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Static heavy-quark potential calculated in the classical approximation to dual QCD

M. Baker
Uniuersity of Washington, Seattle, Washington 98105

James S. Ball
Uniuersity of Utah, Salt Lake City, Utah 84112

F. Zachariasen
California Institute of Technology, Pasadena, California 91125

(Received 20 May 1991)

We use the classical approximation to dual QCD to compute the distribution of color fields around
heavy quarks and the static potential between them. The resulting potential is in excellent agreement
with phenomenologically obtained ones. As the distance between the quark-antiquark pair increases, the
color field lines evolve from a squashed dipole distribution to a flux-tube distribution. It is noteworthy
that the potential becomes linear well before the appearance of a fully developed flux tube. A compar-
ison of these Geld distributions with lattice Monte Carlo calculations could test quantitatively whether
dual superconductivity is the physical mechanism for confinement in QCD.

I. INTRODUCTION

Dual QCD is ordinary QCD expressed in terms of dual
(electric) vector potentials C„' rather than the convention-
al (magnetic) vector potentials 3„' [l]. At present, it is
not possible to write down the exact QCD Lagrangian as
a function of the dual fields C„' (indeed, it is conceivable
that it is, in principle, impossible [2]). Nevertheless, a
phenomenological dual QCD Lagrangian does exist and
respects all of the necessary properties of a respectable
field theory at low energies and at the classica1 or tree ap-
proximation level [2]. Practical calculations can there-
fore be undertaken in dual QCD, and our purpose in this
paper is to report one such calculation, namely, the eval-
uation of the static quark-antiquark potential in the clas-
sical approximation. This is very similar to the calcula-
tion of the force between a magnetic monopole and an
antimonopole in the Landau-Ginzburg approximation to
superconductivity [3], which should come as no surprise
since the phenomenological QCD Lagrangian describes a
dual superconductor, and color confinement is the analo-
gue of the Meissner effort.

Earlier calculations of the static quark-antiquark po-
tential in QCD have been carried out using the bag model
(both the conventional MIT bag [4] and the dual QCD
analogue of it [5]) and using lattice methods [6]. These
calculations all produce potentials in good agreement
with those found phenomenologically [7], and, as we will
see, the calculation presented here does too. Neverthe-
less, it is of value to compute things using as many
different techniques as possible because some techniques
may be more easily extended to new calculations than
others. The calculation we shall describe here, since it is
classical, precludes our introducing quarks carrying the
usual color matrices A, /2. Instead, we shall use Abelian
sources with charge e. (Note that, at the classical level,

attaching color matrices to fixed sources makes no sense,
since the relative color orientation of the sources can be
changed by a gauge transformation. Further, since we do
not, in dual QCD, know how to deal with quarks beyond
lowest order [8] in the dual coupling constant g, we shall
ignore higher-order (in g) couplings of quarks to the dual
QCD fields. )

II. THE DUAL QCD CLASSICAL FIELD
EQUATIONS WITH QUARK SOURCES

D=VXC+Dz,
and choose the "string field" D& to satisfy

V Ds= ge 5 (x —x, )

(2.l)

(2.2)

for a set of quarks of charge e, located at positions x;.
For a single quark, C is the usual Dirac monopole field:
in spherical coordinates

1+cosOC—=CD= —e . e
4mr sinO

(2.3)

Here e =2~/g, where g is the dual coupling constant.
Then, choosing the string along the z axis,

Because dual QCD is set up in terms of dual potentials,
the introduction of color-electric sources requires some
delicacy. How quark sources are introduced has been de-
scribed elsewhere [8], nevertheless, for the sake of writing
a self-contained paper, we repeat part of the discussion
here.

The usual definition of the electric displacement D in
terms of the dual potential C implies the absence of
color-electric sources (i.e., V D=O because D=VXC).
Therefore, in order to put in quark sources, the relation-
ship between D and C must be modified. We write
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Ds =e5(x)5(y)8(z)e, , (2.4)

which satisfies (2.2). Thus, Eq. (2.1) simply refiects the
identity

+cosO=VX —e . e„+e5(x)5(y)8(z)e, . (2.5)
4~r 4~r sinO

e z —R/2CD=-
4Irp +p +(z —R /2)

z+R /2
e&

V p +(z+R/2)

The string field serves only to cancel the string present in
V X CD: both V X CD and D~ contain strings, but D does
not, as is required physically.

