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Starting from a noncommutative algebra A of the form C'A, , where C is the algebra of smooth func-

tions on space-time and A is the algebra of n X n Hermitian matrices, we construct an exterior algebra
of differential forms over A. We use the one-forms of this algebra to describe Yang-Mills and Higgs
fields on a similar footing and construct a Lagrangian from its two-forms. We show how, in the resulting

geometrical description, a Higgs potential that leads to spontaneous symmetry breaking arises naturally.
We discuss the application of this formalism to the bosonic sectors of the standard electroweak theory
and a grand-unified model based on SU(5) U(1).

I. INTRODUCTION

Of all the shortcomings of the standard model, the
most serious one is perhaps the symmetry-breaking
mechanism using fundamental scalar fields known as
Higgs fields. Unlike the gauge sector involving the fer-
mions and vector bosons, the form, the content, and the
couplings in the Higgs sector are not determined by
gauge principles alone. As a consequence, additional ad
hoc assumptions seem to be indispensable in model build-
ing. There are, of course, in addition the well-known fine
tuning and hierarchy problems coupled with the fact that
the Higgs particle masses are not predictable. It is not
surprising, therefore, that there are several attempts in
the literature to eliminate some of these difficulties.

In the early 1980s, for instance, several authors [1]pro-
posed Kaluza-Klein ideas to unify gauge and Higgs fields.
In space-times with extended space degrees of freedom,
the additional components of fields other than four were
identified as the Higgs fields: AM(x, x', . . . , x" ') give
gauge fields for M =0, . . . , 3 and Higgs fields for
M =4, . . . , d —1. By imposing suitable conditions on the
dependence of the fields on the additional degrees of free-
dom, such theories could be reduced to four-dimensional
Yang-Mills theories with built-in spontaneous symmetry
breaking. Such models had the virtue of being able to
predict, in the case of the Glashow-Salam-Weinberg
model of electroweak interactions, the Weinberg angle,
and the mass of the Higgs particle. However, the results
found in specific models were not in accord with experi-
ments. Hence, in spite of their aesthetic appeal, they
were not pursued further.

More recently, some new ideas have made their ap-
pearance under the general category characterized by
noncommutative geometry [2]. In one such approach ad-
vocated by Connes and applied to the standard model by
Lott and Connes [3], there are more than one identical

copies of space-times characterized by a discrete index

p = I, 2, . . . . While in a given space-time the customary
gauge fields provide the connections through the one-
forms A„dx", the connections between discrete space-
times are identified as Higgs fields. The mixed differential
forms are assembled together in the form of a matrix with
graded multiplication properties [4]. An exterior deriva-
tive defined on such matrices enables one to calculate
two-forms and construct a gauge-invariant Lagrangian
that has some interesting properties as well as predictive
power. However, from our point of view, the starting
point of such models is rather arbitrary. If one demands,
at the beginning, appropriate transformation properties
under allowed arbitrary gauge transformations, one finds
that a number of additional fields are necessary.

In this paper, we follow an alternate approach initiated
by Dubois-Violette, Kerner, and Madore [5]. The central
idea here, as in Kaluza-Klein theory, is to extend the
space-time degrees of freedom; however, the extension is
not by continuous space degrees of freedom, but by finite
matrices, which are supposed to describe the internal
structure of a particle. The starting point is then an asso-
ciative but noncommutative algebra A of the form
CJN, where C is, the algebra of smooth functions of
space-time coordinates and JR is the algebra of n X n ma-
trices. By defining an exterior algebra of forms over A,
we construct a Lagrangian from the generalized two
forms.

