PHYSICAL REVIEW D

VOLUME 44, NUMBER 2

15 JULY 1991

Quantum creation of topological defects during inflation

Rama Basu
Physics Department, Tufts University, Medford, Massachusetts 02155

Alan H. Guth
Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
and Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138

Alexander Vilenkin
Physics Department, Tufts University, Medford, Massachusetts 02155
(Received 18 March 1991)

Circular loops of string and spherical domain-wall bubbles of radius equal to the horizon can
spontaneously nucleate in de Sitter space. These objects are expanded by the subsequent inflation,
and by the end of the inflationary era they have a spectrum of sizes extending well beyond the
present Hubble length. Monopole-antimonopole pairs with an initial separation equal to the horizon
can also be produced. The cosmological implications of these effects are briefly discussed.

Cosmological inflation is a period of exponential expan-
sion in the early history of the Universe [1]. It increases
the size of the Universe by an enormous factor, so that all
the presently observable space comes from a tiny initial
region. Topological defects such as monopoles, strings,
and domain walls, if they were formed before (or at early
stages of) inflation, are inflated away and are never seen
again. This seems to lead to the inevitable conclusion
that the only defects we can hope to see now are those
arising from phase transitions which occurred after (or
near the end [2, 3] of) inflation. Here it will be argued
that monopoles, strings, and domain walls can be contin-
uously formed during inflation by quantum-mechanical
tunneling. These processes are similar to the quantum
production of particles in de Sitter space, first described
by Gibbons and Hawking [4], and they are also similar to
the quantum production of bubbles of false vacuum, as
described by Lee and Weinberg [5]. As a result, topologi-
cal defects corresponding to preinflationary phase transi-
tions can still be present after inflation with appreciable
densities, as long as the energy scale of these topological
defects is not too far above the energy scale of inflation.
Under these circumstances defects can also be produced
by the post-inflationary reheating, but there is an im-
portant difference: the defects produced by reheating are
generally no larger than the Hubble length at that time,
and they disappear quickly. The defects produced dur-
ing inflation, however, are stretched by the inflation and
have a spectrum of sizes that can extend well beyond the
present Hubble length.

In the next section we shall explain the physics of quan-
tum string, wall, and monopole nucleation in de Sitter
space, ignoring at first the gravitational effects of the
nucleated objects. In Sec. II we will describe the clas-
sical evolution of a nucleated defect, and in Sec. III we
will discuss the cosmological implications of string, wall,
and monopole production. In Sec. IV we will return to
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the physics of nucleation, this time including the gravi-
tational effects.

I. NUCLEATION OF TOPOLOGICAL DEFECTS

The metric of de Sitter space, which describes the in-
flating universe, can be represented in several different
ways [6]. Here it will be convenient to use the static
form of the metric,

ds® = f(r)dt? — f~1(r)dr® — r? (d6® +sin® 0 d¢?) ,
(1.1)
where

f(ry=1-H*? (1.2)

Let us consider first a circular loop of string in de Sitter
space. The string world sheet can be parametrized by
time ¢ and angle 6, and the world-sheet metric can be
written as

ds2 = [f(R) — f~Y(R)R*dt*> — R?d6® , (1.3)

where R(t) is the loop radius. The string action is pro-
portional to the world-sheet area [7):

S = —/.t/dtdt%/:-_=—27r/z/dtR\/f—f“1R2 )

(1.4)

where 7 is the determinant of the metric (1.3), and p is
the string tension.
The loop dynamics is most conveniently studied using
the conserved energy
E=pR-1L , (1.5)

where the Lagrangian L can be read from the action (1.4)
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and

8L  2muRRf-!

TR e

is the momentum conjugate to R. After some simple
algebra, the conservation law (1.5) can be rewritten as

R4+ ?RfP°=R*+V(R)=0 , (1.7)

where ¢ = E/2mpu. For € < (2H)™! the potential V(R)
has the form of a barrier, as shown in Fig. 1. It is clear
from the figure that there is a loop trajectory that starts
at R = 0, expands to R = R; and recollapses. An-
other type of trajectory describes a contracting loop that
bounces at R = R, and reexpands towards the horizon.
The underbarrier range R; < R < R; is classically for-
bidden. The turning points R; and R, can be found from
V(R) = 0, with the result

1
RZIZ,Z = W(l +v1—4e2H?).

(1.6)

D

(1.8)

Instead of bouncing at R = R;, the loop can tunnel
quantum mechanically through the barrier and start ex-
panding from R = Ry. The tunneling probability can be
estimated using the semiclassical approximation,

Pxe B,

(1.9)

with
R

B =2/|p|dR=47rp/ dRf\WRf—€ , (1.10)
R,

where in the last step we have used Egs. (1.6) and (1.7)
to express p in terms of R. The integral in (1.10) can be
evaluated in terms of elliptic integrals.

Now, the crucial observation is that the tunneling ac-
tion B remains finite in the limit of vanishing loop energy,
¢ — 0. In this limit Ry =0, Ry = H~!, and the integral
in (1.10) is easily evaluated:

FIG. 1. A plot of the potential V(R), showing the poten-
tial barrier of the tunneling problem. The graph was drawn
for e = 0.4 H™',

B =4wpH™? (1.11)

The zero initial radius of the loop means that there was
no loop at all, and thus the limit ¢ — 0 corresponds to
the spontaneous nucleation of a circular loop of radius
R=H '

The loop nucleation can also be described using the
instanton language [8]. The Euclidean version (¢ — it)
of Eq. (1.7) is

RP4+fP—¢?R’f2=0 , (1.12)
and in the limit ¢ — 0 it gives R — oo. This looks very
singular, but we will see in a moment that this infinity
indicates only that ¢ is not a suitable coordinate of the
instanton. Indeed, if we chose R as a world-sheet coor-
dinate instead of ¢, then the Euclideanized metric (1.3)
takes the form

ds3 = (f~! + fR™?)dR* + R? d9°. (1.13)
In the limit R — oo it turns into the metric on a sphere
of radius H~!. Hence, the instanton is a sphere, and its
Euclidean action is g times the surface area:

Sg =p-4nH2, (1.14)

The tunneling probability is proportional to exp(—Skg),
in agreement with (1.9) and (1.11).

