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We derive some generalized spin-s Bell inequalities for a set of three distinct coplanar axes. Using a
remarkable theorem due to Kronecker, we show that for at least 85.7% of the volume of the three-axis
(coplanar) configuration space, the magnitude of violation of Bell inequalities vanishes approximately as
1/s2, far more slowly than the inequalities of Garg and Mermin.

I. INTRODUCTION

In 1980, Mermin [1] derived a set of generalized spin-s
Bell [2] inequalities, showing explicitly that local realism
is inconsistent with the numerical predictions of quantum
mechanics for arbitrary values of spin s right up to the
classical s — o limit. However, both the magnitude and
the range of violation of his inequalities vanish linearly
with spin in the classical limit. Subsequently, Garg and
Mermin [3] showed that this vanishing of the range of
violation is an artifact of the particular analytical trick
used in the argument. They derived some generalized
spin-s Bell inequalities with a nonvanishing range of
violation as s — . The magnitude of violation of their
inequalities, however, vanishes extremely rapidly, falling
off to 0 approximately as cos**(6/2), with 0 being the an-
gle between axes @; and @;. A question of considerable
theoretical interest is how fast local realism emerges in
the classical limit, i.e., how fast the magnitude of viola-
tion of Bell inequalities vanishes for a nonvanishing range
of angles as s— co. In this paper, we shall address this
question. We derive a set of generalized spin-s Bell ine-
qualities with a magnitude of violation that vanishes ap-
proximately as 1/s2, considerably more slowly than the
inequalities of Garg and Mermin.

II. LOCAL REALISM VERSUS QUANTUM THEORY

We start by considering the spin-s generalization of
Bohm’s [4] version of the Einstein-Podolsky-Rosen para-
dox [5], in which two counterpropagating particles in a
singlet-spin state ¢ are emitted by the decay of a zero an-
gular momentum particle and thus have zero total spin.
If the spin of the second particle along axis @; is n;, then
by conservation of spin the spin of the first particle along
the same axis is m;= —n;. It is therefore possible to
determine the spin of the first particle along any axis by
measuring the spin of the second particle, which is as-
sumed to be very far away, along the same axis without
disturbing the first particle. Einstein [6], Podolsky, and
Rosen (EPR) account for this by introducing their
famous criterion of local realism [5]. “If, without in any-
way disturbing a system, we can predict with certainty
(i.e., with probability unity) the value of a physical quanti-
ty, then there exists an element of physical reality corre-
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sponding to that physical quantity.” In 1964, Bell pointed
out that the requirement of local realism, as postulated
by EPR, essentially means that each separate particle
should be characterized by an N-axis distribution func-
tion palaz . ~-an(m1’m27' . .,m, ) which gives the probabil-

ity that the spin components of the particle along axes
a,,a,,...,a, are my;,m,,...,m,, with m; taking any
value in the set { —1,1} (throughout this paper we use
the notation of Garg and Mermin [1]). Quantum theory,
however, vehemently denies that such a probability dis-
tribution function has any meaning for a single particle,
since it assigns simultaneous values to several com-
ponents of the noncommuting spin operators. In his
original paper, Bell showed that for s =1, the existence
of a three-axis probability distribution function
pa,aza3(m1’m2’m3) leads to the validity of an inequality

that is sometimes grossly violated by quantum theory. In
the following, we shall generalize Bell’s result for an arbi-
trary value of the spin, and show that the magnitude of
violation of these inequalities vanishes approximately as
1/s%ass— oo.

Our results are based on the fact that if local realism
holds, that is, if each particle is characterized by an
N-axis probability distribution function
pala2,_,an(m1,m2,. ..,m, ), then the two-axis distribu-

tion of a single particle, palaz(ml,mz), can be expressed

in terms of the quantum-theoretic joint distribution func-
tion, i.e.,

palaz(m,,m2)=qalaz(m1,n2) . (1

According to the quantum theory, qalaz(ml’"2)’ which

gives the probability that the spin of the first particle
along @, is m; and that the spin of the second particle
along @, is n, = —m,, is a perfectly well-defined quantity,
whereas Palaz(ml’m2)’ which gives the probability that

the spin components of the first particle along axes @,
and @, are m; and m,, has no meaning for a single parti-
cle. However, from a statistical point of view, there is ab-
solutely nothing objectionable about Palaz(ml’ml); it is
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non-negative, normalizable, and returns Pal(ml) as mar-

ginal. The difficulty arises when one attempts to charac-
terize a single particle by a three-axis distribution
Palaza3(m1’m2’m3) that would return pa‘az(ml,mz) as

marginal. In the following, we shall show that the ex-
istence of such a three-axis distribution function is nu-
merically inconsistent with the quantitative predictions of
quantum theory.