In this approach, the Higgs fields originate as C -valued
coefficients when one takes the exterior derivatives of the
generators of AL. In the resulting geometrical descrip-
tion, Yang-Mills and Higgs fields appear on the same
footing. The content of the Higgs fields is determined by
the choice of the exterior derivative. Further, apart from
the overall gauge coupling constant, the only free param-
eters in the Lagrangian are a limited number of scale pa-
rameters. They too depend on the manner in which the
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exterior derivative is defined. The resulting model is
therefore quite restrictive. A Higgs potential with spon-
taneously broken symmetry appears naturally in the La-
grangian. It consists of a sum of terms, each of which is a
perfect square, its absolute minimum given by the vanish-
ing of each term. The model also implies certain rela-
tions among the coupling constants at the classical level.
However, these relations, whose origin is not clear at the
moment, appear to exist at only one set of mass scales in
the Lagrangian. Quantum corrections induce departures
from these relations [6].

In the next section, we describe the general mathemati-
cal framework. It is followed by a discussion of the most
straightforward choice of the exterior derivative resulting
in the models proposed by Dubois-Violette, Kerner, and
Madore [5]. In Sec. III, we review our previously con-
sidered SU(2)SU(1) model [6] and discuss briefly anoth-
er model based on embedding SU(2)U(1) generators
into SU(2~1) algebra. In Sec. IV, we discuss its generali-
zation to SU(5)U(1), grand unified, and explore some
of its physical consequences. The final section is devoted
to a summary and conclusions.

II. GENERAL FRAMEWORK

One may choose the generalized Gell-Mann matrices k„
a = 1, . . . , n —1, along with the identity 1 (or0:&2/, n—) as a Hermitian basis for the algebra JR„.
Then a generic element ofA can be written as

F=fo(x )Ao+ f, (x )A, (2.2)

Here x's are the coordinates of M . Summation over a
repeated index (here a) is assumed. Two elements of A
can be multiplied, as usual, knowing the products A,,A, b in
terms of A, 's and the identity.

In the ordinary case of M, it is found convenient to
extend the algebra C to the so-called exterior algebra C *.
C * can be written as a direct sum

C'=C'eC'e eC4. (2.3)

C is simply C. To define others, one introduces a set of
anticommuting objects dx"'s. Then a generic element of
C' is the form f„(x)dx", and this space is called the
space of one-forms. And, more generally, C~ is made of
p-forms of the kind

f„.. .„( )dx'xdx ~ .
Pl Pp

(2.4)

As stated in the preceding section, the noncommuta-
tive algebra A is made of two factors. One of them is the
commutative algebra C of all smooth functions on the
Minkowski space-time M . The second factor is taken to
be the algebra JR„ofcomplex n X n matrices. Thus

(2.1)

where f and g are respectively p- and q-forms. Its action
on a p-form f is given by

df =d f... . . (x)dx"dx ' . dx ' .Pl '
Pp

(2.6)

We wish to extend the above notions to A,„and
hence to A. . To extend the concept of forms to the
algebra Jkf„, , we introduce anticommuting objects
O„a =1, . . . , n —1. These are analogous to dx"'s. For
simplicity, we denote them by 0's instead of the more ob-
viously consistent notation d0's. Define JR„" to be the
direct sum

The exterior algebra associated with A can be taken to
be the tensor product

A*=C"eA, *=AoeA'e eA" +' . (2.9)

In particular, A~, the space of generalized p-forms, is

A~= y C "a~~-" .
k=0

(2.10)

It is assumed in the above that C" and JR'„vanish respec-
tively for k )4 and l )n —1. Since forms can be added
and multiplied, A* represents an algebra, called the exte-
rior algebra associated with A. A~ consists of matrices
each element of which is like a p-form in dx"'s and 0's.
In this way we seek a generalization of the usual non-
Abelian gauge theories in which the differential forms are
forms in C only. The coefficients of dx"'s are the gauge
potential matrices. By allowing space-time scalars as
coefficients of 0 s, in addition to space-time vectors as
coefficients of dx"'s, we can treat Higgs fields and gauge
fields on a similar footing. It should be noted that, unlike
in Refs. [3,4], every matrix element in A~ will be of a
definite order as a generalized form. This way, we
preserve the homogeneity of each term under multiplica-
tion. Forms of different order in diagonal and off-
diagonal terms will lead to an inhomogeneous sum of
terms of different orders. Gauge invariance will then re-
quire introducing additional fields or making ad hoc re-
strictions on the allowed gauge transformations.

