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Nucleon Compton scattering in perturbative QCD
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We have computed the helicity amplitudes for the reactions yN~yN (N=p, n) at large momentum
transfer to lowest order in perturbative QCD. Our cross section for proton Compton scattering shows
good qualitative agreement with experimental data, when the proton is modeled by the Chernyak-
Oglobin-Zhitnitsky, King-Sachrajda, or Gari-Stefanis distribution amplitude. Discrepancies between
our results and previous calculations seem to be due to difterent treatments of numerical integration
around singularities.

I. INTRODUCTION

Exclusive processes in photon-hadron collisions oAer a
wide variety of tests of perturbative QCD. The ampli-
tude for a wide-angle exclusive process is given by the
convolution of a distribution amplitude summarizing
soft, hadronic physics and a hard-scattering amplitude of
collinear, constituent partons [1]. The distribution ampli-
tude cannot be computed in perturbation theory, but, as
with the structure function in deep-inelastic scattering, it
could be measured in lower-energy reactions. Applica-
tion of the perturbative renormalization group and the
convolution with parton scattering amplitudes yield pre-
dictions for new processes or at higher energies. No dis-
tribution amplitude has been measured yet, for two
reasons. First, exclusive cross sections are harder to mea-
sure because the cross sections are smaller and the back-
grounds are higher. Second, the theoretical calculations
are demanding because extremely many Feynman dia-
grams appear, even in leading order. Consequently, for
most exclusive processes, higher-order theoretical calcu-
lations, which are necessary before the distribution am-
plitude could be measured, have not even been contem-
plated.

In the long run, only computers mill have the patience
to work out the amplitudes, and the major challenge for
the last few years has been to develop a reliable combina-
tion of symbolic and numerical algorithms. Farrar and
Neri [2] have developed several codes for symbolic evalu-
ation of the diagrams contributing to the hard-scattering
amplitude. They yield the same results, and they agree
with all hard-scattering amplitudes that have been calcu-
lated by hand. Hence, one can be confident that these
symbolic programs are correct for tree diagrams. How-
ever, one must also be certain that the subsequent numer-
ical steps involved are robust. The convolution of the
hard-scattering amplitude and the distribution am-
plitude is a multidimensional integral over the momen-
tum fractions of the valence partons. This integral is
analogous to a loop integral, except that it uses the distri-

bution amplitude to describe the exchange of any and all
soft gluons, rather than the propagator to describe the
exchange of a single hard particle. In particular, inte-
grable singularities can arise in certain regions of
momentum-fraction space, when internal lines of Feyn-
man diagrams go on mass shell, producing an imaginary
part in the amplitude.

In this paper we compute the cross sections for nu-
cleon Compton scattering to lowest order in perturbative
QCD. This is the simplest experimentally accessible pro-
cess in which the momentum-fraction integrals yield an
imaginary part. We use the same methods [2] as the sym-
bolic computer programs to evaluate the Feynman dia-
grams, but we do so by hand. Because the singularities in
the momentum-fraction integrals can ambush numerical
integration routines, we approach them with great cau-
tion. Wherever possible, we integrate singular integrands
analytically, a step that a computer-based approach could
perform symbolically. The remaining one- and two-
dimensional integrals are done using vEGAS [3]; for dia-
grams in which two and those in which three internal
lines can go on shell, poles remain in the domain of nu-
merical integration. We use the technique developed in
Ref. [4] to evaluate the principal parts of these integrals.
(Reference [4] computed meson pair production in two-
photon collisions to one loop, which contains ultraviolet,
infrared, collinear and principal part singularities in the
loop and momentum-fraction integrals. ) In a nutshell, a
change of variables maps the twin peaks onto each other
in such a way that they cancel locally, rather than global-
ly.

For proton Compton scattering there is wide-angle
data [5] with center-of-mass energy squared 4.6
GeV & s & 12. 1 GeV, where perturbative QCD ought to
be applicable. There are other data [6—8], but those ex-
periments concentrated on lower energies and smaller an-
gles, where the formalism of Ref. [1] does not apply.
Below we shall compare our results for the unpolarized
cross section to the Tufts-MIT-Cornell experiment [5].
The predictions for polarized cross sections and phase of
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the amplitude can be verified in ep collisions [9], because
Compton scattering with a virtual incident photon also
contributes to the reaction eX—+eNy. When the electron
is deflected through a small angle, the exchanged photon
is almost parallel to it and nearly real, and the Compton
subprocess dominates. It may be possible [9] to deter-
mine the phase of the Compton amplitude, as a function
of the center-of-mass scattering angle, by extracting the
interference of the Compton scattering with the sub-
processes depicted in Figs. 1(c) and 1(d). This would be
interesting, because the nonzero phase is a nontrivial pre-
diction of perturbative QCD. Moreover, the phase infor-
mation may provide more stringent constraints on the
nucleon distribution amplitude than the cross section
alone.

Instead of using data to determine the distribution am-
plitude, it should be possible to use a nonperturbative
QCD calculation. Quenched lattice QCD has so far [10]
only produced the first two moments of the nucleon dis-
tribution amplitude. There are several calculations of the
first six moments using QCD sum rules [11—13]. They
agree with each other but only qualitatively with lattice
QCD. We will present results using four distribution am-
plitudes suggested by QCD sum rules [11—14]. This im-
plies a de facto assumption that the higher moments van-
ish, which may well be unrealistic at accessible values of
s.

Two previous attempts [15,9] to compute nucleon
Compton scattering using perturbative QCD have ob-
tained different results, especially for wider center-of-
mass scattering angles. Our results disagree with both
papers. Reference [9] asserts that the integration scheme
of Ref. [15] yields incorrect answers. However, we doubt
that the scheme in Ref. [9] is robust. In an example from
pion Compton scattering that can be integrated analyti-
cally, our method gives the correct result, but the method
of Ref. [9] does not. In another example, the contribu-
tion of diagram "A51" to a specific helicity amplitud~,

(b)

FIG. 1. The processes (a) yX—+yX and (b)—(d) eN —+e%y.
The blob labeled C denotes the Compton amplitude, and the
one labeled F the electromagnetic form factor.

the imaginary part generated by our implementation of
the method of Ref. [9] bore no resemblance to our results.
And the imaginary part of diagrams such as A 51, in
which two internal propagators can go on shell, is a dom-
inant part of the cross section.