It is well known [9] that Euclideanized de Sitter space is
a four-sphere of radius H~!, so the instanton described
above is a two-sphere of maximal radius. If the four-
sphere is described by embedding it in a five-dimensional
Euclidean space,

CHwl4r?P=H?, (1.15)

where ¢ is a three-vector, then the instanton two-sphere
can be described by

42+ rP=H? (=w=0. (1.16)

The use of the semiclassical approximation is justified
if Sg > 1or p > H?/4wr. We have also implicitly
assumed that the string is adequately described by the
Nambu action (1.4). This is justified only if the string
thickness 6 is much smaller than the loop radius, § <
H-1. For p~ H?/4w or 6§ ~ H™!, our results can still
be expected to apply qualitatively.

Given a particle theory with discrete vacua that are
degenerate in energy, domain-wall bubbles can be nucle-
ated in a very similar way. One finds that the instanton
is a three-sphere of radius H~1!, and its Euclidean action
is

Sgp =2n%cH™3 | (1.17)

where o is the wall tension, and 272H~3 is the volume
of a three-sphere of radius H~1.

Finally, if the theory admits pointlike defects, such as
magnetic monopoles, then monopole-antimonopole pairs
will be spontaneously produced. The corresponding in-
stanton is a circle of radius H~!, and the tunneling action
is

Sg =2mmH™! (1.18)
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where m is the monopole mass and 27 H ! is the circum-
ference of the circle. We note that Sg = m/Tgu, where
Tgu = H/2x is the Gibbons-Hawking [4] temperature of
de Sitter space.

II. CLASSICAL EVOLUTION OF A
NUCLEATING TOPOLOGICAL DEFECT

We now turn to the classical evolution of nucleating
strings, walls, and monopoles. Let us first consider the
case of strings.

Analytically continuing Egs. (1.15) and (1.16) back to
the Minkowski signature physical space-time, one finds
that the de Sitter space is described by the usual hyper-
boloid

CH+uw—r2=H?, (2.1)

and the string world sheet is given by
GHG=H+17,
(2.2)
(3=w=0.

To understand how the evolving loop would be viewed
by an observer in an inflationary universe, it is useful
to transform to Robertson-Walker flat coordinates (t, x),

with the metric
ds? = —dt? + ' dx?. (2.3)

These coordinates are related to the hyperboloid coordi-
nates by

t=H 'In[H(w+ 7)],

x=2 J:ﬁ, (2.4)
which can be inverted to give
= H 'sinh(Ht) + $Hx ZeHt,
w= H™! cosh(Ht) — -;—szth, (2.5)

¢ =xeft,

Inserting the transformations above into the string evo-
lution equation (2.2), one finds

R?:oord = zz + y2 - H—z(l + e—ZHt)’
(2.6)

z=0.

Thus, to an observer using the Robertson-Walker flat co-
ordinates, the loop of string appears to have a stationary
center, and at time ¢ it has a radius of physical size

Ronys = H™'\/e2Ht 1. (2.7)

Note that although the purely Euclidean picture Sug-
gests that the string loop nucleates at radius H~!, the
loop actually has this radius only in the limit ¢ — —oo.
Thus, there seems to be no natural time at which one
can say that the nucleation occurs. This is puzzling,
but apparently we must remember that nucleation is

a quantum-mechanical process, so the behavior of the
string loop near the moment of nucleation cannot be de-
scribed in purely classical terms. The evolution at late
times, however, can be treated classically, and the string
forms a circular loop with a physical radius given by
Eq. (2.7). In the next section we will give a quantitative
estimate of the time at which the classical description
becomes valid.

Equation (1.16), and the resulting equations (2.2) and
(2.6), describe a nucleating string in a particular configu-
ration. To understand the other possible configurations,
one can apply any five-dimensional rotation to the in-
stanton in Eq. (1.16). Of the ten independent transfor-
mations in SO(5), there are four that leave the instanton
invariant: three rotations in the {1-(5-7 space, and one
rotation in the {3-w plane. The remaining six generators
of SO(5) have a nontrivial effect on the instanton, and
thus there are six zero modes for small oscillations about
the instanton solution. In general an m-sphere embedded
in an n-sphere of equal radius is known [10] to have

N =(m+1)(n—m) (2.8)

zero modes.

Following through the effect of these transformations
on Egs. (2.2) and then (2.6), one finds that four of them
correspond to translations in space and time, and two
correspond to rotations of the orientation of the loop.
There are no parameters, however, that correspond to a
velocity for the loop. Like a bubble of true vacuum that
nucleates within a false vacuum [11)], a nucleating loop of
string does not single out a rest frame, and hence there
is no meaning to a velocity.