Next we want to define an exterior derivative associat-
ed with the algebra A . We have already noted that
such an operator for C* is d =dx "8 . This is constructedP'
from the generators of the group of translations that act
as automorphisms of C. In other words,

(2.7)

is simply At„. At„' is made of objects like F,O„
where F, is an element of JR„,F,=f,oAO+ f,bib. In gen-
eral, JkY„ is made of objects like

F, . . . , O, . 0,
l p 1 p

(2.8)

There exists a differential operator on C*, the so-called
exterior derivative. It is defined to be d=dx"8„. This
operator satisfied d =0 and the Leibniz rule

e" f(x)e " =f(x)+i[a P', f(x)]+ .

=f(x )+a "Bg(x)+ (2.1 1)

d(fg ) =d(f)g+( —1 Pfd(g ), (2.5) where P„'s are the generators of translations, gives the
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infinitesimal change in f(x) as df(x}=a"Bg(x). Re-
placing a"'s by anticommuting objects dx"'s, we obtain
the expression for the exterior derivative: 8 =dx "0„. In
a similar fashion, if we can find an automorphism of the
algebra AL„, we can construct a differential operator asso-
ciated with it and hence an exterior derivative for A,„.
This will let us generalize these notions to the full algebra
A. There is a natural choice for this automorphism, the
so-called inner automorphism, given by

(2.21}

provides a natural exterior derivative for A, since it fol-
lows from the automorphisms ofA, the direct product of
the group of translations and that of the inner automor-
phisms of A,„. 8's are taken to be anti-Hermitian to be
consistent with the reality property of d. It is assumed
that the objects dx"'s and 8's anticommute among them-
selves so that d anticommutes with Q. This and the fact
that d =Q =0 lead to the desired property D =0.

The natural object to be investigated next is the con-
nection one-form in A. It has the following structure:

+Gfk, +a a (2.12)
(2.22)

This forms the group SU(n) or SU(n)U(1), where the
U(1) generator A,o drops out of the commutators. The
infinitesimal change in A,, is, thus,

A is an element of C ' taking values in At„:

A = —igA dx"
P

d k~ = i [Ab A, bA, g ] (2.13) ig —,' [ A—„o(x)Ao+ A„,(x )A,, ]dx", (2.23)

E,(F)= [A,„F], (2.14)

where m, having dimension of mass, introduces a scale
into the theory (this is in analogy to 8„ that has dimen-
sion of mass in natural units). Being derived from an au-
tomorphism, this operator automatically obeys the Leib-
niz rule

This gives us a derivation E, that acts on the elements
(say, F ) of the algebra At„as

@=g@,8, =g—,
' [P,o(x )Ao+ P,b(x )Ab ]8, . (2.24)

A connection one-form comes with a gauge transforma-
tion. In this case it has the infinitesimal form

6co —D 6'+ Q)6 Eco, (2.25)

where g is the coupling constant of the theory. These will
turn out to be our usual gauge fields. The Higgs Geld is
going to be @. It is an element of Jk1,

' taking values in C:

E,(FG ) =E,(F)G+FE, (G ), (2.15)
where E is an element of A and hence has the decomposi-
tion

where F and G belong to JR„. There exist other choices
for the automorphisms as well, and hence for the deriva-
tions, that will be discussed in the next section. Unlike
8„'s, the above operators do not commute among them-
selves. Instead they satisfy

[E„Eb]=im fob. E, ,

where f,b, 's are the structure constants of SU(n ):

[A,,~Ab]=2if b

(2.16)

(2.17)

Q =8,(L, + —,'5, ), (2.18)

We thus have a set of differential operators (B„,E, ) act-
ing on the full algebra A. As for the exterior derivative,
we follow Bowick and Giirsey [7] and construct the
Becchi-Roueti-Stora-Tyutin- (BRST-) like operator Q as

E= lg~ [E'o(x )A +0E~( x)A~ ] (2.26)