Extending the above argument to a quark-antiquark
pair, located on the z axis a distance R apart, we write
[now in cylindrical coordinates (p, P, z )]

plicit color and Lorentz structure is given in Ref. [9].
For stability we must have A, )0. Evidently F plays the
role of a Higgs field and W(F) that of a Higgs potential.
The minimum of 8 always occurs at a nonzero value

Fop. Of Fp
58' =0 at F„=Fo„ (2.15)
6F„

Let us digress brieAy from our discussion of the poten-
tial between static quarks to elaborate a bit on the situa-
tion without quark sources; that is, on the properties of
the dual QCD spontaneously broken vacuum. It is the
fact that FOAO in the vacuum which is responsible for
spontaneous symmetry breakdown leading to dual super-
conductivity. (We take p (0 so that Fo )—0.) We can
then choose Eo =0 so that, from Eq. (2.14),

(2.6) —Fo =2Bo . (2.16)

and

D& =e5(x)5(y)[8(z —R /2) —8(z +R /2)]e, , (2.7)

Furthermore, we can set E =0 in X(C) which amounts
to making the replacement

The dual QCD Lagrangain is

X(C)= ,'F„„XlF„———,'G„G„—W(F),

plus ghost and gauge-fixing terms [9]. Here

Di z E
&j k Gj k +Dg

is the electric displacement, and we define

0'=G'
i oi

(2.9)

(2.10a)

(2.10b)

as the magnetic field. The relationship of G„ to the dual
potential C„ is, as usual,

Ga g Ca g Ca+ fa cCbCc
PV P V V P, P V

The auxiliary tensor F„we write as

a 1 aEi z ~ij k Fjk

and

B'= —F'
i Oi

(2.1 1)

(2.12a)

(2.12b)

in a notation which is meant to be suggestive. The func-
tion W'(F) contains the counterterms necessary to make
X(C) renormalizable; its explicit form is

N-W'(F ) = — F +, W~(F ), (2.13)

where

F =F'g" '= —2[(B') —(E') ], (2.14)

and where W4(F) is a quartic function of F„' whose ex-

where the string now joins the two charges (this
represents a gauge choice). We note for future reference
that

2

d x( V X CD +Ds ) = — +self-energy terms .
2 4'

(2.8)

F„XlF„~—2B2) B (2.17)

in Eq. (2.9). This eliminates terms in X which have the
wrong sign of the kinetic energy and leads to a unitary
theory. [The presence of an additional term in an earlier
form of X(C) necessitated the introduction of the fields

E; we left them in Eq. (2.9) in order to make contact with
this work. ] In practice, we make the replacement (2.17)
in (2.9), and replace W(F) by W(B ). We shall retain the
notation —Fo for 2Bo.

In matrix notation, the explicit color structure of
Bo is [9]

Bo
—F2

0

N(N —1)

1/2

(e,J, +e J +e,J3), (2.18)

where Ji, Jz, and J3 are three SU(N) matrices having the
form of matrices describing angular momentum j where
2j + 1 =N. The matrices are normalized so that

2 trBo Bo Bo=Bo . (2.19)

Taking the trace of (2.18) then yields (2.16). For SU(3)
we choose J, =A,7, J2 = —X„J3=A,2. We also choose a
representation in which J3 is diagonal. Then, since the
eigenvalues of J3 are distinct, any matrix commuting
with J3 is diagonal. However, there are no diagonal ma-
trices which commute with both of the angular momen-
tum matrices Ji and J2. Therefore, there is no SU(N)
matrix which commutes with all three vacuum fields
BO„,BO, and Bo, . Thus, all the (N —1) dual potentials
C„' obtain a mass

M -g ( Fo). — (2.20)

Gf the 3(N —1)B' fields, 2(N —1) become massive,
while (N2 —1) remain massless and become the longitudi-
nal components of the potentials C„'. This is the dual of
the mechanism whereby the photon obtains a mass in a
superconductor. The mass Mz of the B field is of the or-
der
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M~-A, (
—Fo) . (2.21) (2.31)

o =( Fo)f— (2.22)

where f is a dimensionless function of A, /g . X/g plays
the same role in dual QCD that the Landau-Ginzburg pa-
rameter does in superconductivity. The square radius R
of the Aux tube is of order

The fields B' play the role of Higgs fields in the adjoint
representation. The nonvanishing of B0 then gives rise to
classical electric vortex solutions of the field equations
derived from X. Explicit solutions having one unit of
quantized electric SU(3)-color flux are given in Ref. [9].
The energy per unit length, i.e., the string tension o., has
the form [9]

From Eqs. (2.27) and (2.29) we obtain

n Ye&
as p~ (x)

gp

C0 —+0 as p~~ .

