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Hidden variables and quantum-mechanical probabilities for generalized spin-s systems
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We derive some generalized spin-s Bell inequalities for a set of three distinct coplanar axes. Using a

remarkable theorem due to Kronecker, we show that for at least 85.7% of the volume of the three-axis

(coplanar) configuration space, the magnitude of violation of Bell inequalities vanishes approximately as

1/s, far more slowly than the inequalities of Garg and Mermin.

I. INTRODUCTION

In 1980, Mermin [1] derived a set of generalized spin-s
Bell [2] inequalities, showing explicitly that local realism
is inconsistent with the numerical predictions of quantum
mechanics for arbitrary values of spin s right up to the
classical s —+ ao limit. However, both the magnitude and
the range of violation of his inequalities vanish linearly
with spin in the classical limit. Subsequently, Garg and
Mermin [3] showed that this vanishing of the range of
violation is an artifact of the particular analytical trick
used in the argument. They derived some generalized
spin-s Bell inequalities with a nonvanishing range of
violation as s~ ~. The magnitude of violation of their
inequalities, however, vanishes extremely rapidly, falling
off to 0 approximately as cos '(8/2), with 0 being the an-
gle between axes &; and & .. A question of considerable
theoretical interest is how fast local realism emerges in
the classical limit, i.e., how fast the magnitude of viola-
tion of Bell inequalities vanishes for a nonvanishing range
of angles as s —+ ~. In this paper, we shall address this
question. We derive a set of generalized spin-s Bell ine-
qualities with a magnitude of violation that vanishes ap-
proximately as I/s, considerably more slowly than the
inequalities of Garg and Mermin.

II. LOCAL REALISM VERSUS QUANTUM THEORY

We start by considering the spin-s generalization of
Bohm's [4] version of the Einstein-Podolsky-Rosen para-
dox [5], in which two counterpropagating particles in a
singlet-spin state P are emitted by the decay of a zero an-
gular momentum particle and thus have zero total spin.
If the spin of the second particle along axis &, is n;, then

by conservation of spin the spin of the first particle along
the same axis is m,. = —n;. It is therefore possible to
determine the spin of the first particle along any axis by
measuring the spin of the second particle, which is as-
sumed to be very far away, along the same axis without
disturbing the first particle. Einstein [6], Podolsky, and
Rosen (EPR) account for this by introducing their
famous criterion of local realism [5]. "If, without in any
way disturbing a system, we can predict with certainty
(i e , with prob. a. bility unity) the value of a physical quanti
ty, then there exists an element of physical reality corre

sponding to that physical quantity. " In 1964, Bell pointed
out that the requirement of local realism, as postulated
by EPR, essentially means that each separate particle
should be characterized by an ¹axis distribution func-
tion pa s a (m&, m2, . . . ,m„) which gives the probabil-

1 2 n

ity that the spin components of the particle along axes
&&,82, . . . ,&„are m &, mz, . . . , m„, with m; taking any
value in the set I

—
—,', —,'] (throughout this paper we use

the notation of Garg and Mermin [1]). Quantum theory,
however, vehemently denies that such a probability dis-
tribution function has any meaning for a single particle,
since it assigns simultaneous values to several com-
ponents of the noncommuting spin operators. In his
original paper, Bell showed that for s= —,', the existence
of a three-axis probability distribution function
ps s s (m „mz, m3 ) leads to the validity of an inequality

1 2 3

that is sometimes grossly violated by quantum theory. In
the following, we shall generalize Bell's result for an arbi-
trary value of the spin, and show that the magnitude of
violation of these inequalities vanishes approximately as
I /s as s~ oo.

Our results are based on the fact that if local realism
holds, that is, if each particle is characterized by an
¹ xis probability distribution function
ps s s (m&, mz, . . .,m„), then the two-axis distribu-

1 2 n

tion of a single particle, ps s (m „m2), can be expressed
1 2

in terms of the quantum-theoretic joint distribution func-
tion, i.e.,

p (m&, mz)=qs s (m&, n2) .
1 2 1 2

According to the quantum theory, q~ ~ (m„nz), which
1 2

gives the probability that the spin of the first particle
along &i is m i and that the spin of the second particle
along &2 is n2 = —mz, is a perfectly well-defined quantity,
whereas ps ~ (m„m2), which gives the probability that