In terms of A and N the gauge transformation becomes

5A„O=8„eo, 5A„,=8 e, +gf,b, A„be, ,

0 0 54 b mf b ~ +gfbd4 ~d
(2.27)

We can get rid of the nonhomogeneous part in the trans-
formation of p, b by shifting p, b to p, b

—(m /g )5,b [that
is 4& to @—(m/2)A, ,8, ]. We assume in the following
that this has been done. Now it is clear from these trans-
formations that we have SU( n ) U(1) gauge invariance.
The Higgs sector, in this approach, consists of (n 1)—
singlets and (n —1) adjoint representations of SU(n ) all
having zero U(1) charge.

The field strength or the curvature two-form is the next
object to be studied. Constructing it as usual we have

where

L, =E„S,= imf, b, 8b—
Q =Dc@+co

Its components are given by

0=—,'Q„gx "dx "+Q„,dx "8,+—,'Q,b8, 8b,

(2.28)

(2.29)

Q =8,E, i f,b, 8,8b-. Pl a
a a 2 a c a (2.20)

obeys Q =0. This will be the exterior derivative associ-
ated with A,„. Now

L, and S, commute with each other, and both satisfy the
commutation relations (2.16). Thus the resulting opera-
tor

where

0 = igF„= ig(—B„A —B„A„—i—g[A„, A ]),
II,=g2) (@,) =g(B„4, ig [ A „,@—, ]),
Q, b

= ig(mf, b, @,+ig[4—&„@b]) .

(2.30)

F„gives the field strength of the SU( n ) U(1) gauge
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fields. 2)„(P, ) is the covariant derivative of the Higgs
fields. As we shall see, the term Q,b is responsible for the
Higgs potential.

Given the curvature two-form, one can write down a
gauge-invariant Lagrangian. Consider

(2.31)

L = —
—,
' Tr(F F"")+Tr[2)„(@,)2)"(@,)]—V,

where the Higgs potential Vis given by

(2.32)

+ig[@„@b])j.

(2.33)

One of the features of the above Higgs potential is that
it has a minimum that corresponds to spontaneous sym-
metry breaking. Being a sum of squares, V is (absolutely)
minimized whenever A,b

=0 or

where the indices i and j are assumed to be summed over
the full range: the space-time and the internal (noncom-
muting) directions. "Tr" stands for trace in the funda-
mental representation of SU(n). We thus have
Tr(A, ,A, b ) =25,b, where a, b run from 0 to n —1. In
terms of the components of 0, L becomes

D(rp+73)=0 . (3.1)

case of n =2, this corresponds to SU(2)U(1) being bro-
ken down to U(1). As we have already noticed, the un-
broken U(1) is that which appears explicitly in
SU(2)IIU(1). In the basis of Pauli matrices, r, 's and
~o=—1, this means that the generator ~o remains un-
touched. We wish to modify this scenario to bring the
model closer to the standard model. One may trace the
origin of this problem to the definition of the exterior
derivative. The minimum of the Higgs potential corre-
sponds to a solution of co=0. This equation is invariant
under the gauge transformation (2.25) whenever the
gauge parameter e is annihilated by D. Because the
operator D happened to satisfy D(rp) =0, a U(1) gauge
symmetry generated by ~o survives at the end. It thus fol-
lows that those generators annihilated by D will remain
unbroken in the present approach. In the following we
make use of this observation and define the exterior
derivative operator suitably to keep the desired genera-
tors unbroken. First we will review this approach for
the case of the standard model [8], and then we will gen-
eralize it to a grand-unified framework.