Given any candidate for the three-axis distribution
function Palazas(ml’mb’m)’ we define the function

2,a,0,(%,¥) as the expected value of (xm, +ym,+m; )2,

ie.,

=1 2
falaﬁg(x,y)—?((xml+ym2+m3) >313233 ()

1
== X Palaza3(m1’m2’m3)

X(xm1+ym2+m3)2 . (3)

Note that (2) is the correct average, since the function
falaﬁs(x, y ) remains of order 1 for any value of the spin,

including the classical s — o limit because of the factor
1/s? in front. We evaluate the minimum of the func-
tion falazas(xmin’ymin ), using two different but equiv-

alent techniques: in one technique, we calculate
fala2a3(xmin’J’min) by explicitly squaring the trinomial

in Eq. (2); in the other technique, we evaluate
fﬁlaza3(xmin7ymin) from its definition, i.e., from Eq. (3). If

local realism holds, that is, if the three-axis probability
distribution function Palaza3(m1’m2’m 3) exists, then

both techniques should certainly give the same result.

III. VIOLATION OF BELL INEQUALITIES

First we calculate fa,a2a3(xmin’ Ymin) from Eq. (2). By
explicitly squaring the trinomial, we obtain
1

(x,3)=—(x*m)2 , +y? 2
fa,a,0,%>¥) sz( ( 172,a, y*m; a,a,

+(mj, >§3ag+2xy<m1m2 >@1az

+2x{(m m; )alas+2y(m2m3 )azas) ,
4)
where the two-axis correlation function (m;m;),, is
L)

defined as [7]
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(mim; Y0 = 3 mimp, o (my,m)) (3)
Ll mimj 7
== X mnp,, (m;, —ny) 6)
mimj e
== X min;q,, (my,n;) (7)
m'vnj i
=—(m,-nj )aiaj (8)
=—kaa,, ©)

with ij=1, 2, 3. Here (5) is true by definition; (6) follows
from the conservation of spin, i.e., from the fact that
m;=—n;; (7) follows from Eq. (1); (8) is true by
definition; and (9) follows from the rotational invariance
of the singlet spin-s state. [Note that k,=s(s+1)/3, but
this is not needed for any of our arguments.] By substi-
tuting Eq. (9) in Eq. (4), we obtain

ks 2. 2
falazas(x,y)=— 5 (x“+y“+1+2xy cosa
s

+2x cosy +2y cosB) , (10)

where a is the angle between @, and @,, y is the angle be-
tween @, and @;, and B is the angle between @, and @3,
with y =a+ B (note that the three axes are assumed to be

coplanar). The minimum of falazaa(x,y ), ie.,
f2,2,2,(Xmin»Ymin ) OCCUIS at

of af

ax 0 gy 0 11

ox dy (11)
or

2% in + 2V min COS@+2 cosy =0,

(12)
2Y min T 2% min cosa+2 cosB=0 .
Solving (12), we obtain
_ sinB _ _ sin(a+p)
Xmin sina > Ymin sina . (13)

Substituting (X i,V min) in falazas(x, y), it can easily be
shown that fa‘aza3(xmin,ymin)=0. Thus, by explicitly

squaring the trinomial in (2), we have shown that the
function falazag(xmin’ymin)zo'

We now calculate fa,aZas(xmin’ymin) from its

definition, i.e., from

falazaS(xmin’ymin )

1
== 2 Paa,,mimyms)
S mym,ms

sinf3 e — sin(a+p)

; ; m,+m
sing ! sina 2 3

(14)
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If local realism holds, that is if palazas(m 1,M,om3y) exists,
then falazaa (X minsYmin ) Obtained from (14) should also be

0. The only property needed to establish a nonzero lower
bound on the function falaz a:‘(xmin, Ymin) is the following:

m,,m,,my are uniformly distributed in the interval
{—s,—s+1,...,s— 1,5}, ie., pal(m,)Zpal(mz)
zpaz(m3)=l/(2s+l). It should be noted that our re-

sult does not depend on the explicit form of the two-axis
probability distribution function. It is perhaps quite re-
markable that a nonzero lower bound on
falaza3(xmin’ Ymin) can be obtained without exploiting any

of the properties of p, , (m;,m;). In the following, we
i%j

shall consider two cases: (1) x.;, and y_;. are rational,
and (2) x;, and y... are irrational. We shall show that
in both cases the magnitude of violation vanishes approx-
imately as 1/s2, much more slowly than the inequalities
of Garg and Mermin.