This paper is organized as follows. In Sec. II we dis-
cuss the origin of the imaginary part of the Compton am-
plitude, and explain why the process is dominated by
short-distance interactions, even though intermediate
quarks or gluons can go on shell. Section III outlines the
details of the calculation. In Sec. IV we compare our re-
sults to experiment and discuss theoretica1 uncertainties.
Section V assesses the potential of future experiments and
contains some remarks relevant to the experimental
determination of the nucleon distribution amplitude. Fi-
nally, there are several technical appendixes. The kine-
matics are set out in Appendix A. Expressions for the
Feynman diagrams contributing to the hard-scattering
amplitude are tabulated in Appendix B, and an example
diagram is worked out in detail in Appendix C. Appen-
dix D reviews our method [4] for performing numerically
integrals defined by the principal part prescription.

II. ANALYTIC STRUCTURE OF
COMPTON AMPLITUDE

An especially interesting aspect of hadron Compton
scattering is that perturbative QCD predicts a nonzero
imaginary part to the amplitude, even in leading order.
There are kinematic regions of momentum-fraction
space, in which certain internal quarks or gluons can
propagate on the mass shell. One might worry about
treating perturbatively such a process. Generally speak-
ing, a freely propagating quark or gluon would be
modified by long-distance effects. Consider, however, the
space-time diagram of a typical Feynman diagram in
pion Compton scattering, depicted in Fig. 2. In this dia-
gram the gluon with momentum q =xp+k —yp' can go
on shell when x(1 —ys ) —yc =0, where s =sin( —,'0),
c =cos( —'8), and 0 is the center-of-mass scattering angle.
But in that case its three-momentum points in a direction
that separates the quark and antiquark [16]. In our con-
ventions, the scattering takes place in the XZ plane, near
the origin, with the outgoing hadron moving towardsX)0. (X and Z are spatial coordinates. ) But when
q =0 one finds qz (0. Hence, if the on-shell parton pro-
pates over any significant distance, then the pion has a
negligible probability to reform. The entire exclusive re-
action takes place in a small region, despite the gluon's
on-shell propagation, and perturbative QCD is applic-
able. This feature is generic: internal on-shell partons al-
ways tend to tear the hadron apart, decreasing the likeli-
hood that the process indeed be an exclusive one.

The central question is whether the imaginary part is
reliably estimated by low-order perturbation theory, or
whether Sudakov corrections must be resummed. For-
tunately, the former is the case [17]. The essential point
is that the singularities do not pinch. In a higher-order
correction, the quark momenta will be off shell, by an
amount A, , before emitting the parton that can go on
shell. The position of the pole in momentum-fraction



NUCLEON COMPTON SCATTERING IN PERTURBATIVE QCD 3447

t
lk p

X

FIG. 2. Space-time diagram of a Feynman diagram with an
internal gluon on mass shell. %'hen the gluon propagates a
short distance, as shown, the pion can reform. If the gluon pro-
pagated ten times further, the reformation probability of the
pion would be tiny.

space is shifted by O(k /E ), where E is a hard momen-
tum Bowing the Feynman diagram. Since the contour is
not pinched, it can move to accommodate the shift. As a
result, soft contributions produce only negligible effects
of 0( A, /E ), rather than large Sudakov logarithms
O(ln(E /X )).

The appearance of an imaginary part at leading order
in a, is a nontrivial prediction of perturbative QCD. It
means that the phase of the amplitude need not be small,
and that only a complete calculation can predict it. It
would be surprising if the phase were small for aH scatter-
ing angles; indeed it would impose strong constraints on
the form of the nucleon distribution amplitude.

Af, tt tt(s, t), Aft1'(s, t), , and JM, II(s, t) (3.5)

to be the independent set and present results for these
helicity combinations in Sec. IV.

A. Distribution amplitude

The most general state of collinear quarks with proton
quantum numbers and helicity h = + 1 is

leading-twist approximation, in which only the valence
Fock states contribute. For the nucleon there are three
spin-fiavor combinations; cf. Eq. (3.7). The hard-
scattering amplitude from diagram d of the three col-
linear quarks with the photons, T '(x, h, A, ;y, h ', A, ') fac-
tors into

T(d)(x h g.y h s g ) C(d)g4Z(d T (d)(x h P y h P )

(3.4)

where C' ' is the SU(N)-color factor, g is the QCD cou-
pling constant, Z,.'"' is the product of the electric charges
of the struck quarks, and T' '(x, h, A, ;y, h', A, ') is a color-
and flavor-independent factor containing propa gator s
and spin information. In the description of the calcula-
tion, when we write "hard-scattering amplitude" we fre-
quently mean T' )(x,h, k;y, h', A.').

Because QED and QCD are vector gauge theories, the
amplitudes for which h Ah ' are proportional to the
(quark or nucleon) mass. At high energies they are there-
fore suppressed, and in the leading-twist approximation
they should be ignored. Combining this observation with
Eqs. (3.1) and (3.2) one finds that there are eight non-
negligible helicity amplitudes, of which only three are in-
dependent. We shaH take

III. DETAILS OF THE CALCULATION

The process yN~yN (N=p, n) is described by the
helicity amplitudes AI&h. (s, t), where h (h ) is the initial
(final) nucleon helicity and A, (X ) is the initial (final) pho-
ton helicity. Symmetries impose some relations among
the amplitudes: Parity invariance implies

At ),„.( s, t ) =AI
~ (s~h, t ), (3.1)

where the overbar denotes opposite helicity. Time-
reversal invariance implies

~hh~. (s, t)=3th.„(s,t) . (3.2)

X T(")(x,h, X;y, h', X')((,*(y„y„y3) .

(3.3)

In the course of calculating AI&z (s, t) it turns out that
Eq. (3.1) is best viewed as a labor-saving device, but Eq.
(3.2) is best implemented as a check.