Since the loop is expanding, it is easy to see how the
loop can be invariant under boosts in the plane of the
loop. Like the bubbles discussed by Coleman [11], the
expansion is along a boost-invariant hyperboloid. It is
a little harder to see, however, how the loop can be in-
variant under a boost perpendicular to the plane of the
loop. Eq. (2.6), for example, looks like it must obviously
single out a rest frame for motion in the z direction. To
see how this paradox is resolved, one need only work
out the relevant transformation equations. A de Sitter
space possesses a ten-parameter symmetry group with
structure O(4,1), and locally these transformations can
be identified with those of the Poincaré group. In the
vicinity of the origin of the Robertson-Walker flat coor-
dinate system, the transformation that is locally identi-
fied with a z-boost corresponds to a (3-7 boost in the
five-dimensional hyperboloid coordinates:

(a=(s +em,
=7+ (3, (2.9)
C{:CIa C§=C2» w':w,

where € is an infinitesimal parameter. Transforming to
the (¢,x) coordinates with Eqs. (2.4) and (2.5), one finds
(to first order in €) that

t' =t+ez,
SHT L= e M 4 B2 (52 4+ 4 = %)), (210)
' =z—€eHzz, y =y—eHzy.

z'=z+
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Note that, when all the coordinates are small com-
pared to H~1, this transformation reduces to a standard
Lorentz boost in the 2z direction. The string loop, how-
ever, is always larger than H~!, so the higher-order terms
are very significant. When the transformation above is
applied to the loop evolution equation (2.6), one finds

2’2 +y’2 — H‘2(1 + e—zm’),
(2.11)
2 =eH™ .

So a boost in the z direction does not impart a z velocity
to the loop, but instead is equivalent to a z translation.

To summarize, an arbitrary configuration for the in-
stanton leads to a nucleated loop of string that can have
its center at any location, that can have any orientation,
and that has a physical radius at time ¢ given by

Rpnys = H™1\/e?H0—10) 1 1 | (2.12)

where ¢ can have any value. The quantity ¢ is related to
the time of nucleation, but as discussed above there is no
precise definition of the time of nucleation. Nonetheless,
a change in the value of ¢( results in a time translation of
the entire solution, and thus can be described intuitively
as a shift in the time of nucleation.

The calculation for nucleating domain walls and
monopoles is very similar, so the details need not be pre-
sented. The domain walls nucleate as spheres, with a ra-
dius again given by Eq. (2.12). In this case the instanton
solution is just a three-sphere embedded in a four-sphere,
so Eq. (2.8) indicates that there are four zero modes, and
hence the instanton configuration is described by four pa-
rameters. In the five-dimensional Euclidean space the in-
stanton three-sphere can be described as the intersection
of a four-plane with the de Sitter four-sphere, and the
four parameters can be taken as the independent compo-
nents of a unit vector orthogonal to the four-plane. In the
Robertson-Walker flat coordinates, the parameters corre-
spond to spatial and time translations. The domain-wall
sphere is invariant under boosts, so it is not meaningful
to attribute a velocity to it.

For monopole-antimonopole pairs the instanton is a
circle embedded in a four-sphere, and Eq. (2.8) tells us
that it has six zero modes. These modes correspond to
space and time translations and to the orientation of the
pair (described, for example, by a unit vector pointing
from the monopole to the antimonopole). The monopole-
antimonopole separation as a function of time is given
by 2Rphys, where Rphys is given by Eq. (2.12). A boost
along the separation of the pair leaves the trajectories
invariant, while a boost perpendicular to the separation
is equivalent to a translation by e H~! in the direction of
the boost.

III. COSMOLOGICAL IMPLICATIONS
OF NUCLEATING DEFECTS

Our results suggest that string loops can be continu-
ously produced during inflation at a constant rate per
unit volume per unit time. This rate can be written as

A=H'Ae B | (3.1)
where B is given by Eq. (1.11). Our description of string
nucleation should be qualitatively accurate provided that
the inflationary false-vacuum state admits string solu-
tions with u2 H? and §SH™! (§ is the string thick-
ness). If 7, is the symmetry-breaking scale of strings,
and the relevant coupling constants are not too small,
then pu ~ 5%, § ~ n7!, and both conditions are satis-
fied for n, 2 H. The nucleation rate (3.1) is negligible
if n, > H, and so the most interesting case is when
ns ~ H. The prefactor A is a function of the ratio u/H?,
and for 4 ~ H? we expect A ~ 1. After inflation the
universe reheats to some temperature 7;., and the strings
survive only if T, < 1. In most inflationary models the
reheat temperature is low, so this condition is not diffi-
cult to satisfy.

Let us now find the size distribution of strings at any
given time during the inflationary period. The number
of loops that form in a coordinate interval d®x and in an
interval of the time parameter dty is given by

dN = Xe3Hto d3x dt, . (3.2)

Note that this is a probability distribution in the param-
eter space of solutions, and therefore has no dependence
on the time of observation ¢. To find the probability dis-
tribution for loops of a given physical radius R that would
be observed at time ¢, one uses Eq. (2.12) to replace the
parameter tg by R. The result is given by

AHR

dN = ms—/g dR dehys 5 (33)
where
dVphys = e*Hd3x (3.4)

represents the physical volume element. For large loops
(R > H™1) this reduces to the simple scale-invariant
expression

A dR
H* Rt
At the end of inflation, this distribution spans the range
of scales from R ~ H~! up to comoving scales beyond
the present horizon. [If H changes during inflation, then
the coefficient A in (3.5) becomes a function of R.]

Note that the distribution (3.3) has the peculiar prop-
erty that an integration over R would diverge at R =
H~!. This anomaly arose in the calculation because the
solutions did not have a natural choice for the time of nu-
cleation, so we have calculated under the oversimplified
assumption that the classical trajectories have meaning
back to time —oo. In reality, there is some value A such
that loops with radii S(H~! + A) must be considered
to have not yet nucleated, and thus the probability dis-
tribution is cut off. To estimate A, one recalls that a
WKB solution describes classical behavior except near
the classical turning points. The nucleation of the string
corresponds to the classical turning point, and the clas-
sical behavior can be expected to resume once the accu-
mulated phase of the wave function becomes large. The
phase of the wave function for R > H~! can be read off

dN = dvphys . (35)
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from Eq. (1.10), using € = 0 to correspond to a string
loop nucleated in the vacuum. One has

HO4A  RAR
H-1 1/ [2Rl2 -1
2"“ =B JHA(HA + 2).