A. Violation of Bell inequalities
for rational values x ,;, and y .,

First we consider the special case when x_; and
Ymin are rational, i.e., when sinB/sina=p/q and
—sin(a+f)/sina=r /t, with p,q,r, and t integers. We
also assume that s is an integer (we shall consider half-
integer spins later). Let r|q | /t =u /v, where the greatest
common divisor of # and v is 1, i.e., u and v are relatively
prime, and let m,#Iv, where [ is an integer. Since the
sum in Eq. (14) is term by term non-negative, it is bound-
ed by any partial sum:

pr 1
S -1z X b (my,m,,m3)
8122 gt s? mym,#lvm N2t
2
X Em,+1m2+m3
q t
(15)
Let u? be
2
ur= £m1+Lm2+m3 , (16)
q t
or
|| = §m1+€m2+m3 . 17
By multiplying both sides by |g|, we obtain
lugl= ipm1+r—|tg—|mz+m3|ql . (18)
Since +pm, and |q|lm; are integers, let

n=x4pm,+|q|m,, where n is an integer. Using the rela-
tion 7|q|/t =u /v, we obtain
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(19)

u
lug|= ‘;mﬁn

Because m,7Iv (where / is an integer), we can immedi-
ately conclude that

u 1
= | — + 2 1 ,
lugl=|ymatn|2 |5 (20)
or
2
=gt matms | 20 1)
u q 1T M 3 —(qv)z'
Thus, for integer spins
r
fa1a2a3 q’?
>1 1
C 5% (qu)? él pa,aza3(m1,m2,m3) . (22)
my,m,#l,my

We now obtain a lower bound on the summation
S Dy 5.a.tmy,my,my). Obviously
my,myFl,my 17273

2 palaza3(m1’m2’m3)= 2 paz(mz)

ml,m2¢1v,m3 mZ#Iu
=1- 3 p,(m;), (23)
my=lv 2
since m, is uniformly distributed in the interval
{—s,...,s},i.e.,paz(m2)=1/(2s+1),
1 2s+1
> p,(my)= ; (24)
mamty 2 25s+1 v
hence
1
>1——
2 Pa a,a,(Mm1,mam3) 2 1 o (25)

ml,mzilv,m3

Substituting (25) in (22), we finally obtain a lower bound
on the function falaza3(xmin’ Ymin) for integer spins:

1 1 1
falazas(‘xmin’ymin)Z? (qu )2 Ty (26)
We now consider half-integer spins. Let
—|pM r™M M 27
ll 2 12 2 @n

By multiplying both sides of (27) by 2, and employing the
same argument as before, we obtain

1 1
falaza3(xmin’ymin )= ? (2qv )

1—l]. (28)
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In fact, since m;, m,, and m5 can only take odd integer
values, we can obtain a stronger lower bound, but that is
not necessary for our purpose.

Let us consider a concrete example. Let
sina=sinf=2, then the magnitude of violation is larger
than or equal to 4/125s2 for all values of the spin. As
another example, let s be half-integer, and let
a=B=y=120% then x_;, =1 and y ;. =1. Thus

1
falaza:;(l,l):T 2 palazag(ml,mz,m_@,)
mymyms

X(m1+m2+m3)2 . (29)

Since m,m, and m; are half integers, the smallest term
in the sum is (m,+m,+m3)*=1. Therefore, for this
kind of geometry, the magnitude of violation of the Bell
inequalities is greater than or equal to 1/4s? for all half-
integer spins.

In fact, one can use this technique to show that the
magnitude of violation vanishes approximately as 1/s?
for all rational values of x.;, and y_ ;. (except for the
very special case when x ;. =xy_ . ==1, and s an in-
teger). Rational numbers, however, constitute a set of
measure 0, and one might suspect that the range of angles
over which the above results hold is a set of measure 0. It
would be far more useful to have a lower bound on the
function falazas(xmin’ymin) for a set of irrational real

numbers with a nonzero measure. This is particularly
significant considering the errors in the orientation of the
analyzer which, in general, correspond to the variations
in x_;, and y;, [8,9]. In the following, we shall general-
ize our results for irrational values of x ;, and y ;..

B. Violation of Bell inequalities for irrational values x y;,
and Y min

1. a=B

First we consider the special case when a=f. Once
this simple case is understood, we shall then generalize
our results for a#B. In this case falazaa(xmin’ymin) is

defined as

fa1a2a3(xmin’ymin )

1
=2 2 Paau,(Mmimyms)
s mymymsy

X[m,—2cos(a)m,+m;]*. (30)

Using a remarkable theorem due to Kronecker [10], we
obtain a lower bound on falaza3(xmin’ymin ).