In perturbative QCD the helicity amplitude is given by

AIhh, (s, t)= g J [dx][dy]p;(x„x2,x3)

lpt ) — [dx] gp;(X„X2,X3)li;X„X2,X3), (3.6)
8 6

where fz is a constant, to be determined in a
nonperturbative calculation or from experiment. The
measure for the quark momentum fractions is
[dx]=dx1 dx2 dx3 5(1 —x1 —x2 —x3). The spin-fiavor
states are

I 1;x„x„x,) —lu t(x()u t(X2)d ~(X 3 ) ),
l2;x), x2,x3) lug(x))dg(x2)ut(x3)),

l3ix)~x2~x3) ldt(x1)u1(x2)ut(x3)

(3.7)

note that the index i labels the slot taken by the down
quark (counting from the right), and the quark with heli-
city opposite to the proton's momentum is always in the
rniddle slot. There is only one independent distribution
amplitude P, the others being related to it by

0'2(X1~X2~X3) [( 1(xl~x2~X3)+() 1(X3~X2~X))]

(3.8)

$3(X)yX2yx3 ) $1(X37X2$X1)

Here p,.(x, ,x2, X3) is the distribution amplitude for the
ith Fock state in the nucleon. This paper works in the

The state with h = —1 is obtained by Gipping the helicity
of all the quarks in Eq. (3.7); neutron states are obtained
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by switching up and down quarks and multiplying the
state by —1.

The distribution amplitude is weakly dependent on re-
normalization scale Q:

$(x„x~,x3)=120x,x~x3 pa„(Q )$„(x„x2,x3), (3.9)

where the P„(x„x2,x3 ) are the Appell polynomials,
which are orthonormal on the measure 120x,x2x3[dx ].
The expansion coefficients, or moments, are matrix ele-
ments of three-quark operators, renormalized at
p =Q: fza„(Q ) = ( O~O„~p t&. The Q dependence is
due to anomalous dimensions of the 0„. There are
theoretical calculations of the first six a„at Q =1—2
GeV, using QCD sum rules, which, together with other
phenomenological considerations, have motivated models
for the distribution amplitude. The first six moments
evolve too slowly in Q to affect the comparison with ex-
periment, so we have neglected the evolution. Instead we
have used four different model distribution amplitudes
[11—14] to investigate the impact of the distribution am-
plitude on the results. The asymptotic distribution func-
tion P„(x)=120x,x2x3 is as apt at present energies as
the asymptotic 5-function structure function.

The first six moments only involve Appell polynomials
of degree no higher than quadratic. Table I gives the
coefficients of the listed monomials for P„after eliminat-
ing x2=1 —x, —x3 entirely. The coefficients for Pz can
be obtained from Table I and Eq. (3.8). The numbers
may appear unfamiliar to experts, because Eqs. (3.6),
(3.7), and (3.8) are cast in a way convenient for convolut-
ing the distribution amplitude with the hard-scattering
amplitude, rather than the arrangement used in the sum-
rule analyses.

B. Hard-scattering amplitude

xi~x3, yi~y3, and e,~e3 (3.10)

TABLE I. Coefficients of distribution amplitude P, in several
models based on QCD sum rules.

Model
Ref.

Xl
X3

Xi
X 3

X)X3

CZ
[11]

1.69
—9.26

—10.94
22.70
13.45
9.26

COZ
[12]

5.880
—25.956
—20.076

36.792
19.152
25.956

KS
[13]

8.40
—26.88
—35.28

35.28
37.80
30.24

GS
[14]

6.040
—16.775
—34.985
—1.027
12.307

111.320

There are 378 Feynman diagrams contributing to the
hard-scattering amplitude. They can be classified accord-
ing to the arrangement of the gluon lines into seven
groups, as illustrated in Fig. 3. In group G there are 42
ways of attaching the two photons, but the color factor
vanishes. In groups A —F there are 56 ways of attaching
the two photons, and the color factor is [(%+1)/
2X] ( =4/9 for N= 3). Diagrams in groups B, D, and F
may be obtained from A, C, and E, respectively, by

FIG. 3. The seven ways of arranging gluon lines in the Feyn-
man diagrams.

The calculation of the hard-scattering amplitude is
easiest using the helicity formalism outlined in Ref. [2].
We have used this formalism to compute all diagrams in
groups A, C, and E for h =h'=+1. We found it con-
venient to assign arbitrary helicity to the (on-shell) pho-
tons:

(3.11)

This approach provides all four amplitudes with photon
helicities A, , A, '=+1, which is redundant, cf. Eq. (3.5), but
useful. Table II shows the number of diagrams in these
groups that vanish (for massless quarks) and that have
one, two, or three propagators that can go on shell. We
sort the diagrams according to the number of potentially
on-shell propagators, and we tailor the integration over
momentum fractions to each case separately.

By time-reversal symmetry each diagram in groups
A, C, and D is related to one in groups B, E, and Fby

a~y, P+-+5, and x;~y;, Vi . (3.12)

We have used the operation V' to check group C vs group
E and the composition 7&& e to check group A vs itself.
(The check on group 2 almost always relates distinct dia-
grams, so it is not trivial. ) These checks were easy to car-
ry out efficiently, because we had used the photon states
in Eq. (3.11).

Appendix B tabulates the contributions
T '"'(x, h, A, ;y, h ', A, ') of all nonzero diagrams, in a way
that makes clear the relations implied by the operation
D, Pand YoD.

C. Convolution of hard-scattering amplitude
with distribution amplitude

In addition to using the operations 6' and V to check
the calculations, one can also use them to simplify the
convolution. One can restrict the sum to diagrams
d E A U C UE in the following way. Consider the sum of
the contributions from diagrams d and 6(d ). Using Eq.
(3.10), relabeling the integration variables and exploiting
Z ' "=Z'g';~, P;(6(x ))=P@~;~(x ), yields
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TABLE II. Number of diagrams that vanish or have one, two, or three propagators that can go on
shell.

Crroup

A

C
E

Vanish

12
30
30

No props. One prop.

12
8
8

Two props.

16
8

Three props.