We want the electric charge to survive symmetry
breaking. The Gell-Mann —Nishijima formula tells us
that this generator is given by (r3+ Y)/2, the hyper-
charge F being essentially v.o. Thus we assume the ex-
istence of an exterior derivative D that satisfies

If,b, 4, +ig [N„@b]=0 . (2.34) We find it convenient to work with the generators of the
algebra, q and q, where

This equation has two solutions. One of them is the trivi-
al one, 4, =0, that does not lead to any spontaneous
symmetry breaking. The other one

Pl or P P=O P b= 5 (2.35)

III. APPLICATION TO ELECTROWEAK THEORY

In the previous section, we obtained a Higgs potential
that leads to spontaneous symmetry breaking. In the

breaks the gauge symmetry SU(n )U(1) to U(1). This
corresponds to SU(n) being completely broken and U(1)
being untouched.

The approach outlined above is essentially that of Ref.
[5]. There are some reasons why, with n =2, this cannot
give rise to a realistic picture of the electroweak theory.
First of all, we get only adjoint representations of Higgs
fields. For the electroweak theory this is phenomenologi-
cally untenable, since the p-parameter constraint rules
out the possibility of spontaneous symmetry breaking by
triplet Higgs fields. Secondly, the unbroken U(1) is the
same U(1) that appears explicitly in the gauge group
SU(2)SU(1). In other words, there is no mixing of this
U(1) with the one from SU(2). This will lead to zero
value of the Weinberg angle. In Ref. [6] an approach is
presented, which, though similar to the one presented
above, cures these drawbacks and leads to a more realis-
tic picture. In the next section we first give a brief review
of this and then present a more general scheme that leads
to a somewhat realistic grand-unified framework.

q
=—'(r&+i&2), q =

—,'(r& —ir2) . (3.2)

In terms of these, we may write (3.1) as D(qq)=0. This
definition of the exterior derivative implies some identi-
ties satisfied by Dr's . For example, qDq and Dqq (and
their conjugates) vanish, since

qDq =qD(qqq ) =qD(qq )q+q(qq )Dq =0,
Dqq =Dq(qqq ) =D(qqq )q qD(qq )q =0-,

using q =0 and D (qq ) =0. Other identities are

rpDq =r3Dq =Dq, Dqrp= Dqr3, —

Drp= D73p TQDT3 73D7 3p Dr 3q 0

(3.3)

(3.4)

and their conjugate relations. As a consequence of these
relations, we will be able to work with a minimum num-
ber of Higgs fields and incorporate the Higgs doublet of
the electroweak theory. The final Higgs potential will
lead to a pattern of symmetry breaking that is closer to
the desired one.

It is very useful to have an explicit expression for the
exterior derivative. As we have noted earlier, this means
looking for an automorphism of the algebra AL2. Here we
will make use of an outer automorphism that happens to
be an inner automorphism of AL3. To this end, we first
embed the algebra of Pauli matrices A, z into that of
Gell-Mann A, matrices At3. We identify ~, 's with the gen-
erators of I-spin A,, 's (a =1,2, 3) and rp with Y+—', , where
Y is the hypercharge A,s/&3. Other elements of W3 are
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the so-called U and Vspins given by

U~ =—,'(A, 6+iX,7), U3 =
—,
' [ U+, U ],

V+ = ,'(—A4+, iA5), , V3= —,'[V+, V ] .
(3.5)

M M
2

( 60 lhI3 )qDq + ( 60+ h3 )qDq
2

M+ (60 A3) m—Hp 73D1 32

=—w +dc +a a (3.6)

This gives the infinitesimal variations dr, =i [aI, Ub, r, ].
This allows us to define the derivations, E's, as

The inner automorphism we will be concerned with reads

iab Ub
—ia U

e " 'r, e ' ' =r, +i [ab Ub, r, ]+ .
—M(h, +i b2)~3Dq+ mH+ qDr3 H.—c. ,

(3.12)

multiplied by g/m . This is an expansion in a complete
basis of differentials of Jkz. Other differentials
(Dq, Dq, D 73 'and Duo) can be expressed in this basis:

E+(F)= —[U+,F], E3(F)= [U3,F], (37)
2

' M
Dq = D(q~—3)= Dqr3—qDr3- ,

Dr3= Dro= ——D(23)= Dr3r—3 r3Dr—3 .
(3.13)

where F is an element of AL2, obeying the following com-
mutation relations:

m[E+,E ]=ME3, [E3,E~ ]=+ E~ . (3.&)

m and M are two mass scales that need to be introduced
into the theory. We have chosen to include them in Eq.
(3.7) for later convenience [8]. The full exterior deriva-
tive is, as before, D =d +Q, where