Choosing A, for examp]e, as the point where the phase
is about 27, one has

4
Ham 1+ 1
p

Phase(R=H™ ' 4+ A) =27u

(3.6)

(3.7)

For the interesting case of u ~ H?, this gives A ~ H™1,

It should be noted that the static coordinate system
used in Eq. (3.6) is not valid for R > H~!, and our
calculation of the phase should be understood in the sense
of analytic continuation.

After inflation, the probability distribution for loops
with R >t continues to be described by Eq. (3.5), with
H interpreted as the value of the Hubble parameter dur-
ing inflation. When loops come within the horizon, they
begin to oscillate and their mass and radius remain con-
stant (disregarding the slow decay due to gravitational
radiation). Hence, for R < t we can write

N ~ 2 A (a((ftz))) 7 Vohys »

where a(t) is the scale factor. This distribution has the
same form as that in the standard scenario of string evo-
lution, where loops are chopped off an infinite string net-
work [7].

Note that the mass distribution dm = 27pRdN will
diverge at small R for loops that reenter the Hubble
length during the radiation-dominated era (i.e., loops
with R < tequality ), S0 the mass density will be dominated
by loops near the cut-off at R = H~! 4+ A. For loops that
reenter the Hubble length during the matter-dominated
era (R > tequality) the mass distribution becomes loga-
rithmically flat (i.e., dm o« dR/R), so each decade of R
up to the Hubble scale makes a comparable contribution.

Since nucleating loops have the shape of a circle, one
could expect that, instead of oscillating, they will all col-
lapse to form black holes. However, there will be some
deviations from circular shape due to quantum fluctua-
tions. Equation (3.7) suggests that the ratio of the fluc-
tuation amplitude to the loop radius is HA ~ H*/u?.
For H ~ n, this gives HA ~ 1. On the other hand, for
a black hole to be formed, we need (Ref. [12]) HASGp.
Hence, for Gu << 1 the probability of black-hole for-
mation is small. We note in passing that spontaneous
loop nucleation can provide an alternative (or additional)
mechanism for string-driven inflation [13]. This would re-
quire Gy ~ 1.

The cosmological evolution of domain-wall bubbles can
be discussed in a similar way. In fact, it is easily under-
stood that the size distribution of bubbles is described
by the same equations (3.5) and (3.8). An important dif-
ference, however, is that walls of radius R > (87Go)~1
inevitably collapse to form black holes. Another impor-
tant difference is the mass distribution, which in this case

(3.8)

is given by dm = 4rR?0dN. The extra power of R,
when compared to strings, implies that for R < ¢ the dis-
tribution diverges at large R in both the radiation- and
matter-dominated eras. This means that the mass den-
sity is dominated by bubbles of size comparable to the
Hubble length. (This is true for any power-law expansion
aot’, withv > 1)

Although they dominate the domain-wall mass density
when one averages over arbitrarily large scales, Hubble-
size bubbles may still be very rare. The total number
of bubbles of radius greater than R within the visible
Universe has an expectation value

A to
Ny g = 36w iR
where we have used (3.8) with Vpnys = (47/3)(380)?, to
is the present cosmic time, and we have assumed that
R > tequality- It follows from Eq. (3.9) that the radius of
the largest bubble one can expect to find at present in a
typical Hubble size volume is

(3.9)

Rmax ~ 367 H}\4
If X is small, Ryax can be much smaller than the Hubble
length. [For A\/H* < 10~8, Eq. (3.10) does not apply,
since it gives Rmax < fequality - An estimate of Rpax
in this case is easily obtained, however, along the same
lines.)
To avoid conflict with the isotropy of the microwave
background, the mass of the maximal bubble, My, =
4w R2,,,, has to be less than 10=* of the total mass of

the visible Universe. From this one can derive a con-
straint on the possible values of the symmetry-breaking
scale of the walls, 7y,. On the other hand, gigantic black
holes which can be produced by this mechanism can lead
to interesting patterns of density fluctuations for the for-
mation of cosmic structure.

If monopole-antimonopole pairs are produced, the
monopole density at the end of inflation is of the order

N ~ H3exp(—27m/H) . (3.11)

(3.10)

Depending on the values of H and m, this density can be
too high (so that the corresponding model is ruled out),
it can be negligible, or it can lie in the “interesting” range
and be potentially observable.

IV. INCLUDING STRING
AND WALL GRAVITY

So far we neglected the gravitational effect of the nu-
cleating strings and walls. In this section we shall find
the instantons and calculate the corresponding actions
with string and wall gravity taken into account.

A. Strings

The gravitational field of a string is characterized by
a conical deficit angle, §¢ = 87Gpu. Specifically, a space
containing an infinitely thin string along the z axis is
described by the flat metric
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ds? = dt? — dr? — r%(d6? + sin® 0 dp?) , (4.1)

where the range of the azimuthal angle ¢ is given by
0<p<2r(l-4Gp), (4.2)

instead of the Euclidean range, 0 < ¢ < 27. When
a string is embedded in de Sitter space, the Einstein
equations in the immediate vicinity of the string will be
dominated by the é-function contribution to the energy-
momentum tensor coming from the string. The implica-
tion of this é-function source will be the same as in the
previous case: at any point on the string world sheet, an
infinitesimal circle drawn around the string in the plane
perpendicular to the world sheet will show a deficit angle
bp = 87Gp.

To see how the deficit angle affects the geometry of
the Euclidean instanton, one can begin with Eq. (1.16),
which describes the string instanton (without a deficit
angle) embedded in a five-dimensional Euclidean space:

G+ +rP=H2,
(3=w=0.

At each point on the string world sheet, it can be seen
that the unit vectors in the {3 and w directions are both
tangent to the de Sitter sphere and perpendicular to the
string world sheet. Thus, the proper conical singularity
can be inserted by defining an azimuthal angle ¢ in the
{3-w plane, and restricting its range by Eq. (4.2).