At=2 ', g—
dE A U CUE

f [dx][dy]T'"'(x;y)

X g [Z,'"'P, (x )P,*(y )], (3.13)

where F(x „x3)=F(x 1, 1 —x 1
—x3,x3 ) and x; = 1 —x;.

[We do not necessarily eliminate x2', when x2 appears in
the propagator of a line that can go on shell, we then use
Eq. (3.14) to eliminate xi or x3. ] Naturally, the difficulty
of performing the integration increases as more internal
lines can go on shell. We discuss the various cases sepa-
rately:

1. No propagators on shell

Here all momentum-fraction integrals decouple, leav-
ing products of

dxx- 1x 1=B(m n-)= "-( ) (") (315)r(m+n)
All these diagrams can be integrated analytically (or sym-
bolically).

2. One propagator on shell

Here the momentum-fraction integrals for the initial
and final states are coupled by a denominator of the form

g(l —res ) roc +is—=p 1

g(1 —gs )
—ric

—in.5(g(1 —11s ) —gc ), (3.16)

where gE [xi,xz, x3,xi,xz, x3], riH [y„yz,y3 yi y3 y3]
and P stands for principal part. The numerator is a poly-
nomial in g and ri, and the momentum fractions other

where nonessential labels have been suppressed. Similar-
ly, when A, =A,

' one can relate the contributions from dia-
grams d and 'T(d ) and reduce the range of the sum fur-
ther, in favor of another factor of 2.

We have tried to integrate analytically over as many of
the momentum fractions as we can. In an automated
computer approach, these integrals could be done sym-
bolically. The basic strategy starts with eliminating one
each of the x and y momentum fractions, and rescaling
another so that the integration region is a unit square.
For example,

1 1f [dx]F(x „x2,x 3 ) =f dx 1 f dx 3F(x i,x 3 )
0 0

1

dx, dx3 xiF( xy 1xix3)
0 0

(3.14)

than g and ri. For the imaginary part, the integral over g,
say, is carried out using the 13 function in Eq. (3.16), and
the g integral is carried out analytically. For the real
part, the integral over g is carried out analytically, leav-
ing a mundane, if complicated, integral over g, which is
carried out numerically. In both cases the momentum
fractions other than g and g can be carried out using Eqs.
(3.14) and (3.15).

3. Two propagators on shell

Here there are two denominators of the form in Eq.
(3.16), but the domain of integration with both lines on
shell is of measure zero [18]. For details, see Appendix
C, which presents the evaluation of a diagram from this
class in detail.

For the two contributions to the imaginary part, the
momentum-fraction integrals can be reduced to the hy-
pergeometric function. The imaginary part from this
class of diagrams makes the largest contribution to the
scattering amplitude, and we have evaluated it with no
numerical uncertainty (except round oS.

For the real part, we perform numerically a two-
dimensional integral of the form

f dg f dg Q(g, iI)P
g(1 —gs ) —rjc

(3.17)

where 0(g, r) ) is the result of performing the other princi-
pal part integration analytically. It is important to treat
Eq. (3.17) in a numerically robust way. We have used the
method of Ref. [4], which ensures that the large peaks on
either side of the pole cancel point by point. Appendix D
reviews this method, and compares it to the method of
Ref. [9],of keeping s small but finite.

4. Three propagators on shell

Here there are three denominators of the form in Eq.
(3.16): two gluon lines and a quark line. The kinematics
permit both gluons to be on shall simultaneously, but if
the quark is on shell, the gluons must be o6' shell, except
on a set of measure zero [18].

For the imaginary part, there are three contributions,
each of which can be reduced to two-dimensional in-
tegrals. One integration is trivial, using the 5 function of
Eq. (3.16). It is possible to perform another integration
analytically, even when the 5 function comes from a
gluon line, in which case, the integral over the momen-
turn fractions in the other gluon line is defined by the
principal part.

The real part has two distinct contributions: when no
line is on shell, or when both gluons are on shell. In both
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cases, the principal part of the momentum fractions in
the quark line is treated using the method in Appendix
D. The other momentum fractions are handled analyti-
cally, using either Eq. (3.14), the hypergeometric func-
tion, or 5 functions.

polarized cross section

do(s t) d o„„.(s, t)u, '

dt h h kx dt
(4.2)

IV. RESULTS AND DISCUSSION

The spin-polarized cross section is given by

hh'(S t )

~Wh„(s, t)~
dt 16~s

(4. 1)

Our results for s do. /dt are plotted in Fig. 4 for the pro-
ton and in Fig. 5 for the neutron. We present the three
polarization combinations in Eq. (3.5), as well as the un-

We evaluated the helicity amplitudes in steps of 10' for
20 ~0~160' and interpolated the real and imaginary
parts separately, using cubic splines. Four diferent distri-
bution amplitudes are shown, those of Chernyak and
Zhitnitsky (CZ) (dashed lines) [11], Chernyak, Oglobin,
and Zhitnitsky (COZ) (solid lines) [12], King and Sachraj-
da (KS) (dotted lines) [13], and Gari and Stefanis (GS)
(dot-dashed lines) [14]. Figure 4(d) also includes the data
from the Tufts-MIT-Cornell experiment [5]. Perturba-
tive QCD (with assistance from QCD sum rules) agrees

51o =' '
I

' '
I
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I
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I
I I

I
I 10-1 I

I
I I

(
I I

I
I I

I
I I

I

I I

104

103

10

b
1O =

KS

COX

b

KS—

CO/

cz
GS:

100 p
GS:—

10 ~ I I I I I I I I I I I I I I I I I

0 30 60 90 180 150 180
8 (deg)

.oo1 ' 'I ' ' I ' ' I ' ' I ' ' I

0 30 60 90 120 150 180
8 (aug)

6

I
I

I
I I

I
I

d
I I

I
I I

I
I I

I
I I

I
I I

I
I I

104

103

10R

10

103

b'tj

10

100

10

10

10 3
I I I I I I I I t I I I I

0 30 60 90 120
8 (~~a)

KS

CZ=

coz

. GS:
\

I

150 180

10

b
10

100

1O
'
0

KS=

coz

CZ:

. GS=

I I I I I I I I I I I I I I I I

30 60 90 120 150 180
8 («s)

FIG. 4. DiAerential cross sections for (a) y~p~ ytpt, (b) ytp~ y~p], (c) y~p~ y~p~, and (d) unpolarized proton Compton
scattering. The experimental data [5] in (d) are at s=4.63 GeV (circles), s=6.51 GeV (triangles), s=8.38 GeV (squares), s=10.26
GeV (five-pointed stars}, and s= 12. 16 GeV (asterisk).
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well with the data, especially in light of uncertainties in
the normalization, discussed below.