Q=O+E +8 E++83E3
m c) m 8

+MAL+0 + 030+ + 8 03

(3.9)

As before, we take 03 anti-Hermitian and 8+= —0
One may easily check that the operator D, so defined, an-
nihilates 'Tp+73 as a consequence of the fact that E's do
so. Further, all the identities presented in Eqs. (3.3) and
(3.4) follow, as they should.

Now we are ready to define the connection one-form or
the generalized gauge potential. It has the following
structure:

An expansion of the form (3.12) is not possible for the
most general gauge potential based on A, 3.

Under a generalized gauge transformation, the
gauge potential co transforms as 5co =De+ cue —@co,

where the gauge parameter e is a zero-form:
e= ig(eo—ro+e, r, )/2. Writing this down explicitly, one
finds that the theory has SU(2)U(1) gauge invariance.
Wand B transform, respectively, as SU(2) and U(1) gauge
bosons. After performing the following shifts

m m m
Hp ~Hp 6p~Ap+ 63~63+

2gM
'

2gM
'

(3.14)

we find that the scalar sector transforms as the usual dou-
blet Higgs field H with hypercharge one as well as a sing-
let and a triplet Higgs field, hp and 6 s respectively, with
zero hypercharge. It is assumed in the following that
these shifts have been performed.

The next step is to construct the field strength Q. As
before, we consider Q=Dco+co, which transforms as
5Q=Qe —eQ. Its components can be inferred from the
expansion

Q =—,'Q„~dx "dx +Q„+dx "0 +Q„dx"0++Q„3dx "03

co= A+ HO + HtO++gb83,
2 2

where

(3.10)
+Q+ 0 0++Q+30 03+Q3 030+ . (3.15)

Q„=—igF„gives the field strength associated with the
gauge fields. The next three terms in the expansion yield
covariant derivatives of the scalar fields,

A = ig A „dx—"= ig ,' ( B„ro+ W„—,r, —)dx",
H =H+ V+ +Ho U+, b = 2( horo+ b, r, ), —

(3.11)

and g is the coupling constant of the theory. We may
note at this stage that B and 8 s are going to be the
gauge bosons, while H's and 6's are the scalars. This
gauge potential should not be viewed as obtained from a
one-form based on the algebra At3 by dropping certain
fields. It may be worth emphasizing here that our model
is based on the noncommuting algebra A, 2 and not JR3.
In writing co, we used the basis involving U's and Vs only
for convenience. It is possible to rewrite the scalar sector
entirely in terms of D~'s as

(3.16)

where 2)„=B„igA„an—d A„b, stands for [A„,b, ]. The
remaining three terms can be computed to be

Q+ = [H,H ]—gMb, —I ro+
2

Q+3= — —bH, Q3 =Q+3 .g
2

(3.17)

Just as in the preceding section, we next write down a La-
grangian that is of the form (2.31). The trace is now tak-
en over 3X3 matrices. The indices i and j are summed
over the full range that includes the 8 directions (+, —,
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——'Tr(F„F" )+2)„H MPH+ Tr(2)„MFA, ),
and a Higgs potential V(H, h) given by

(3.18)

1
V(H, b, )=—H H

2

T 2
1 1 y M m+——H H — 60—
2 2 g g

2

+——H w, H—1 1 y M
2 2 g

and 3). After some algebra, one obtains the usual covari-
ant kinetic terms for the various fields,

Q=8+E +8 E++83E3—M8+8 a

3
(3.21)

With these modifications, we proceed exactly as before.
The field strength 0, corresponding to (3.15), turns out to
be almost the same, A+ being