1 2

the spin components of the first particle along axes Qi
and &2 are m i and m 2, has no meaning for a single parti-
cle. However, from a statistical point of view, there is ab-
solutely nothing objectionable about p~ ~ (m „m2); it is

1 2
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=1fs s s (x,y)= &(xm, +ym2+m3) )s s s
1 2 3 S 1 2 3

(2)

=1
2 g ps s s (m„m2, m3)

s 1 2 3
m1m2m3

non-negative, normalizable, and returns ps (m, ) as mar-
1

ginal. The difticulty arises when one attempts to charac-
terize a single particle by a three-axis distribution

Ps s s (mi, mz, m3) that would return Ps s (mi, m2) as
1 2 3 1 2

marginal. In the following, we shall show that the ex-
istence of such a three-axis distribution function is nu-
merically inconsistent with the quantitative predictions of
quantum theory.

Given any candidate for the three-axis distribution
function ps s s (m„mz, m3), we define the function

1 2 3

fs s s (x,y ) as the exPected value of (xm, +ym2+m3),
1 2 3

i.e.,

&m, mj )s s
= g m;m p (m, , m. )

J

m;n p (m, , —n. )
Jm,.m.

= —g m;njqss (m, , n ).
Jm,.n.

= —&m, n, ), ,

(6)

= —k&&S / J (9)

with ij = 1, 2, 3. Here (5) is true by definition; (6) follows
from the conservation of spin, i.e., from the fact that
m = n—; (7) follows from Eq. (1); (8) is true by
definition; and (9) follows from the rotational invariance
of the singlet spin-s state. [Note that k, =s(s+1)/3, but
this is not needed for any of our arguments. ] By substi-
tuting Eq. (9) in Eq. (4), we obtain

X(xmi+ym2+m3)2 . (3)
fs s s (x,y)= — (x +y +1+2xy cosa

1 2 3 S

+2x cosy +2y cosP), (10)
Note that (2) is the correct average, since the function

fs s s (x,y ) remains of order 1 for any value of the spin,
1 2 3

including the classical s —+ ~ limit because of the factor
1/s in front. We evaluate the minimum of the func-
tion fs s s (x;„,y;„), using two dift'erent but equiv-

1 2 3

alent techniques: in one technique, we calculate

fs s s (x;„,y;„) by explicitly squaring the trinomial
1 2 3

in Eq. (2); in the other technique, we evaluate

fs s s (x;„,y;„) from its definition, i.e., from Eq. (3). If
1 2 3

local realism holds, that is, if the three-axis probability
distribution function Ps s s (mi, m2, m3) exists, then

1 2 3

both techniques should certainly give the same result.
2x;„+2y;„cose+2 cosy =0,

2y;„+2x;„cosa+2cosP= 0 .
(12)

where e is the angle between &, and 82, y is the angle be-
tween 8i and 83, and p is the angle between &2 and 83,
with y =a+P (note that the three axes are assumed to be
coplanar). The minimum of fs s s (x,y ), i.e.,

1 2 3

fs s s (x;„,y;„)occurs at
1 2 3

'f=o 'f=o,
Bx By

or

III. VIOLATION OF BELL INEQUALITIES
Solving (12), we obtain

sinP sin(a+P)
sine ™n sine

(13)

First we calculate fs a s (x;„,y;„) from Eq. (2). By
1 2 3

explicitly squaring the trinomial, we obtain

fs s s (x,y)= (x'&m, )' +y'&m, )'1

s2 1 1 22

+ & m, &,', +2xy & m, m, &, ,33 1 2

+2x&m, m3)s s +2y&m2m3)s s )
1 3 2 3

Substituting (x;„,y;„) in fa s s (x,y ), it can easily be
1 2 3

shown that fs s s (x;„,y;„)=0. Thus, by explicitly
1 2 3

squaring the trinomial in (2), we have shown that the
function fs s s (x;„,y;„)=0.