Figures 6 and 7 exhibit our results for the phase of the
amplitude, as a function of center-of-mass scattering an-
gle. Since the real and imaginary parts are both O(a, ),
the phases are O(1).

There are a few features of the plots that, perhaps,
should be pointed out. In general, the real and imaginary
parts of the amplitudes vanish at some value of 0, in
which case the phase is a multiple of 90. Sometimes
these zeros appear at nearly the same 0, leading to deep
dips in the cross section. The GS distribution amplitude,
which incorporates assumptions about nucleon structure,
gives results that are frequently quite distinct from the
others. Finally, the neutron, which interacts electromag-

netically only because of its substructure, has a Compton
cross section about the same size as that of the proton.

According to the dimensional counting rules [19,1],
s do /dt should be independent of s. In QCD, several
effects lead to deviations from this rule. First, there is the
running of the QCD coupling constant, which we have
fixed at a, =0.3, as in the previous perturbative-QCD
calculations [15,9]. Our leading-order calculation of the
cross section is sensitive to this choice, because it is pro-
portional to a„but the dependence is purely multiplica-
tive. Second, there is the running of the distribution am-
plitude, which enters in a very complicated way. The
dependence of our predictions on the distribution ampli-
tude gives a qualitative estimate of this effect: it is of the
same magnitude as the experimental data's violation of
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the dimensional counting rules. Third, there are mass
effects, because the calculation was done neglecting quark
(and nucleon) masses, but the laboratory energies Ez of
photon beams in the experiment [5] are not high enough
to neglect the proton mass in determining s=2E m
+m . Finally, there are higher-twist effects, coming
from scattering of nonvalence Fock states in the proton
or photon. The most important of these is the qq com-
ponent of the photon, whose contribution to the ampli-
tude is suppressed by only one power of s [1].

The largest systematic uncertainty in our predictions
comes from the nucleon decay constant. The cross sec-
tion is proportional to fz, and we have used the value
f&=(5.2+0.3) X 10 GeV suggested by QCD sum
rules [11,13]. Accepting the error estimate at face value

yields a 23% uncertainty in the cross sections. On the
other hand, using the value suggested by quenched lattice
QCD [10], f~=(2.9+0.6) X 10 GeV, would reduce
the cross section by a factor of 9. (Such a substitution is
a bit simple minded; it would be more sensible to com-
pute several moments in lattice QCD and use a distribu-
tion amplitude derived from those moments. } The lack of
agreement between theoretical calculations of the decay
constant underscores the need to determine it directly
from the data.

Two previous papers [15,9] have attempted the calcula-
tions presented here and have obtained different results.
Unfortunately, we do not verify either one. For the CZ
distribution amplitude our results for the cross section
are smaller than those of Ref. [15] and larger than Ref.
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[9]. Furthermore, as a function of 8 the phases in Refs.
[15,9] do not resemble ours at all. For 0)90' the
discrepancy in the cross section is as large as a factor of
5. In our opinion, it arises from those references' treat-
ment of the on-shell parton lines. Reference [9] main-
tains that the method of Ref. [15] is incorrect. However,
our tests of Ref. [9]'s is method did not succeed in
evaluating correctly the imaginary part of diagrams
where two internal lines can go on shell, which typically
makes the largest contribution to the amplitude. The is
method replaces the on-shell 5 function by a sharp
Lorentzian peak. Consequently, the four-dimensional in-
tegral comes from the neighborhood of a three-
dimensional hypersurface. This hypersurface is not
aligned with any of the integration axes, making it

exceedingly difticult to integrate numerically. It is much
better to integrate a 6 function the old-fashioned way-
by hand.

V. CONCLUSIONS

This paper has presented our results for wide-angle nu-
cleon Compton scattering in leading-order perturbative
QCD. This is a challenging calculation for two reasons.
First, there are 52 independent, nonzero diagrams con-
tributing to the scattering amplitude. We have been very
careful to evaluate them correctly. Each author indepen-
dently worked out all diagrams in classes A, C, and E
(cf. Fig. 3), of which 72 vanish and 96 are nonzero. We
then eliminated algebraic slip ups by applying Eq. (3.12)
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and by comparing the two lists of results. Second, the
momentum-fraction integrals are not straightforward.
Internal partons can go on shell, and the associated
singularities in the integrands must be treated with cau-
tion. Our approach has been to perform these integra-
tions analytically, wherever possible, or use the robust
technique outlined in Appendix D [4] and vEGAs [3].

With any leading-order perturbative calculation, the
question of higher-order corrections arises. While one
would not expect them to alter the qualitative agreement
between theory and experiment, they would assist the ex-
perimental determination of the distribution amplitude.
Without higher-order corrections it is impossible to ex-
tract the nucleon decay constant reliably. The cross sec-
tion is proportional to (a,fz), and the higher-order
corrections are needed to pin down the ambiguity in the
running of the coupling constant. Deviations from the
energy dependence suggested by dimensional counting
rules may prove useful in determining the higher mo-
ments. Finally, it is plausible that higher-order QCD will
better describe the Aatness in the angular distribution for
0& 75 . Of course, calculating the higher-order correc-
tions will be impossible without carefully designed com-
puter programs to generate and evaluate the diagrams
quickly and to perform the loop and momentum-fraction
integrations correctly.

To assess the experimental prospects one must appreci-
ate the steep s falloff of the cross section. Let us use
the experimental cross section [S] and this rule, and, for
the sake of argument, let us suppose measurements of the
differential cross section do. /d(cos8) are possible at the
level of picobarns. In a colliding beam experiment, set up
so that the incident photon and proton have equal ener-
gy, one has dt =s d(cos8, ), and experiments are feasi-
ble for s &40—60 GeV . In a fixed-target experiment, un-
less 8&,b (&1 one has dt ~ m~d(cos8&, b), and experiments
are feasible for s & 20—30 GeV .