(2.32)

(2.33)

The corrections to Eqs. (2.32) and (2.33) must vanish ex-
ponentially as p —+ ~.

In the absence of quark sources, the asymptotic behav-
ior (2.32) corresponds to a vortex carrying n units of Zz
flux or, equivalently (with our choice of gauge), n units of
Aux of D= V X C. The vector potential C obtained in the
n = 1 flux-tube solution of Ref. [9] gives

R ——1/AF0 . (2.23) gC dl= Y =eY',=2" (2.34)

Fitting to experiment [9] yields the values

( Fo) —(4—20MeV), A, -1.6, g —8 . (2.24)

To summarize, the classical approximation yields a Aux
tube containing one unit of SU(3)-color electric flux. This
fIux tube will confine a quark-antiquark pair attached to
its ends, and thus dual QCD in the classical approxima-
tion explains quark confinement.

We next note that, for fixed ( Fo ), if—

where the integral is around a large circle surrounding
the Aux tube.

In the case of interest, where sources are present, this
unit of Aux passes from the quark to the antiquark. How-
ever it is compensated by the contribution of the Dirac
string in V X C because of our choice for CD in which the
string joins the charges. There is then no net Aux of
VXC crossing any plane perpendicular to the z axis.
Equation (2.32) therefore gives n =0, and from Eq. (2.29),
0=1.

Aside from this difference, the color structure for B
and C at all distances is the same as for the SU(3) n= 1

flux tubes. We have [9]

g ~OO

with A, /g finite, we obtain

(2.25) C= Ce~ Y,
B=B(e J„+e J )+B,e,J, ,

(2.35)

(2.36)

M —+ ao, M~~ ~, o.~finite . (2.26)

Thus, in the strong-coupling limit, the only excitation in
dual QCD is the flux tube. Furthermore, from Eq. (2.23)
we see that, in this limit, the radius of the flux tube ap-
proaches zero, i.e., the Aux tube becomes a string.
(Perhaps this string theory could become a starting point
for an approximation scheme for dual QCD. )

We now return to the problem of solving the equations
of dual QCD in the presence of quark sources. At large
distances the solution of these equations must be a gauge
transformation of the vacuum configuration; C =0,
B=B0.. thus,

C~O faster than 1/p, (2.37)

as z or phoo. Similarly, comparing Eqs. (2.18), (2.28),
and (2.36) yields

—F0

N(N —1)

' 1/2

' 1/22—F0
B3—+

N (N 1)— (2.38)

where C, B, and B3 are functions of p and z. Comparing
Eqs. (2.35) and (2.32) for n=O gives the long-distance
boundary condition

C„—'n-'a„n,

9~Q 'B00,

where 0 is an SU(N) matrix, which we choose to be

(2.27)

(2.28)

aszor p~~.
We now are in a position to write down the equations

of motion for C, B, and B3. It is convenient for this pur-
pose to decompose C into the Dirac part and a leftover
part c:

Q=e '" + n=01 . . . , X —1.
Here the SU(N) matrix Ysatisfies

—271.in Y —2n.i n /N

(2.29)

(2.30)

C =c+CD,
then, as p or z~ ~,

c —+ —CD .

(2.39)

(2.40)

in order to guarantee that 8 is single valued. For SU(3), In contrast, the amplitude CFT of the vector potential for
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the n= 1 fiux tube behaves asymptotically like [see Eq.
(2.32)]

%=A,(F ) [ 'c—'V' c'+8'V' 8'+ '8—' V' 8'
3 2

1
CFT — as p —+ oo

pg
(2.41)

—g' 8' (c'+CD) —W'] (2.47)

1 ~CD
pg

in the equations for C„T given in Ref. [9].
We note that

(2.42)

Furthermore, we will see that the equations for c can be
obtained by making the replacement

and the resulting field equations are

—', V' c' —2g' 8' (c'+CD )=0,
I

' (c'+C' ) 8'=—=2 aB
a8'
aB3

(2.48a)

(2.48b)

(2.48c)

V X(V XCD+Ds) =0, (2.43)
Here

since V X CD+ Dz is nothing but the field due to a point
charge [see Eq. (2.5)]. Hence,

1 a a a'
V p (2.49)

VX(VXC+Ds)=VX(VXc) . (2.44)

p'=( —AFO)'i p,
F2 )

—1/2C

(2.45a)

(2.45b)

F2
)

iy2 N(N —1)
0 6

1/2

B, (2.45c)

1/2
—

( 2) i~2 +(—
3 0 6 3 (2.45d)

where, of course, %=3 for SU(3) of color. We also define

g'=g/&X . (2.46)