Theorem. If n is an integer, u an irrational, and
{nu}=np—[npl, with [nu] being the greatest integer in
nu, then the series of points {Ou},{1u},{2u}, {3u},
{4u},. .. are uniformly distributed in the interval (0,1).

Since 2 cos(a)m, is assumed to be irrational, the frac-
tional part of 2 cos(a)m,, i.e., {2 cos(a)m,}, is uniformly
distributed over the interval (0,1) as s— . We choose
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only those m,, denoted by n,, which satisfy
{2 cos(a)n,} €(0.25,0.75). Since each term in the sum is
non-negative,

falazaa(xmin’)’min )

1
>_1
z2= X Pa‘azas(ml’"z’mS)
s mynyms

X(my—2cos(a)n,+m;)* . (31)

Because the smallest term in the sum is 0.25,

1
falalas(xmin’ymin)z_o'zs > pala2a3(m1:n2’m3)’

s? m nam,
(32)
but
2 aalazaa(ml’”z’m3)= Epaz(nz) . (33)
m nymy ~
Now as s — o, according to Kronecker’s theorem,
Epaz(nz)ZO.S; (34)
)
thus
Faysy8, i mia) Z 5 0-25)(0.5) . (35)

Note that the above result holds for both integer and
half-integer spins.

2. aFp

We now consider the most general case when a7 and
Xnin and y_ .. are irrational real numbers. First we as-
sume that falazaS("min’ymin) is less than or equal to &

(where we assume that 8 vanishes faster than 1/s2); then
by rotating the axes so that (a—a,B— —f), we shall
show that the magnitude of violation for such a
configuration vanishes approximately as 1/s2. The stra-
tegy of such an argument is as follows.

The function falaza3(xmin’ Ymin) 1S assumed to satisfy

fa‘azaz(xmin’ymin)

1
T2 2 Pa]azas(”‘l’mz’ms)
mymymsy
2
x smﬁm _ sin(a+pB) my+ms| <5 .

sing ! sina

(36)

Let n, take values in a subset of { —s,. . .,s} (for example
n, may take any value in the set {—s,...,1}, or
{0,2,s —1}, or {s}, etc.). Because the sum in (36) is term
by term non-negative, it is bounded by any partial sum
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1
= 2 Paaumonnms)
s mynymsy
X (X pin? 1+ Y minfa +m3)* <8 . (37)
Given any n,, we divide the values that m, take into two
sets: those denoted by n,, which satisfy

0'6<{xminn1+.}’minn2} <0.4 ’ (38)
and those denoted by g, which satisfy
0‘45{xminql+yminn2} <0.6 ’ (39)

where {u} is the fractional part of u. Our first goal is to

obtain a lower bound on 3 Palaz(”l’”Z)' Because the
nyny

sum in (36) is term by term non-negative,

1
Y 2 Palazas(‘h’"z’ms)("mm‘h+J’minn2+m3)258 .
g nymy
(40)
Because the smallest term in the sum is (0.4)?,
1
—0.16 ¥ Palaza3(q1’”2’m3)58 , (41)
§ qynams3
summing over m3, we obtain
8s?
zl’alaz(ql»"z)f 0.16 (42)

911

Our goal, however, is to obtain a lower bound on

3 P, ,.(ny,n,) rather than on zpalaz(ql’”z)' We use
172

Ry 91"

the identity

S Palaz(ql’nZ)z 2pa2(n2)— > Palaz("l’”Z) . 43
ny

q,n, nyny

]

1
falaza3( _xmin"zmin)Z )
57 mynymy

Adding and subtracting y .. n,, we obtain

fa a.a ( xmin’zmin)z
19293 s
myn,my
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4“4
Substituting (43) in (42), we finally obtain
S p, . (n,n)2 3 p, (n )——8§—2* (44)
a8, 1720 2,72 0.16 °

nyny ny

Now rotate the axes so that (a—a,B——f) or
(X min—> — X min>Y min—>Zmin ) (DOte that it is absolutely cru-
cial that |x,;,| does not change when we rotate the axes).
For the new set of axes, we shall show that the magnitude
of violation vanishes approximately as 1/s2 in the classi-
cal limit. The function falazaii( — X min>Zmin ) is defined as

falazaJ( ~ X min>Zmin)

1
_——2_ 2 palazas(ml,mz,m:;)

—sinf3 " — sin(a— )
sina sina

m,+m;,

(45)