To continue, it is useful to introduce angular coordi-
nates (¥, x, 0, ¢) that are related to the five-dimensional
Cartesian coordinates by

Hr =siny ,
H({y = cos cosx ,
H({s = cos1 sinx cosf , (4.3)
H(3 = cosy sinx sinf sinp ,

Hw = cos sin x sin @ cos .

(This transformation is reasonably standard, except that
we have ordered the Cartesian coordinates in a peculiar
manner in order to conform with other aspects of this
paper.) The metric in terms of the angular coordinates
is then

ds? = H™2{ dy?
+ cos? p[dx? + sin? x(d6? + sin? 0 dp?)]},
(4.4)

where the range of ¢ is given by Eq. (4.2). The other
coordinates have the range

5 S
In these coordinates the string lies along the § = 0 and
@ = w axes. In standard conventions, the locus of the
string in the vicinity of the origin would be called the
positive and negative z axes. Recall that ¢ is the az-
imuthal angle measured around the string, so it is a pe-
riodic variable with a period defined by Eq. (4.2).

To understand the evolution of the string loop in phys-
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ical space-time, we analytically continue the above solu-
tion to imaginary values of . By analytically continuing
Eq. (4.4), one can write the Lorentzian signature metric
as

ds? = dt’—~ H~?cosh? Ht
x[dx? + sin? x(df? + sin? 0 dp?)], (4.6)

where Ht is the analytic continuation of 1. Equation
(4.6) is the Robertson-Walker closed universe represen-
tation of de Sitter space, except that the azimuthal angle
¢ has the restricted range of Eq. (4.2). The string lies
along the z axis (6 = 0, 7), and in this coordinate system
it makes a maximal circle around the closed universe.

The metric (4.6) gives a valid description for the evo-
lution of a nucleated string, but the coordinate system
has been chosen in a very special way to make the string
as simple as possible. To visualize how a typical string
loop would appear to an observer in an inflationary uni-
verse, it is useful to again transform the metric to the
Robertson-Walker flat form by using Egs. (2.4) and (2.5).
This time, however, we must remember that a deficit an-
gle of 6¢p = 8wGp must be removed from the (3-w plane.
For convenience, we choose to remove a wedge that is
centered on the positive w axis. Thus, for w > 0, (3 is
restricted to the range

[¢3| > wtan(47Gp) . (4.7)

Transforming to the Robertson-Walker flat coordinates,
one finds that the condition w > 0 becomes x2? <
R2_.4(t), where Rcoord(t) is the coordinate radius of the
loop, given by Eq. (2.6). When this inequality is satisfied,
then Eq. (4.7) implies that

|z] > -2—1i{—(1 +e 2t _ H?x?) tan(4nGp) . (4.8)
Substituting x2 = z2 + y? + 22 and then solving the
quadratic equation, one finds

. \/1 + H2(R2,, 4 — 2 — y?) tan?(47Gp) — 1
e H tan(47Gp)
(4.9)

Thus, in the Robertson-Walker flat coordinate system
the effect of the string gravity is to remove from the space
a region within the loop that is shaped roughly like a
convex lens. The upper and lower surfaces of this lens are
then identified with each other. The form of this excised
lens-shaped region is shown in Fig. 2. For very early
times (presumably well before a classical description is
applicable), the excised region approaches a sphere. For
late times the apex angle, where the lens meets the string,
approaches the deficit angle for an infinite string, 87Gpu.

We would also like to calculate the effect of string grav-
ity on the action of the instanton solution. The Euclidean
action is given by

Se=u [Povi+ [davi <pv—T£—é) ,
(4.10)
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where ¥ is the determinant of the two-dimensional metric
on the string world sheet, R is the four-dimensional scalar
curvature, and py is the false-vacuum energy density of
de Sitter space. The horizon radius H~! is related to py
by

H2 = ?Gpv

The quantity B in Eq. (2.10) for the tunneling probability
is given by the difference

B=.§E-—SE s

(4.11)

(4.12)

where S'E and Sg are the Euclidean actions of de Sitter
space with and without a string, respectively.
The scalar curvature R in (4.10) can be written as

R =8rGTY =Ry +Rs , (4.13)

where Ry and Rg are the contributions of the false vac-
uum and the string, respectively. The false vacuum and
string energy-momentum tensors are given by
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-1 0 1

/Reoord
FIG. 2. A nucleated string loop in Robertson-Walker flat

coordinates. In these coordinates the string deficit angle is
implemented by excising from the manifold a lens-shaped re-
gion within the string loop. The diagram shows a cross section
of this excised region, for three values of Ht. The figure is
drawn for a very large deficit angle, 20°.

TV Vi =pv/9 9", (4.14)
ab Jzt Qx_u

14 Vi=n [ e/ e et - 2(6).

Here, z#(&) is the string world sheet parametrized using
two arbitrary parameters €%, a = 1, 2;

(4.15)

Ozt dz¥

Yab = guvﬁg‘;ggf (4.16)

is the metric tensor on the world sheet, ¥ is its inverse
and v = det(y4). Now it is easily seen that

1 -
—IGWG/d4w\/§Rs = —u/dzﬁ\/_z —4rpH™2,
(4.17)

Note that this curvature contribution cancels the Nambu
action term in (4.10). To find the false-vacuum contri-
bution to S'E, we use Ry = 327Gpy and do the four-
dimensional integration in (4.10) with a restricted range
of ¢, Eq. (4.2). This gives

T

GH?

The action of a four-sphere without a string is [14]

Sg = — (1 —4Gp). (4.18)

n

SE = *Eﬁ, (4.19)
and thus
B =d4mpuH™2% (4.20)

Surprisingly, inclusion of gravity does not change the tun-
neling action in this case.