Finally, after all of these remarks, the Lagrangian is

Next, in writing down the field equations, as well as in
carrying out the numerical solutions of them, it will be
convenient to scale certain factors out of the fields, as was
done in Ref. [9]. We define

V =V--2= 2 1

p'
(2.50)

The boundary conditions are that, at infinity, c'~ —CD,
and both 8' and 83~&1/6 [this because of the choice
of normalization (2.17)]. These are simply the result of
requiring that B and B3 approach the physical vacuum in
the dual superconductor and that C vanish at a large dis-
tance from the quark-antiquark pair. The remaining
boundary conditions are that c vanishes on the z axis,
while the behavior of B is determined by the behavior of
CD as p~0. For ~z~ (R /2, between the quark-antiquark
pair, CD —1/p as p~O forcing B to vanish on the z axis;
however, outside of this interval CD vanishes as p~O and
the radial derivative of B must therefore vanish on this
portion of the axis. Finally, B3 approaches a constant
along the entire z axis.

Once these field equations are solved numerically, it is
a simple matter to extract the total energy of the system;
that is, the static potential between quarks.

Recalling Eq. (2.8), and using Eq. (2.22b) of Ref. [9],we
find (dropping self-energies) that

V= d x&=—— +A(FO) d x' 8"— 8'—4 e 1,a8"
3 4mR 2 aB'

1,aS", ~. . . 18' —g' 8—c'(c'+C' )+-' aB' D 93

(2.51)

where

fd'x' =2m f "p' dp' f dz' . (2.52)

the sourceless Aux tube, C proportional to A, 8 is necessary
in order to have a tube carrying a single unit of quantized
electric Aux.

It is gratifying that the factor —,, characteristic of classical
static sources in SU(3) [7], appears automatically in front
of the Coulomb energy. This results from —', in Eq.
(2.19a), which, in turn, follows from the fact that C, and
hence also CD, have been assumed to be in the A, 8 direc-
tion in color. This, we recall, was required because, in

III. NUMERICAL SOLUTION
OF THE FIELD EQUATIONS

The evident symmetry under the transformation
z ~—z means that the complete solution can be obtained
by considering only the half space z )0 with appropriate
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boundary conditions. c, B, and B3 are all even in z,' as a
result, at z=0,

Bc
z

aa
8'z

BB3 =0.
Bz

(3.1)

The two-dimensional area 0 &p &p,„and 0 & z & z
is discretized on a rectangular n Xm mesh. Using the
standard central difference approximations for the
derivatives, the field equations become difference equa-
tions on this lattice. The fact that the dynamical fields
fall with a known exponential behavior at large z and p
allows one to estimate the values of p,„and z,„neces-
sary to produce a sufficiently accurate solution. In prac-
tice, we varied these quantities to show that the quanti-
ties of physical interest, such as the string tension, were,
in fact, independent of the cutoff values.

The numerical solution of the difference equations was
obtained by using the Gauss-Seidel method with the suc-
cessive overrelaxation (SOR) technique following the gen-
eral procedures recommended by Adler and Piran [10].
The procedure was as follows. One began with a small
lattice, typically 8 X 8, with a guess for the first trial solu-
tion which was iterated until convergence was obtained.
These solutions were then interpolated to provide a trial
solution on a 16X16 lattice. Once the solution on this
lattice had been obtained, it, in turn, was used to provide
a trial solution on a larger lattice. Because the trial func-
tions on the large lattices were close to the actual solu-
tions, the convergence was generally quite rapid. In most
cases a rectangular rather than a square lattice was used
because, as the quark-antiquark separation was increased,

it was necessary to increase z,„, requiring the use of
more mesh points in the z than in the p direction to main-
tain a similar resolution in each variable. The maximum
change of the fields during a single Gauss-Seidel iteration
was used as the criterion for convergence. For small lat-
tices, the order of SO iterations was required to obtain
solutions of sufficient accuracy for interpolation to the
next larger lattice. For the largest lattice, it was possible
to iterate until the solution was stable to machine accura-
cy (double precision on an IBM RS6000). In most cases,
the iteration was stopped after the fields stabilized to six
significant figures. For lattices with less than 10000 lat-
tice points, 200—400 iterations were used.