Since z,;, + Y min 1S assumed to be irrational, according to
Kronecker’s theorem, (z,;, + ¥ min )M, is uniformly distri-
buted in the interval (0,1) as s — oo. Therefore, 50% of
m,, which we denote them by 7,, satisfy the relation

0.25=< {(zmin +¥ min )nz} <0.75 . (46)
That is

3P, (n2)=1. 47)

ny

function
We choose only those m, which

Now we obtain a lower bound on the

falazas( X min>Z min ).
satisfy (46) and denote them by n,. Since each term of

the sum in Eq. (45) is non-negative,

S Pajaya,(Munymy)N(—XpminMy +Zmintty Tmy 2. 48)

> Pala2a3(m1,n2’m3 N =X min™ 1 —YminP2 T (Zmin TV min 2 M3 ]2 . (49)

Now we choose only those m, which satisfy (38) and denote them by n,; thus,

1
fa,2,2,0 ™ X min>Zmin) = 3
$7 nynymy

Using the inequalities (46) and (38), one can easily show
that the smallest term on the right-hand side of (50) is
(0.4—0.25)%, thus,

1
fa,0,2,0 ™ XminsZmin)Z 5015 3 Py g5 (M1:12,m3)
3 s 12,83
nynams

(51)

2 Palazas("l’nz’m3 )[ " Xmin?1 " Ymin"2 +(Zmin +ymin )n2 +m3 ]2 . (50)

—

Summing over m;, we obtain

1
fa,2,2,0 ™ X min>Zmin) = ?0-15 3 Paa,(nim) - (52)

nyny
But according to (44) and (47),
1 8s?
> Y
> paxaz(nl’nz)— 2 0.16 ° 53

nyny
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Since we have assumed that & vanishes faster than 1/s2,
2

lim o.15 —0, (54)
§—> 0 .

or
S Ppanpn)=t. (55)
nyny 172

Thus, we finally obtain
1
fa,8,2,( X min+Zmin) = S—Z(O.IS)% . (56)

By symmetry and using exactly the same argument,
one can easily show that if falazas(xmin,ymm)SS for

the geometry (a,B), then for the choices of axes
(a—a,B—1—pB), (a——a,B—B), (a——a,B—>7+),
(a—7m—a,p—B),(a—7+a,— —), the lower bound
on the magnitude of violation is given by the right-hand
side of (56). Thus the magnitude of violation of Bell ine-
qualities vanishes approximately as 1/s% for at least
£~85.7% of the volume of the three-axis (coplanar)

configuration space.
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IV. CONCLUSION

To summarize, we have derived a set of generalized
spin-s Bell inequalities with a magnitude of violation that
vanishes approximately as 1/s2, considerably more slow-
ly than the inequalities of Garg and Mermin. From the
results derived in this paper, we conclude that the emer-
gence of local realism in the classical limit is signaled by
the vanishing (approximately as 1/s2) of the magnitude
of violation of Bell inequalities. We finally wish to point
out that it may be possible to derive Bell inequalities that
vanish even more slowly, approximately as 1/s, for a
nonvanishing range of angles in the classical limit.

ACKNOWLEDGMENTS

I am grateful to Professor T. Cover and Professor W.
C. Herring for many helpful discussions. Part of this
work was done while the author was at Stanford Elec-
tronics Laboratories, Stanford University, Stanford, Cali-
fornia 94305.

*Electronic address: ardehali@mel.cl.nec.co.jp.
[1] N. D. Mermin, Phys. Rev. D 22, 356 (1980).
[2]J. S. Bell, Phys. (N.Y.) 1, 195 (1964).
[3] A. Garg and N. D. Mermin, Phys. Rev. Lett. 49, 901
(1982).
[4] D. Bohm, Quantum Theory (Prentice-Hall, Englewood
Cliffs, NJ, 1951), pp. 614-619.
[S] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,
777 (1935).
[6] “But on one supposition we should, in my opinion, abso-
lutely hold fast: the real factual situation of the system S,

is independent of what is being done with the system S|,
which is spatially separated from the former.” Quote
from A. Einstein, in Albert Einstein, Philosopher-Scientist,
edited by P. A. Schilpp (Open Court, Peru, IL, 1949), p.
85.

[7] M. Ardehali, Phys. Rev. D 41, 3837 (1990).

[8] T. K. Lo and A. Shimony, Phys. Rev. A 23, 3003 (1981).
[9] A. Garg and N. D. Mermin, Phys. Rev. D 35, 3831 (1987).
[10] See, for example, G. H. Hardy, Introduction to the Theory
of Numbers (Oxford University Press, London, 1951), p.

388.