B. Domain walls

The instanton in this case includes two identical pieces
of a four-sphere matched together at a three-sphere of a
smaller radius, which represents the world sheet of the
wall (see Fig. 3). This instanton belongs to a more gen-
eral family of instantons studied by Berezin, Kuzmin, and

FIG. 3. Schematic diagram for the instanton describing
domain-wall nucleation. The diagram shows two fewer dimen-
sions than the real instanton, which is composed of pieces of
two four-spheres that intersect at a three-sphere.
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Tkachev [15]. We could obtain the tunneling action for
our instanton from their formalism by setting the vac-
uum energies on the two sides of the wall equal to each
other. Here we shall obtain the same result in a different,
and perhaps somewhat more straightforward way.

The four-sphere metric can be chosen in the form (4.4),
where in this case ¢ has the usual range 0 < ¢ < 27. The
three-sphere is then a surface of constant v, ¥ = 9. The
Jjunction conditions at this surface are [16]

[Kap] = —47Goyar (4.21)

where [Kg3] is the difference of extrinsic curvature on the
two sides of the surface, v,; is the world-sheet metric ten-
sor and a,b = 1,2, 3. In our case the extrinsic curvatures
on the two sides of the wall world sheet are equal and
opposite, and so [Kqp] = 2K4p5. Kgp is the derivative of
the three-dimensional metric with respect to a normal-
ized coordinate orthogonal to the three-surface, so

agab

Kup=H , 4.22
= Hg (422)
and Egs. (4.21) reduce to a single condition

H tan ¢y = 27Go (4.23)

The radius of the domain-wall three-sphere (at ¥ = 1)
is then given by

1
VH? + (27Go)?

The four-geometry describing the Lorentzian evolu-
tion of the Universe with a domain wall consists of two
pieces of de Sitter space matched together at a three-
dimensional hyperboloid representing the world sheet of
the wall. To discuss the analytic continuation in detail,
it will be useful to adopt a new set of coordinate conven-
tions. We will continue to embed the four-dimensional
Euclidean system in a five-dimensional Euclidean space
with coordinates (¢, w,7), and we will center one of the
two de Sitter spheres at the origin. The second sphere
will have its center along the positive w axis, as shown in
Fig. 4. The world sheet of the wall lies at the intersection

Ry = H 'cosepg =

(4.24)

FIG. 4. Configuration of de Sitter four-spheres for the
domain wall instanton. One sphere is at the center of the
five-dimensional coordinate system, and the other sphere lies
along the positive w axis.

of the two spheres, which occurs in the four-plane

2rGoH 1
VH? + (27Go)?

We will relate the Cartesian coordinates to angular coor-
dinates as in Eq. (4.3), but this time we will use a more
standard ordering of the axes:

w=wy = H lsinyy = (4.25)

Hr =siny ,
Hw = cosy cosy ,
H(3 = cos® siny cosf , (4.26)
H(¢y = cosy sinx sinf singp ,
H({y = cos® sin x sin cos .
By analytically continuing 7 to it the metric acquires
the form of Eq. (4.6), and Eq. (4.25) describing the posi-
tion of the wall becomes H ! cosh Ht cos y = H =1 sin .
Thus, the wall is located at

sin ¢'o )

cosh(Ht) (4.27)

X = Xo(t) = arccos (

In these closed universe coordinates the physical radius
of the domain wall at time ¢ is given by

Rpnys(t) = H™'sin xo(t) cosh(Ht)

= H™y/cosh?(Ht) — sin? tho. (4.28)
The radius of the wall at ¢t = 0 is Rpnys(0) = Ro, where
Ry is from Eq. (4.24). It can be interpreted loosely as
the wall radius at nucleation.

In the limit ¢ — 0, Eqgs. (4.25) and (4.27) give ¥ = 0,
Xo = 7/2, and we recover the instanton without gravity.
In the opposite limit, when 27Go > H, we have g —
w/2 and Rp — 0. The fact that gravity reduces the
initial size of the wall has a simple physical explanation.
Without gravity the wall radius at nucleation is such that
the force of tension is balanced by the stretching force
due to the expansion of the universe. The gravitational
field of domain walls is repulsive [17], and therefore with
gravity the balance is achieved at a smaller radius.

The closed-universe description above is somewhat re-
stricted, since we chose a special coordinate system in
which the bubble wall divides the universe precisely
in two equal halves. It is easy, however, to use the
five-dimensional hyperboloid description to obtain a de-
scription in Robertson-Walker flat coordinates. Using
Eq. (4.25) with the transformation equations (2.4) and
(2.5), one finds that in these coordinates the domain wall
lies at

x? = H 2 (1+e 2" — 2Hwoe HY) . (4.29)
The most general nucleating bubble solution can be ob-
tained by translating this solution in position and time.
In this coordinate system the physical radius evolves as

Ronys = H™1\/e2Ht 4 1 — 2HwgeH?, (4.30)

Let us now calculate the Euclidean action of the in-
stanton describing the wall nucleation. It is given by
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g = a/d3£ﬁ+/d“x\/§ (W - E??@) o (431)

and as before we are interested in the difference B =
Sg — SEg, where Sg is the Euclidean action of de Sitter
space without a wall. The calculation of B is very similar
to that in the case of a string. The energy-momentum
tensor of the wall is

v a5 0T# 0¥
T Ji=o0 [ PEAr™ —

oge g

8D (z — z(8)),
(4.32)
and the scalar curvature is given by
R /9 = 327Gpv /g + 24nGo /dsf V7§D (z — z(8)).
(4.33)
Substitution of (4.33) into (4.31) gives
Sp=-% [eevi-pv [davi

The first integral in (4.34) is just the volume of a three-
sphere of radius (4.24):

(4.34)

/d3g V7 = 27°R3. (4.35)
The second integral is given by
Yo
/d4m 7 :47r2H~4/ dipsin® ¢
0
_ An7 3 4.36
_3—5—;(2—3cos¢0+cos Yo), (4.36)
and after some simple algebra we obtain
2
Sp = ——— 4 o (4.37)
GHZ 2 2 2
H?\/H? + (27Go)
and
2
B= 2n o (4.38)

Hz\/H2 + (27Go)?