1 2 3

We now calculate fs s s (x;„,y;„) from its
1 2 3

definition, i.e., from

fs s s (xminiymin )
1 2 3

1
ps s s (m„m2, m3)

s 1 2 3
mlm2m3

(4)

where the two-axis correlation function & m, m )s z is
J

defined as [7]

sinP sin(a+P) +m&
— . m2+m3

sine ' sine

2

(14)
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If local realism holds, that is if p~ s s (m „mzm3) exists,
1 2 3

then fs ~ s (x;„,y;„)obtained from (14) should also be
1 2 3

0. The only property needed to establish a nonzero lower
bound on the function fs s s (x;„,y;„) is the following:

1 2 3

m„mz, mz are uniformly distributed in the interval

I
—s, —s+ 1, . . . ,s —l, sI, i.e., ps (m, )=ps (mz)

1 2

=p (m3)=1/(2s+1). It should be noted that our re-
Q3

suit does not depend on the explicit form of the two-axis
probability distribution function. It is perhaps quite re-
markable that a nonzero lower bound on
f~ a s (x;„,y;„)can be obtained without exploiting any

1 2 3

of the properties of pcs (m;, m ). In the following, we
t J

shall consider two cases: (1) x;„and y;„are rational,
and (2) x;„and y;„are irrational. We shall show that
in both cases the magnitude of violation vanishes approx-
imately as 1/s, much more slowly than the inequalities
of Garg and Mermin.

A. Violation of Bell inequalities
for rational values x; and y;

First we consider the special case when x;„and
y;„are rational, i.e., when sinP/sina =p /q and
—si n( a+P)/si na=r/t, with p, q, r, and t integers. We
also assume that s is an integer (we shall consider half-
integer spins later) Let .r ~q ~

It = u /v, where the greatest
common divisor of u and U is 1, i.e., u and U are relatively
prime, and let mz&lv, where I is an integer. Since the
sum in Eq. (14) is term by term non-negative, it is bound-
ed by any partial sum:

u
/pq/= —m, +n (19)

Because mzWlv (where l is an integer), we can immedi-
ately conclude that

u 1
~pq~= —m, +n &

U U
(20)

or

T 1
p = +m, +—mz+m3

(qv )'

Thus, for integer spins

(21)

r

q t

1 1
z g ps ~ ~ (m„mz, m3) .

( qv ) m &, m z A lum3,
(22)

since m 2 is uniformly distributed in the interval

I
—s, . . . ,s I, i.e., pa (mz)=1/(2s+1),

2

We now obtain a lower bound on the summation

ps a s (mi, rnz, m3). Obviously
1 2 3

m1, m2%lv, m3

ps a s (mi, mz, m3)= g pa (mz)
ml, m2xlv, m3 m2xlv

=1— g ps (mz), (23)
m2=1v

p r ) 1
f~ ~ ~

—,— & g ps s ~ (m»mz, m3)
m m Wlvm

2

ps (mz)(
m2=1v

hence

2s+1
(24)

r
m1+ —m2+m3

q t

(15) m1, m2%lv, m 3

) 1
ps a a (m„mzm3)&1 ——

1 2 3 U
(25)

Let p be

7"

p my+ m2+m3
2

(16)

Substituting (25) in (22), we finally obtain a lower bound
on the function fs a s (x;„,y;„)for integer spins:

1 2 3

01
) 1 1 1

fs s s (xmin&ymin)—
1 2 3 s (qv) v

(26)

~p~= —m, + —m, +m,p (17) We now consider half-integer spins. Let

By multiplying both sides by ~q ~, we obtain Iil= + +— +
q 2 t 2 2

(27)

/pq f

= +pm, + " q mz+m, /q/ (18) By multiplying both sides of (27) by 2, and employing the
same argument as before, we obtain

Since +pm, and
~ q ~

m 3 are integers, let
n =+pm, + ~q~m3, where n is an integer. Using the rela-
tion r ~q ~

It =u lv, we obtain

1 1
f~ ~ ~ (Xmin&ymin)—

&
'| 3 s (2qv) v2

(28)
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X(m, +mz+m~) (29)

Since m „m2 and m 3 are half integers, the smallest term
in the sum is ( m, +m 2+ m 3 ) = —,'. Therefore, for this

kind of geometry, the magnitude of violation of the Bell
inequalities is greater than or equal to 1/4s for all half-
integer spins.

In fact, one can use this technique to show that the
magnitude of violation vanishes approximately as 1/s
for all rational values of x;„and y;„(except for the
very special case when x;„=+y;„=+1,and s an in-
teger}. Rational numbers, however, constitute a set of
measure 0, and one might suspect that the range of angles
over which the above results hold is a set of measure 0. It
would be far more useful to have a lower bound on the
function fs s s (x;„,y;„) for a set of irrational real

1 2 3

numbers with a nonzero measure. This is particularly
significant considering the errors in the orientation of the
analyzer which, in general, correspond to the variations
in x~;„and y;„[8,9]. In the following, we shall general-
ize our results for irrational values of x;„and y;„.

