total cross section for pp ~ W'Z+ X as a function of the center-of-mass energy. Part a) is for pp ~ W+Z+ X
and part b) is for pp ~ W Z+ X. The solid line is the NLL result, the long dashed line is the LL result, and the short dashed
line is the LL calculation ~vith the soft-gluon Is factor Ii = 1+ g7l. ct. .

tions dominate in the pp process and smaller z values are
probed. The sea-quark distributions increase with Q""for
the z values probed by the LIIC and SSC. Thus the cross
section decreases with Q at the Tevatron but increases
with Q at the SSC. At the LFIC the NLL cross section is
nearly independent of Q because the increasing parton

dist, ributions are compensated by the decreasing of o,
The NLL and LL total cross sections for pp —t&V Z

are plotted in F'ig. g as funct, ions of the center-of-mass
energy. The order-o, corrections are positive and en-
hance the lowest, order cross section by 30—70% over
the range of center-of-mass energies shown in the figure.
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FIG. 6. Decomposition of the total cross section for pp ~ W Z+ X as a function of the center-of-mass energy. The NLL
cross section (solid line) is decomposed into the LL contribution (long dashed line), the order-n. qq initial-state contribution
(dotted line), and the order-a. qg initial-state contribution (short dashed line). Part a) is for pp ~ W+Z + X and part b) is
for pp~ W 8+X.
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FIC~. 7, The order-o. - finite virtual contribution to t, he

NLL t,otal cross sect, ion for pip W+Z + X as a funct. ion of
the center-of-mass energy.

Also shown in Fig. 5 is the LL result with a multiplica-
tive soft-gluon I~ factor. The soft-gluon I~ factor is a
scheme-dependent approximat, ion for the order-o, . cor-
rections. In the i%IS scheme, which is used for the figures

in this paper, the soft, -gluon K factor is I~ = 1+ ~ra,.
(Ref. [6]); in the DIS scheme the ci, term is twice the
size as in the MS scheme. Figure 5 shows that the soft, —

gluon I~ factor underest, imates the order-n, corrections;
the underestimation gets worse as the center-of-mass en-
ergy increases. The soft, -gluon K factor is a better es-
tiniate in the DIS scheme because it is twice as large,
but it still underestimates the complete NLL cross sec-
tion. Note also that the I~ factor simply enhances the LL
cross section uniformly over the entire range of center-of-
mass energies, whereas the complete order-n, corrections
increase with the center-of-mass energy. The shortcom-
ings of the soft-gluon K factor are linked to the fact that
it only approximates the order-o. , qq corrections in the
limit of soft virtual and real-gluon emissions. The pres-
ence of large order-n, qg initiated processes (see next
paragraph) invalidates the use of the soft-gluon Ii factor.
A comparison with the complete order-o, , qq corrections
shows that it also underestimates them by 50Fo (25'%%uo)

in the MS (DIS) scheme. At the SSC center-of-mass en-

ergy, the order-o, corrections enhance the lowest-order
cross section for O' Z production by a, factor of 1.7. For
compa. rison, the order-o. , corrections yield enhancement
factors of 1.5 for IV IV+ production [9] and 1.3 for ZZ
production [8]. In contrast, the soft-gluon It factor is the
same in all three cases [6] and yields an enhancement fac-
tor of approximately 1.13 (l.'26) in the I'IS (DIS) scheme.

To understand why the order-o, corrections differ for
the cases of ZZ, B~ W+, and lV Z production, Fig. 6
shows the NLL total cross section foi lV+Z production
decomposed into the LL contribution and the order-n,
contributions from qq and qg iiiitial states. The order-
o, corrections from qq initial states are approximately
35% as large as the I I. cross section for the entire range

0010
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Vs = 16 TeV
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b 10
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200 400 600 800 1000 200 400 600 800 1000
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I'IG. 8. Invariant mass distribution of the WZ pair. The solid curve is the NLI result and the dashed curve is t»«L
result Parts a) and. b) are for the LHC and SSC center-of-mass energies, respectively.
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FIG. 9. Transverse momentum distribution of the Z boson. The labeling conventions are the same as Fig. 8.

of center-of-mass energies shown in the figure; however,
the corrections from qyr initial states increase from -1% to
35 jo as large as the LL cross section as the center-of-mass
energy increases. Similar figures for hadronic ZZ and
N~ lV production show that the order-o, qq correc-
tions are similar in all three cases, but that the order o,.
qg corrections increase as one goes from ZZ to H~ N~

to W Z. A similar behavior is observed in the tree-level

VV+1 jet cross section ('VV = ZZ, lV !V+, W+Z); the
qg initial-state component of the cross section increases
as one goes from ZZ to W lV+ to R"+Z. The frac-
tion of cross section with both weak bosons in the same
hemisphere also increases in the same order. The pro-
cesses vrith non-Abelian graphs (W W+ and W+Z) are
enhanced when both weak bosons are in the same hemi-
sphere. This configuration minimizes the invariant mass

NLL

12

:b)
10

NLL

b

p I I

—6 —4
0—6

y(z) y(z)

FIG. 10. Rapidity distribution of the Z boson. The labeling conventions are the same as Fig. 8.
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of the weak-boson pair which in turn puts the propaga-
tor closer to its on-shell value. This enhancement is most
pronounced for the W+Z case; the W W+ case suAers
from destructive interference between the virtual photon
and virtual Z-boson graphs. Thus the W W+ case is
intermediate between the ZZ and W Z case. The en-
hancement is also more pronounced in the qg channel
than in the qq channel. The increase in the size of the
order-n, corrections is due to the increasing importance
of the qg initial-state contribution.