We see that in the case of domain walls the tunneling
action does get modified by wall gravity. An intriguing
property of Eq. (4.38) is its behavior in the limit of large
o:

T
GH?
Surprisingly, the tunneling action in this limit is inde-
pendent of the wall tension. Geometrically, this behavior
is easily understood: as o gets larger, the three-sphere
radius (4.24) becomes smaller and the instanton action
S'E vanishes in the limit ¢ — oco. Hence, in this limit
B — —Sg = n/GH?. Physically one might expect B
to grow as o becomes large. The reason this does not
happen is that the radius of the instanton Ry decreases
simultaneously, so that the product ¢ R3 vanishes in the
limit.

B~ (Go > H). (4.39)

S

V. NEGATIVE EIGENMODES
OF THE INSTANTON SOLUTIONS

In standard tunneling problems solved by instanton
methods, the instanton has exactly one negative eigen-
mode. That is, the expression for the second variation of
the action about the instanton has exactly one negative
eigenvalue. Coleman [18] has shown that, for a wide class
of systems, the solution to the WKB formulation of tun-
neling necessarily corresponds to an instanton with ex-
actly one negative eigenmode. In this section we will an-
alyze the negative eigenmodes of the instanton solutions
introduced in Sec. I, and we will find that the instanton
for string nucleation has two negative eigenmodes, while
the instanton for monopole pair nucleation has three. In
general an m-sphere embedded in an n-sphere of equal
radius is known [10] to have

N=n—m

(5.1)

negative eigenmodes. We will show how these instan-
tons avoid the implications of Coleman’s theorem, but
the physical implications of the multiple negative eigen-
modes will remain a topic for future work.

We begin by describing the eigenvalue problem for the
string nucleation instanton. For simplicity we will ignore
the gravitational effects of the string, so we will treat the
space-time as a fixed background de Sitter space. The
instanton is then a maximal two-sphere on the de Sitter
four-sphere. The two-sphere surface will be parametrized
by €% = (6, ), where a = 1,2. An arbitrary perturbation
of the two-sphere can be characterized by introducing two
functions 7;(£2), where ¢ = 1,2, and the two-sphere is
described in the five-dimensional Euclidean coordinates

by

H{s =n1(0,6) ,
H¢y=n2(6,9) ,

H({z=1/1—1n? cosb,
H{; =1/1—n?sinf singp,
H({ = 4/1—n? sinf cosp.

Using the Euclidean metric of the five-dimensional space
to determine the induced metric 9,5 on the two-sphere,
one has

(5.2)

5

Yab = Z %%
a=1

- 6€a afb
= (1= g2y @ 4 2 (6 4 ) 0100 (5 qy
i/ lab Y 1— n% 66:2 aEb ’
where
— 1 0
75&2) =H 2 [ 0 sin2 9] (54)

is the unperturbed metric on the two-sphere.
Following the notation of Sec. IV, the action is given
by

Sg = p/dzﬁ V7 (5.5)
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where ¥ = det(y4). Expanding to quadratic order, one
has

1 _ a6 Oni On;
SE :Sg))+‘2'H/d2£ \/‘7(0) (H 27(0) bb—;%-gé%‘

—271;2) +0(n%), (5.6)

where v(®)2? is the inverse of "/((lg). This can be put in a

more recognizable form by an integration by parts, yield-
ing

1
Se = S5 +3n / % /) (= H™?0; Vs — 2n})

where
N ( © <0)abﬁl)
Vi = —waee \V7OT " g (5.8)

is the Laplacian operator defined on the unperturbed
two-sphere. The Laplacian is diagonalized by a standard
spherical harmonic expansion

0:(0,9) =D Chm Yem (0, %), (5.9)
m
and so
Se =S5 + 555 2 (UL +1) = 2] (chm)”* + O
fmi

(5.10)

Thus, we can see that the eigenvalue problem has two
negative modes (£ = m = 0; 7 = 1, 2) and six zero modes
(¢=1;m = 0,%£1; ¢ = 1,2), and all the other eigenval-
ues are positive. The two negative modes correspond to
moving the entire instanton two-sphere uniformly in the
{4 or {5 direction. The six independent zero modes, as
discussed in Sec. II, are rotations that carry any of the
1, 2, or 3 directions into either the 4 or 5 direction.

A similar analysis for the monopole pair instanton
shows that it has three negative eigenmodes, since there
are three directions orthogonal to the loop. A domain-
wall instanton, on the other hand, has only one negative
eigenmode, since there is only one direction perpendicu-
lar to it.

While we do not claim to understand the physical con-
sequences of the multiple negative eigenmodes, we can
at least see that there is no direct contradiction with the
arguments of Coleman [18]. In his introduction Coleman
excludes the case of scalar fields evolving in de Sitter
space, but for pedagogical purposes it is useful to pur-
sue the arguments further to see where they break down.
We begin by giving a crude summary of the argument,
which rests on the fact that the minimal barrier penetra-
tion path of the WKB method is a true minimum of the
action, while the instanton is not. The apparent discrep-
ancy is resolved, however, if the instanton has a single
negative eigenmode. The point is that not all small devi-
ations from the instanton can be mapped into a barrier

penetration path. The barrier penetration path is re-
quired to end on a surface with potential energy equal to
the initial potential energy, while an arbitrary instanton
configuration is likely to lead to a path that overshoots
or undershoots. Thus one cannot use the negative eigen-
mode to find a barrier penetration path of lower action,
since the addition of this mode will alter the potential
energy of the end point. If there are two negative eigen-
modes, on the other hand, then one can generally super-
impose them to obtain a path that has a lower action and
finishes on the correct equipotential surface. For the case
of the string instanton, however, the two negative eigen-
modes are closely related—one can be obtained from the
other by a rotation in the 4-5 plane. Any linear combi-
nation of the two modes is just a rotation of the original,
and so the final value of the potential energy cannot be
adjusted by modifying the coefficients of the linear su-
perposition.