In fact, since m &, m2, and m3 can only take odd integer
values, we can obtain a stronger lower bound, but that is
not necessary for our purpose.

Let us consider a concrete example. Let
sina=sinp= —', , then the magnitude of violation is larger
than or equal to 4/125s for all values of the spin. As
another example, let s be half-integer, and let
a =P=y = 120', then x;„=1 and y;„=1. Thus

1
fs s s (1,1)= g ps s s (mi, m2, m3)

1 2 3 s 1 2 3
m1m2m3

but

m&n2m3

as ~ s (m, , n2, m3) +ps (n2)
1 2 3 2

?? 2

(33)

Now as s —+ ~, according to Kronecker's theorem,

+ps (n2)=0. 5;
7? 2

thus

fs s s (x;„,y;„)~ (0.25)(0.5) .

(34)

(35}

Note that the above result holds for both integer and
half-integer spins.

only those m 2, denoted by n 2, which satisfy

{2 cos(a )n2 j E (0.25, 0.75). Since each term in the sum is
non-negative,

fa s s (xmin&ymin )
1 2 3

) 1
ps s s (m, , n2, m3)

s 1 2 3
m17?2m3

X(m, —2cos(a)nz+m3}

Because the smallest term in the sum is 0.25,

1
fs s s (xmin ymin} —

2
'25 $ ps s s (m 1 n2 m3 }

1 2 3 s 1 2 3
m1n2m3

(32)

B. Violation of Bell inequalities for irrational values x
and y

1. a=P

First we consider the special case when a=P. Once
this simple case is understood, we shall then generalize
our results for aAP. In this case fs s s (x;„,y;„}is

1 2 3

defined as

fs s s (xmin&ymin }
1 2 3

1
ps s s (m„m2, m3)

s 1 2 3
m1m2m3

X [m, —2cos(a)m2+m3]

Using a remarkable theorem due to Kronecker [10], we
obtain a lower bound on fs s s (xm;„,y;„).

1 2 3

Theorem. If n is an integer, p an irrational, and
{npj =np [np], wit—h [np] being the greatest integer in
np, then the series of points {Opj, {lp j, {2pj, {3pj,
{4pj, . . . are uniformly distributed in the interval (0,1).

Since 2 cos(a )m 2 is assumed to be irrational, the frac-
tional part of 2cos(a)m2, i.e., {2cos(a)m2 j, is uniformly
distributed over the interval (0, 1) as s~ oo. We choose

2. asap

We now consider the most general case when asap and
x;„and y;„are irrational real numbers. First we as-
sume that fs s s (x;„,y;„) is less than or equal to 5

1 2 3

(where we assume that 5 vanishes faster than 1/s ); then
by rotating the axes so that (a~a, p~ —p), we shall
show that the magnitude of violation for such a
configuration vanishes approximately as 1/s . The stra-
tegy of such an argument is as follows.

The function fs s s (x;„,y;„) is assumed to satisfy
1 2 3

fs s s (xmin&ymin }
1 2 3

1
p (mi, m2, m3)

s 1 2 3
mlm2m3

2
sinp sin(a+ p)

Pl ) m2+m3 5 .
sinu ' sinu

(36)

Let n2 take values in a subset of {—s, . . . ,s j (for example
n 2 may take any value in the set {—s, . . . , 1 j, or
{0,2,s —1 j, or {sj, etc.). Because the sum in (36) is term
by term non-negative, it is bounded by any partial sum
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1
p (m„n2, m3)

s 1 2 3
m1n2m3

X(x;„m, +y;„n2+m3) 5 . (37)

Substituting (43) in (42), we finally obtain
2

0. 16y pa s (ni, n2) /ps (n2)—
1 2 n2

(44)

Given any n 2, we divide the values that m, take into two
sets: those denoted by n &, which satisfy

0.6 & Ix;„n,+y;„n 2 j & 0.4,
and those denoted by q &, which satisfy

0.4 &
I x;„q,+y;„n 2 j

& 0.6,

(38)

(39)

where IiMj is the fractional part of iM. Our first goal is to
obtain a lower bound on g ps s (n„n2). Because the

1 2
1 2

sum in (36) is term by term non-negative,

Now rotate the axes so that (a~a, P~ —P) or
(x;„~—x;„,y;„~z;„)(note that it is absolutely cru-
cial that ~x;„~ does not change when we rotate the axes).
For the new set of axes, we shall show that the magnitude
of violation vanishes approximately as 1/s in the classi-
cal limit. The function fs s s ( —x;„,z;„)is defined as