At the DESY ep collider HERA the kinematics are
more involved, because of the high electron-proton
center-of-mass energy, and because of the asymmetry in
the energies of the beams. For example, the incident
photon is virtual with k = —Q negative. When
Q ~s~~ =40—60 GeV, the case for which we have re-
sults, the outgoing photon and proton are very energetic,
but emerge nearly parallel to the proton beam. When
Q ))sr~ the outgoing particles emerge at wide angles,
but their energies are low. At best, then, there might be
an intermediate region, where the final state is easy to
detect, yet s is neither too small nor too large.

Reference [9] presented results for nucleon Compton
scattering when Q %0, as well as yB ~yB', where
B (8') is a nucleon or a b, resonance. More recently, re-
sults have appeared for the family of processes yp ~MB,
where M is a meson and B is a baryon [20). The on-shell
propagators were treated by the ic. method. We hope
that these processes will be reevaluated using our analyti-
cal and numerical techniques. The details in the appen-
dixes and Sec. III should prove helpful in this undertak-
ing. The singular denominators, as in Eq. (3.16), are
modified by

S ~S V, C —+C V
2 (S.l)
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APPENDIX A: KINEMATICS AND SPINOR ALGEBRA

This appendix collects our conventions for the kine-
matics and spinor algebra used to compute the Compton
scattering cross sections.

1. External momenta

Let p and k (p' and k') be the incoming (outgoing) nu-
cleon and photon momenta, respectively. In the center-
of-mass frame these vectors have Cartesian components

p =E(1,0,0, 1),
k =E(1,0, 0, —1),
p'=E ( l, sin8, 0,cos8),
k'=E(1, —sin8, 0, —cos8),

(Al)

where 0 is the scattering angle and the azimuthal angle
has been set to zero. It is more convenient to work with
light-cone components, defined for arbitrary vector v by

u = —(u+u ),+=
v'2

1
u = —(u'+iu ),Vz

u = (u —u),o
v'2

RR
(

1 u2)
V'2

(A2)

The dot product of two vectors is then v.w=v+w
+ v w+ —v w —v w . In light-cone components
(+, —,L, R ), Eq. (Al) can be rewritten

where u =k /s is the incident photon virtuality. Conse-
quently, most of our conclusions about the structure of
the integrals should not change.

Large rnomenturn-transfer exclusive processes are im-
portant because they test QCD in a way complementary
to inclusive reactions. For example, the distribution arn-
plitude is proportional to the hadron wave function,
whereas the structure functions are proportional to the
square. Data exist for several yp processes as well as
yy~pp. With an appropriate battery of analytical and
numerical techniques, it may be possible to extract the
nucleon distribution amplitude from experiment. The
moments of P(x „x2,x3) could then be compared directly
to theory, as nonperturbative QCD calculations improve.
This approach is probably sounder than the present
strategy —taken in this paper and elsewhere —of using
model distribution amplitudes that unrealistically neglect
higher moments.
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s =(p+ k ) =(p'+ k') =4E

t =(p —p') =(k' —k) = 4E—s

u = (p —k ') = (p' —k ) = 4E —c
(A4)

with s+t+u =0. These variables are useful in writing
manifestly invariant expressions, using s=& t/s an—d
c =&—u/s. In particular, they make easy the check of
our calculations against the reaction yy~pp, which is
related by crossing.

2. Photon polarization

Let the incoming (outgoing) photon polarization vector
be denoted by e; (ef ); the Cartesian components are

e, (l)= (1,—i,0), e, (l)= — —(l,i,0),1 1

2
' ' ' '

2

p =&2E (1,0,0,0), k = &2E (0, 1,0,0),
(A3)

p'=&2E(c,s, sc,sc), k'=V2E(s, c,—sc, —sc),
where s =sin( —,

' O) and c =cos( —,
' O).

The Mandelstam invariants, neglecting masses, are

the fermion line in question. Explicitly,

+
2

q

q= —Vz

q

R

R

q

012E-+ — p

0
=k+ = 2E—

0

p

0

C SC

P '+ = lE
' = 2E-

SC S

P
' =k '+ = 2E—S SC

2

SC C

and the polarization vectors take the form

In particular, the external momenta take the form

(A 1 1)

(A12)

1ef(1)= —(cosO, i, —s—inO), (A5) 0
g, +=v'2

1
ef( 1 ) = — —(cosO, i, —sinO),

e;(l)=(0,0, 1,0), e;($)=(0,0,0, —1)

ef ( 1') =( —sc, +sc,c,—s ),
ef( $)=(+sc, —sc,s, —c ) .

The states defined in Eq. (3.11) have polarization

~;=ae;(t)+/3~;(l), ~f =yef(t)+5ef(l) .

(A6)

(A7)

3. Dirac matrices

%'e use the chiral representation of the Dirac matrices,
i.e., y5 is diagonal:

following Messiah's conventions [21]. Note that k points
along the negative z axis, that k' is at angle ++0 to the z
axis, and that e( J, ) = —e( t )*.