VI. CONCLUSIONS

The main conclusion of this paper is that spherical
domain walls, circular loops of string, and monopole-
antimonopole pairs can be spontaneously created during
inflation by quantum-mechanical tunneling. The initial
radii of strings and walls and the initial separations of
monopole-antimonopole pairs are equal to the de Sitter
horizon, H~!. When viewed in Robertson-Walker flat
coordinates, the initial radius (or separation) of H~! is
approached asymptotically as ¢ — —oo, and there is no
sharply defined time at which one would naturally say
that nucleation occurs. The time at which the evolution
becomes classical, however, can nonetheless be estimated
(see Sec. IIT) by finding when the accumulated phase of
the wave function becomes large.

Assuming that the transverse dimensions of the defects
are small compared to the horizon, we have found the
corresponding instantons and determined the WKB tun-
neling amplitude and the classical evolution of the defects
after nucleation. The results are particularly simple when
the gravitational effects of the nucleating defects are ne-
glected. In this case the background space-time is an
unperturbed de Sitter space, which in the Euclidean for-
mulation is analytically continued into a four-sphere. For
walls, strings, and monopoles, the world surfaces of the
instanton solutions are the maximal three-sphere, two-
sphere, and circle, respectively. (The word “maximal”
means that the radius of the world-surface of the defect
is equal to the radius, H~!, of the four-sphere in which
it is embedded.)

For the cases of strings and walls, the gravitational
field of the nucleating defects can be taken into account
by rather simple constructions. For the string, the well-
known conical deficit angle can be incorporated by ex-
cluding a segment from the de Sitter four-sphere and then
identifying the boundaries of the excluded region. When
this solution is analytically continued and expressed in
Robertson-Walker flat coordinates, it is found that the
conical deficit angle can be implemented by excluding
from each constant-time hypersurface a region of space
shaped like a convex lens, with the string running around
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the edge of the lens (see Fig. 2). For the case of walls,
the discontinuity implied by the wall surface stress is
achieved by taking the polar cap of a four-sphere and
joining it at its boundary to a copy of itself (see Fig. 3).
The boundary, which is a three-sphere, represents the
world sheet of the domain wall.

A significant limitation of our analysis is the assump-
tion that the defects are “thin,” that is, that their trans-
verse size is much smaller than the de Sitter horizon.
This will typically be the case if the symmetry-breaking
scale of the defects, 7, is large compared to H. However,
Egs. (1.11), (1.17), and (1.18) indicate that for n > H
the tunneling action is large and the nucleation proba-
bility is very low. In the most interesting case, when 7
is comparable to H, the “thin-defect” approximation is
not valid and our results are meaningful only in a quali-
tative way. An accurate result would require a full field-
theoretic treatment. The instantons can then be found
by solving Euclidean Higgs and gauge field equations on
a four-sphere. This remains a problem for future work.

A somewhat puzzling aspect of our results is the fact
that the string and monopole instantons have more than
one negative eigenmode, in apparent contradiction with
Coleman’s [18] theorem. We explained in Sec. V that
there is no direct contradiction, since the theorem does
not apply to this case, but the physical significance of
the “wrong” number of negative eigenmodes remains ob-
scure.

We briefly discussed possible cosmological implications
of the nucleating defects. After nucleation, strings and
walls are stretched by the exponential expansion of the
universe, and by the end of inflation they have a wide
spectrum of sizes which can extend well beyond the
present Hubble radius. Somewhat surprisingly, we found
that the size distribution of string loops has the same
scale-invariant form as in the more familiar scenario
where the strings are formed at a phase transition. The
main difference is that the overall factor in this distri-
bution depends on the nucleation probability and is very
model dependent. With an appropriate choice of parame-
ters the loops can serve as seeds for galaxies and clusters.
Since nucleating loops are nearly circular, many of them
can collapse to form black holes. The cosmological con-
sequences of this, and the resulting constraints on the

parameters of the model, will be discussed elsewhere. In
the case of domain wall bubbles, all bubbles greater than
a certain size inevitably collapse to form black holes. Gi-
gantic black holes produced by this mechanism can also
be cosmologically significant.

Finally, we would like to mention some related work
in which formation of topological defects during inflation
has been studied. Vishniac, Olive, and Seckel [3], Linde
and Lyth [19], and Hodges and Primack [20] considered
a situation in which the scalar field ¢ responsible for the
formation of defects has a very flat potential V(). In
this case quantum fluctuations of ¢ in de Sitter space can
be pictured as a random walk [21]: the field fluctuates
by 6¢ ~ H/2m on space and time scales ~ H~!. These
fluctuations can take ¢ back and forth over the barrier
between the degenerate minima of V(¢). Since fluctu-
ations are statistically independent in regions separated
by more than H~!, the field ¢ ends up on different sides
of the barrier in different regions of space, leading to the
formation of topological defects.

This work is closely related to ours, and is in a sense
complimentary. The WKB method that we employed
does not apply when the tunneling action is small, and in
this case the random-walk approach is certainly more ap-
propriate. On the other hand, when the potential V(¢) is
steep, the Brownian picture of fluctuations breaks down,
and our method should be preferred. It would be in-
teresting to investigate the relation between the two ap-
proaches in more detail and to find, in particular, if there
is any overlap in their areas of applicability.
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