To facilitate future comparisons with the present calcu-
lation, Fig. 7 shows the order-n, finite virtual correct, ian
from Eq. (15). This correction is positive and about an
order of magnitucle smaller than the LL cross section.

One of the major aclvantages of using 5'1onte Carlo
methods for NLL calculations is that one can calculate
any number of cliH'erential clistributions siiliultaneously
by simply histograniming t, he c~uantity of interest. Fig-
ures 8, 9, ancl 10 shaw the diH'erential distributions for
the WZ pair invariant mass 3&Ig~ g, the Z-boson trans-
verse momentum»T(Z), and the Z-bosoll rapidity ln
the laboratory frame y(Z), respectively, for»» ~ N~+Z
at the LHC and SSC center-of-mass energies. No cuts
have been applied to these figures. Because of the mass
difference between the Z and W bosons, the y(W) dis-
tribution is slightly broader than the y(Z) distribution
and the»T(W) distribution is slightly higher (lower) at
small (large) values of transverse momentum than the

»7 (Z) distribution. These figures show that the order-
n, corrections are larger at large pT, large M~z, and
small y values. Thus in general, the order-n, correc-
tions do not simply change the overall normalizations,
but instead they also change the shapes of kinematic dis-
tributions. These shape changes are due to the presence
of three-body final states in the order-n, cross section.
Two-body phase space is a. highly constrained configura-
tion, whereas three-bocly phase space allows many new
configurations; for example, both the W and Z boson
can be in the same hemispllere. A comparison between
the two-body tree-level process pp ~ tVZ and the t, hree-
body tree-level process pp —WZ + 1 jet, , shows that
the»&(Z) spectrum is harder in the latter process. Ex-
amination of the two- and three-body cont, ributions to
the NLL»T(Z) distribution incleed shows that the high-
»T(Z) tail is dominated by the three-body contribution.
By colltl'ast, the soft-gluan IY factol' slillply scales up t, he
lowest-order cross section ancl predicts no shape change
in the kinemat, ic d istributions. The IC fact, ar 's lack of
shape change is unclerst, aridable since the soft-gluon liinit
is a, two-body final state whereas three-body final st, ates
are needed to produce a. change in shape.

section by 30—70%. The size of the NLL corrections
clepends on the observable aild on the kinematic range.
The NLL results are less dependent on t, he scale choice
than the LL result, especially at supercollicler energies.
These results are qualitatively similar to the results for
hadronic ZZ and W tY+ production, however, the pro-
cesses pp —ZZ, W- tY+, and W Z have progressively
larger order-n, corrections.
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APPENDIX: I OOP INTECRAX S

The loop integrals from the virtual graphs of Fig. 2 can
be reduced to a. set of twelve integrals which were given in

Refs. [8] and [9] for the case of equal-mass weak bosons.
For the present case of uneqiial-mass weak bosons, four
of the integrals must be generalized and are given in this
appendix. The notation here is the same as in Ref. [8].

Three of the integrals (Is, Is, and I7) are infrared and
ultraviolet finite and can be evaluated in 4 diinensions;
however, the fourth integral (Iq) is singular and must
be regularized. Dimensional regularization was used to
regularize this integral, wit, h the number of space-time
dimensions set to N = 4 —2r. In all cases the integrals
were evaluated using the Veynnian parametrization tech-
nique. Integrals I5' and I~ are only needed for the cases
in which the indices are conti acted with pi„pi allcl p] „,
respectively. The integrals are written wit, h a common
fa.ctor

4~) ' 1"(1—e) 1

s y 1(1 —2c) (4~)"-
(A1)

The singular integra. l is
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d~& 1

(2~)" k'-(k+», )-'(k+», —»,)"-(k»,)z

A complete next-to-leading-logarithm calculat, ion of
(-)

p p ~ W Z has been present, ed. The calculation was
done using a combination of analytic and Monte Carlo
integrat, ion methods which. make it easy to calculate a.

variety of observables and to impose experimental cuts.
The order-n, corrections enhance the lowest order cross

1 2 Platy Mz—+ —ln +
8t C —t 3

where

—2Bg(t, u)

(A2)
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(A3)

and Li.i( ) is the dilogarithm function

Li.(.) =— d] z'
ln(l —t )—= ) I"2

k=1
(A4)

d~'k

(2~)~ (k+ p, )'(k
.Fs (M„"-y —t)' M ~

y. PV
P1P,Plv~5 = P1PP1v

The three finite integrals a,re

+ pi —ps)'(k —p. )'-'

Jl + J~ (A5)

p
Pl p 16 = Pl p

O' I- AiI-„=Z
— '~,jp+ Jl(2x)+' (k + pi)"-(k + pi —p3)"-(k —p~)'-2 s

(A6)

1 = i —Jp,
(27I ) (k + pl) (k + pl ps) (k p2) s

where the J; are dimensionless functions defined by

(A7)

with

—dz
A

M (~q,
—

p 8

M~2

~ 8

-'- ", d=

1 B B2C'i

(A8)

(A10)

—(~ —~-)(~ —-"+)

Mw (Mz —&4 )+ z

ln(z) + ln(l —z) —ln(B),
M~~ M~ M~~ MzH Z+A 1 w z

2 8 8 8 8

(A11)

(A12)

(A13)

(A14)

Here A is the two-body phase-space function defined in Eq. (11). The J, integrals can be evaluated by partial
fractioning the denominators and integrating term by term. The resulting integrals can be found in the table of
integrals by Devoto and Duke ['26] and are expressed in terms of logarit, hm and dilogarithm functions. This process
is easily done with the aid of a computer algebra. program; however, the resulting expressions for J; are too lengthy
to reproduce here.
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