At each change of lattice, the number of points was in-
creased by a factor of 4. This procedure not only proved
to be an efficient method of obtaining the solution for a
large lattice but also gave information on the lattice-

0

3.0

1.0

I I I I
f

I I I I
)

I I I I
f

I I I I
f

I I I I

]
I I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0
P QX IS

FIG. 1. Flux through circles in the median plane as a func-
tion of radius for various quark-antiquark separations. Note
that the value at zero radius, which is the Aux carried by the
string, is 2~/g' with g'=v'5 (see Ref. [9]). The heavy solid line
is for sources at +0.5, the dashed line +1.0, the dotted line
+2.0, and the dot-dashed line +4.0. The thin solid line is for
sources at infinity.

oo

FIG. 2. The dual potential C as a function of p and z for sep-
arations of (a) 1 unit and (b) 4 units. Note that the C-axis scales
in (a) and (b) are different.



EAVY-QUARK POTENT/A1, CAZ, CULATED IN THE. ~ ~ 3333

spacing dependence of the relevant physical quantities
such as the quark-antiquark interaction energy. This in-
ormation allowed us to estimate ho 1 1w arge a attice was

necessary to provide a stable result and, in fact, could be
use in a Richardson-type [11] extrapolation to zero-
attice spacing to obtain the continuum values for the

quantities of interest.
The final step in this procedure was to varvary zm» and

pm» to verify that these parameters wer 1

that the interac
'

ere arge enough so
t at the interaction energy was independent of tho ese

The potential calculated in this way blends smoothly
into the fiux-tube solution (though, of course, for the
fiux-tube solution we must insert an axial string so that it
carries a net zero single unit of quantized flux at infinity,
obtained previously [9]. This provides a check on the va-
i ity of the numerical procedures used here. Figure 1

shows the fiux through a circle in the median plane in-
cluding the string contribution) as a function of circle ra-

ius for various quark-antiquark separations. The sepa-

ration = (x) curve is the result of the flux-tube calculation
of Ref. [9]. As one can see from the figure, the asymptot-
ic value is not reached until the quark and antiquark are
separated by about 8 (in our dimensionless units). (The
string carries one unit e of quantized flux. Since
e=2m g, the value appearing at the origin in Fi 1ig. is

m. /g and corresponds to the choice g'=~5 which we
found in Ref. [9].)

IV. RESULTS

, an 3, respectively,Figures 2—4 show the fields C B d B,
urces, as unctionsor separations 1 and 4 between the source f

o the cylindrical coordinates p and z. Note that B3 is
essentially independent of everything —both coordinates
and source separation. It can obviously be taken to be a
constant to a high degree of accuracy.

The other two fields vary considerably in space. The
variation is quite smooth, for both separations, suggest-
ing that bag models of the quark-antiquark potential may

FIG. 3. The field B as a function of p and z for separations of
(a) 1 unit and (b) 4 units. FI . 4. Again, the same plot, now for B3.
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I—

LtJI-0 2—
CL

I-

C/)
I- p

1 ) ) & 1 1 1 t 1 i I

p I 2 3

r (in fm)

FIG. 6. Static quark-antiquark potential as a function of
source separation. The dotted line is the phenomenological po-
tential of Ref. [7].

value g'=+5, and could, if we so desired, probably be
fine-tuned a bit. It is interesting to note that our poten-
tial is well approximated by the sum of the linear string
tension term, an exponential factor times the Coulomb
term and a constant. This form undergoes a rather rapid
transition from a region in which it behaves like 1/R to
one in which it behaves like R.

units of the fiux-tube radius) much smaller than one, the
field lines have the appearance of a squashed dipole dis-
tribution. For larger separations the field lines continue
to Aatten but, even at a separation of 4 units, the field
lines have curvature at the median plane. At separations
of about 8 units a central region having field lines parallel
to the z axis finally develops in the region between z = —2
and +2. The fields in this region are those of a Aux tube.
However, the potential between the quark-antiquark pair
already becomes linear when the separation between the
quark-antiquark pair is only 2 units, well before the ap-
pearance of a fully developed Aux tube. This rapid transi-
tion to a linear potential also occurs in the bag model.
However, no evidence of anything approximating a sharp
boundary, such as the bag model assumes, is visible.

Haymaker and Wosiek [12] have calculated the distri-
bution of color fields around static quarks in SU(2) and
found the resulting potential in lattice QCD. Their re-
sults give a similar picture to those obtained in this pa-
per. More precise lattice calculations of SU(3)-color field
distributions would make possible a more quantitative
comparison with our results and could test quantitatively
whether dual superconductivity is the physical mecha-
nism for confinement in QCD.

The numerical calculations carried out in this paper
are not dificult and display no unwanted singularities or
other phenomena. This suggests that methods analogous
to those described here can also be used to calculate stat-
ic spin dependent potentials between heavy quarks and
antiquarks and, in fact, such works are in progress.
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