The time component of the four-vectors corresponding
to all polarization vectors is 0. The light-cone com-
ponents (+, ,L, R ) are—

(y —5)sc —yc —5s
8*+=&2

ys +5c (5—y)sc

(A13)

4. Quark wave functions

In computing the hard-scattering amplitude, the ap-
propriate factors for the external quark lines are
u+(xp)/&x =u+(p). These are

1 0
u+(p)=&2E 0, u (p)=&2E (A14)

for incoming quarks and

Cu+(p')=&2E, u (p')=&2E (A15)

for outgoing quarks, where the subscript denotes the heli-
city. As explained in Ref. I2] one occasionally charge
conjugates a quark line; in the Compton scattering calcu-
lation, this must be done for diagrams in groups C and E.
The charge-conjugate wave functions are

Xs=X =i'7 '7 7 X
= 1 0

0 —1
(AS) u (p ) =i o.zu + (p ) =&2E

0

The matrices y" and g are given by

0 y+ 0 g+
yP 0 t 4

y 0 (A9)

u (p') =itr2u+ (p') =&2E
C

(A16)

where y~+=( —1,+o').
Momenta of fermion lines are represented by two-by-

two matrices g+ = —(q 1+q o ) in the helicity formal-
ism. The subscript is chosen according to the helicity of

APPENDIX B: EXPRESSIONS FOR
THE FEYNMAN DIAGRAMS

Tables III and IV give analytical expressions, in Feyn-
man gauge, for the hard-scattering amplitude
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T '"'(x, t', A.;y, 1,A, '), for all nonvanishing diagrams. Dia-
grams are denoted by a letter, corresponding to the group
in Fig. 3, and two digits, which label the segment of
quark line to which the initial and Anal photon attaches.
In the cases where both photons attach to the same seg-
ment, we denote the crossed diagram with an overbar.
For example, 251 is the diagram with initial photon at-
tached to the fifth segment and the final photon attached
to the first segment, cf. Fig. 8.

The tabulated expressions are for a set of independent
diagrams: the other can be obtained using the operations

and %& (p. For some diagrams d one has
(To (p )(d ) =d; the redundant entry of such a diagram is
in parentheses, to emphasize that it should not be count-
ed twice. Keep in mind that, in addition to exchanging x
and y, time reversal T exchanges initial and final photon
helicities:

k, c

x

p x

Y)

Y2 P

Y3

FIG. 8. Diagram A 51, which Appendix C works out in detail.

T(A51)( .
) (C3)

Performing the spinor algebra leads to an expression for
the color- and flavor-independent part of the amplitude

"T(T' '(x, 1,k;y, T, A, '))=T ' '(y, l, A, ', x, t, X) . (B1)

In other words, T affects not only the contents but also
the labels of the (middle two) columns.

The kinematic quantities x, , y;, c, and s are as defined
in Sec. III and Appendix A; also x = 1 —x. Finally,

where

JV= —8s c s [a(1—y2s )+Py2s ](yx]+6X2)

(x,y)=x(l —ys ) —yc (B2) 2)= —s c s x]X3yzy3[(y], x]) +i e][( y]x )3+i E], (C5)

denotes the denominator of a potentially on-shell propa-
gator. For brevity, we have extracted a factor of 8/s,
and we have omitted the +is from each (x,y) propaga-
tor.

APPENDIX C: DIAGRAM A S1 IN DETAIL

using the notation defined in Appendix A and Eq. (B2).
As in Table III this diagram contributes to all four com-
binations of photon helicity.

From Eqs. (3.3) and (3.7), the contribution of diagram
A 51 to the helicity amplitude is

2

To illustrate our methods, this appendix presents a de-
tailed evaluation of diagram A S1 for the process
yp ~yp. This diagram is shown with helicity and
momentum assignments in Fig. 8. The internal momenta
in Fig. 8 are

JR &] (s, t
~
A 51)=(4ma, )(4vra, )—

8&6

X f [dx] [dy ]T ' " "(x,A.;y, P')

Xy(A5])( ) (C6)

q1 =X 1P
—k', q2 =X1P

—k' —y 1P',

e4=y2p"' k-
qs y3p

(Cl)

where the external momenta p, k, p', and k' have been
defined in Appendix A. In Eq. (3.4) the color factor
C' "=4/9; the other factors and the construction of
the scattering amplitude in Eq. (3.3) are discussed below.
For brevity, we will suppress the proton helicity
h =h'=+1 in the factor T' "(x,h, A, ;y, h', A, ').

In the formalism of Ref. [2] the quark lines in Fig. 8
yield the factors

where the coupling constants are the electromagnetic a,
and the strong e„and

0""'(x y ) =e.'4](x)4](y )+e.ed%~(x)42(y )

+e e$d3( x)P (3y) (C7)

incorporates the distribution amplitudes and the charge
factors Z,.' " "; the quark charges are e„=2/3 and
ed = —1/3. In arguments of functions x or y is an abbre-
viation for all three momentum fractions. The QCD-
sum-rule distribution amplitudes are polynomials of the
form

upper: u+ (p') Y' 4]+~f u+(p»)--
middle: u (p')E';+$4 y+g3 p+u (p),
lower: u+ (p')y u+ (p ) .

(C2)

P(x»X2, X3)—120 x]X3(Xb3+ob ]+x]b3x3+b]]x]

+b, 3X,X3+b33X 3 )

Consequently, P(" "is given by

(C8)

y(A5])(x, y) =(12OP
ml, m3, nl, n3

( 351) l+' m3+ 1+1 n3+1
C (m], m3(~n], n3)x, xzx3 y] y2y3 (C9)
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in which the summation is limited by

ml m3 n1 n3 e IO, 1,2], m1+m3 —2 nl + n3 —2 (C10)

(Cl 1)
m&, m3 nl n3

Below the obvious abbreviations m and n will be used in arguments. Clearly, if the distribution amplitude were extend-
ed to higher moments, these limits would change.

Substituting Eq. (C9) into Eq. (C6) yields

4 120f~
At)(s, t~ 251)=(41ra, )(4ma, ) — — g C'" "(m~n)I' "(m, A,;n, A,'),

I'" "(m, A;n, k,')= f [dx][dy]x, ' x2x3 ' y1' y2y3' T' "(x,A,;y, &') .

Our strategy is to work out I' " "(m, A;n, A.
') us, ing analytical and numerical techniques.