1 2 3

fs s s ( xmin~zmin)
1 2 3

=1
2 g pa s s (mi, m2, m3)

s 1 2 3
m1m2m3

pg g a (qi ll2 m3)(x ' q +iy ' ll2+m3} —tl
s 1 2 3

q1 n2m3

(40)

sinP sin(a —P)
m&

— . m&+m3
sincx sina

2

Because the smallest term in the sum is (0.4),
1 0. 16 g ps s s (q„n2, m3) 5,

s 1 2 3
qln2m3

summing over m3, we obtain

(41)

(45}

Since z;„+y;„is assumed to be irrational, according to
Kronecker's theorem, (z;„+y;„)m2 is uniformly distri-
buted in the interval (0,1) as s ~ oo. Therefore, 50%%uo of
mz, which we denote them by n, 2, satisfy the relation

( 5s
1 2

q1n2

0.25 & I(z;„+y;„)n2j&0.75 .
(42)

That is

g ps s (qi, n2)= +ps (n2) —g ps s (n „n2) .
q1n2 n1n2

(43)

Our goal, however, is to obtain a lower bound on

g Ps s (n„n2) rather than on g Ps s (q„n2). We use
1 2 1 2

n1n2 q1n2

the identity

+ps (n2)= —,
' .

n2

(47)

Now we obtain a lower bound on the function

fs s s (
—x;„,z;„). We choose only those m2 which

1 2 3

satisfy (46) and denote them by n2. Since each term of
the sum in Eq. (45) is non-negative,

) 1 2
Xmin~ min} —

2 X PS a S m j~ 2, m3) Xmin i+ min 2+ 3
1 2 3 s 1 2 3

m1n2m3

Adding and subtracting y;„nz, we obtain

) 1 2
fS S S ( Xmin~ min) —

2 2 Pg g S (mi 2 3)[ Xminmi yminn2+( min+ymin) 2™3)
1 2 3 s 1 2 3

m1n2m3

Now we choose only those m i which satisfy (38) and denote them by n i', thus,

1 2
Xmin min }— 2 g PS g S ( i 2 3)[ Xmin i ymin 2+( min+ymin } 2 ™3)

1 2 3 s 1 2 3
n1n2m3

(48)

(49)

(50)

Using the inequalities (46) and (38), one can easily show
that the smallest term on the right-hand side of (50) is
(0.4 —0.25), thus,

) 1
fa S S ( Xmin~Zmin) — 20' 15 p py S S (ni&n2&m3)

1 2 3 s 1 2 3
n1n2m3

(51)

Summing over m 3, we obtain
1

fs s s (
—x;„,z;„)~ 0. 15 g ps s (ni, n2) .

1 2
n1n2

But according to (44) and (47),

1 5sg Ps s (n„n2) ~ ——
1 2 2 0. 16

n1n2

(52)

(53)
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Since we have assumed that 6 vanishes faster than 1/s,
2

lim ~0,
s ~ 0. 15

(54)

g pa a (n„n2)
1 2

(55)

Thus, we finally obtain

1
Xmin& min )—

1 2 3 S
(56)

By symmetry and using exactly the same argument,
one can easily show that if fa a a (x;„,y;„)~5 for

1 2 3

the geometry (a,P), then for the choices of axes
(a~a, p~n. p), (a—~ a,p~—p), (a—+ a,p~—n. +p),
(a~a a,P~—P), (a~mr+a, P~ —P), the lower bound
on the magnitude of violation is given by the right-hand
side of (56). Thus the magnitude of violation of Bell ine-
qualities vanishes approximately as 1/s for at least
—,'=85.7% of the volume of the three-axis (coplanar)
configuration space.

IV. CONCLUSION

To summarize, we have derived a set of generalized
spin-s Bell inequalities with a magnitude of violation that
vanishes approximately as 1/s, considerably more slow-
ly than the inequalities of Garg and Mermin. From the
results derived in this paper, we conclude that the emer-
gence of local realism in the classical limit is signaled by
the vanishing (approximately as 1/s ) of the magnitude
of violation of Bell inequalities. We finally wish to point
out that it may be possible to derive Bell inequalities that
vanish even more slowly, approximately as 1/s, for a
nonvanishing range of angles in the classical limit.
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