Let us concentrate on the A, =A,
' = + 1 amplitude

I'" "(m, 1;n, 1')= f [dx][dy]
s c [(y»x, )+1E][(y»x3)+i E]

(C12)

(C13)

m&+1 m3 n&+1 n3N(x, y)=x, x2x3 y1 y3 (1—y2s ) . (C14)

Because the gluon with momentum q2 and the quark with momentum q3 can go on shell, the integral in Eq. (C13) has
an imaginary part. Using Eq. (3.16),

ReI'""'(m, 1;n, 1)=, f [dx][dy]N(x, y)P1 1 1

s c (y1,x3)
' (C15)

where P denotes the principal part, and

( 351) 5((y„x3)) 5((y„x, ))ImI'" "(m, 1;n, 1)=— f [dx][dy]N(x, y) +
s c (y1,x3)

The six-dimensional integral in Eq. (C15) can be reduced to a two-dimensional integral

(C16)

B ( l, n3+ 1)—ys B (2, n3+ 1)ReI'" "(m, 1';n, f)= —
z

dx dysc 1 —ys

m3 m&+2 n3+1 n&+1 1
XX x y y Qm +1 2

P
x(1—ys )

(C17)

which is carried out using the method [4] outlined in Ap-
pendix D. The functions

dimensional integral

0" (a)= f dx
o x —a

(C18)
ImI' "(m, 1;n, 1')= — (H, +Hz),

s c
(C20)

are special cases of the hypergeometric function. For
~a

~

( 1 they can be implemented recursively:

where

Qo(a) =in~(1 —a )/a ~,

(a) =aQ, (a)+ I /m,
0" (a)=(1—a)Q" '(a) B(m+ 1,n);—

(C19)

H1=c 'B(m1+2, 1')B(l,n3+1)
m&+n&+3 m3+n3+1

X dx
0 P n1+n3+2

1 xs

S X1—
n3+2

for ~a
~
) 1 they can be implemented using the Cxauss hy-

pergeometric series [22].
The imaginary part can be reduced to a one- and

(C21)
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H2= —c 'B(l, m3+1)B(l,n3+ I)
m&+n&+2 m3+n3+2

f xX dx
2)n &

+n 3+2

TABLE V. The contribution of diagram 251 to the helicity
amplitude AtfI. The energy dependence has been factored out,
but the factors preceding the integral in Eq. (C6) have been in-

cluded. We have set a, ' =137.036, a, =0.3, and

f~ =5.2X 10 ' GeV .
25 x

n3+2
(C22)

0
(deg) 10' s'XRe[JR)I(A51)] 10' s X 1m[JN I I ( A 51 ) ]

These integrals can be reduced to the hypergeornetric
function and evaluated numerically without resorting to
Monte Carlo integration.

Our results for At &~i&( A Sl ) are tabulated in Table V, us-
ing the CZ distribution amplitude [11]. The error esti-
mates for the real part are those reported by vEGAS.

APPENDIX D: MONTE CARLO INTEGRATION
OF INTEGRALS DEFINED BY PRINCIPAL

PART PRESCRIPTION

A11 principal part integrals encountered on this work
take the form of Eq. (3.17). Considering the g integra-
tion, the pole appears at gc /(1 —i)s ), i.e., parametrized
by g. Hence, it is enough to illustrate the folding method
in one dimension, i.e., for integrals of the form

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

—1.020(1)
—1.084( 1)
—1.177( 1)
—1.307(1)
—1.484(1)
—1.716( 1)
—2.021(2)
—2.412(2)
—2.890(2)
—3.448(3)
—3.944(4)
—3.912(5)
—1.550( 11)

9.565(28 )

57.041(72)

0.180
0.156
0.115
0.049

—0.055
—0.219
—0.482
—0.908
—1.614
—2.813
—4.911
—8.696

—15.675
—28.134
—42.216

J=f dx P, 0(a ( I, f (a)%0 .(x)
(D 1)

The principal part prescription is defined by

J=lim (J,+J2),c~o

where

(D2)

0 x a a+a x a

In each integral we change variables:

y =—--J= ' "dy y y=

(D3)

(D4)

and

a (1—x) 1 —E/a
y2 J2 dy2 +2(y2 )

a +(1—2a)x
(1—a)f (a (1—ay)/d )

d(1 —
)

(DS)

where d =a +(1—2a)y. The integration variables y, and

y2 satisfy

dx

y

dx

y

(D6)

and hence the upper limits in Eqs. (D4) and (DS) ap-
proach 1 uniformly, up to negligible terms of order c in
the upper limit of the latter. Combining Eqs. (D2), (D4),
and (D5) yield an expression in which the limit E —+0 may
be taken. The result

J dy 1y+ 2
0

contains no singularities, and VEGAs [3] has no difficulty
evaluating it. The remote danger than the random num-

ber generator chooses the value y = 1, for which 8, and
82 are individually infinite, will be reported by the com-
puter.

This method can be extended to higher-dimensional in-
tegrals and to cases where there is more than one pole in
the integrand [4]. Reference [4] also discusses the need
for a correction term f(a)ln~(1 —a)/a

~
for changes of

variable that do not satisfy Eq. (D6).
Reference [9] regulates poles by using the Feynman iE

prescription in the computer program. The principal
part in Eq. (3.16) is replaced by two large peaks of oppo-
site sign, and the 6 function is replaced by a narrow
Lorentzian. A stable result is sought for a sequence of
small values of c,, which controls the width of the peaks.
In an example from pion Compton scattering that can be
integrated analytically, the i c, method, with e. =0.005, can
be off by as much as 5% for the real part and 10% for the
imaginary part, while the reported statistical errors are
less by one-tenth. (Our method agrees with the exact re-
sult, within the reported errors. ) In the more complicat-
ed expressions for nucleon Compton scattering, the
discrepancies in the ic. method are larger. We used it to
(try to) compute the contribution of diagram A 51 to the
A, =A, '=+1 helicity amplitude (cf. Appendix C). Using
over 75000 function calls and 10 iterations, the imagi-
nary part, as a function of scattering angle, did not even
resemble the correct result. We suspect that the i c.

method cannot be correctly implemented. Let us assume
that the numerical integration is a Monte Carlo pro-
cedure. In the integrals with Lorentzian peaks approxi-
mating 5 functions, the error plausibly takes the form

ac +bc,
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where n )0. The origin of the first term is obvious; the
origin of the second term is the Monte Carlo procedure's
inability to find the Lorentzian peak. An error of the
form (D8) never vanishes. Furthermore, suppose one

uses the same random-number sequence for all angles,
values of c,, etc. Then the results, while likely incorrect,
will be highly correlated, giving the illusion of consisten-
cy.
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