"fermionic, " while all the others are to be taken "boson-
ic." This means replacing the commutators in Eq. (3.5)
by anticommutators, thus redefining U3 and V3. This
will change the "statistics" of E+ as well; thus the first
commutator in Eq. (3.8) will become an anticommutator.
To have a fermionic BRST operator Q, we take 8+ to be
bosonic, while 03 remains fermionic. We no longer need
the last two terms, those proportional to 8/88+, in the
expression for Q to ensure Q =0:

+—Ht(b, 0+6,, r, ) H . (3.19) g mn, = IH, H'I gMb, — (3.22)

In the above expressions H is written as a two-component
column vector with entries H+ and Ho. The potential,
being a sum of squares, can be minimized easily. It leads
to a symmetry-broken vacuum given by

(3.20)

where only the electromagnetism survives symmetry
breaking.

Coming to the mass spectrum of the model, one finds
that the masses of Z and 8'bosons are, respectively, m
and m(1+m /2M )'~ /&2. Further, the p parameter
turns out to be 1+m /2M . Since experimentally p is
very close to one, we require M &)m. The Higgs sector
gives two heavy scalars with masses M and
M(1+2m /M )'~ and a light scalar with mass m.
There are also three massless scalars, the would-be Cxold-
stone bosons, that are eaten by the gauge bosons.

In this model we get certain relations among the cou-
pling constants. For example, the two coupling constants
g and g' that correspond to SU(2) and U(1), respectively,
happen to be equal. This leads to a prediction for
the Weinberg angle to be 45' from the relation
tanO~=g'/g =1 or sin 0~=0.5. We assume that such
relations hold at the scale M that is, perhaps, given by the
Planck scale. Because the couplings evolve, these rela-
tions get modified as we approach the electroweak scale.
Assuming three generations of fermions, this brings down
the value of sin 8~ from 0.5 to 0.26 as we evolve from
the scale M to the scale m. This is to be compared with
the experimental value of 0.23. Similar evolution takes
place for the Higgs self-coupling. Neglecting Yukawa
couplings, this predicts the light Higgs mass to be about
80 GeV.

Before ending this section, we wish to point out that
there is an alternate way of constructing the exterior
derivative. Instead of embedding our algebra %,2, loosely
speaking SU(2), into SU(3) as we have done above, we
now do the embedding into SU(2~1). SU(2~1) generators
are essentially given by those of SU(3). However, now
there is a grading involved; U+ and V+ are to be taken

and the other components di6'ering at most by a sign. In
writing down the Lagrangian, it is natural to use the su-
pertrace rather than the usual trace. This involves sub-
tracting the third entry in the diagonal from the sum of
the other two. However, the resulting Lagrangian does
not involve any kinetic term for the Higgs doublet. We
may thus consider taking the usual trace, though this is
not natural from the point of view of SU(2~1) symmetry.
This yields a Lagrangian that is identical to the one ob-
tained before, with the same Higgs potential. All the re-
sults that follow are therefore the same, in particular, the
Weinberg angle is 45' before the quantum corrections.
Thus our results are markedly different from the SU(2~1)
models of Ref. [9].

IV. GRAND-UNIFIED VERSION

Here we attempt to generalize the approach of the
preceding section. This will lead us to a framework that
is, though not completely realistic, closer to the bosonic
sector of a grand-unified theory based on SU(5). As in
the preceding section, we consider the noncommuting
algebra A. along with the set (B„,E, ) acting as derivatives
on A. We define operators E, by embedding the algebra
of Hermitian n Xn matrices (At„ ) into that of Hermitian
(n+1)X(n+1) matrices (At„+&). For the sake of con-
creteness, we shall concentrate on n =5. The generaliza-
tion to arbitrary n is straightforward.

In what follows, we find it convenient to utilize the
non-Hermitian basis (corresponding to q and q of the
preceding section) consisting of matrices T„where

(T, ),d=5„5bd, a, b, c,d= 1, . . . , 6 . (4.1)

[Tb Td~ 5bTd 5dTb (4.2)

These matrices form a basis for Af6. They are normalized
to satisfy Tr( T, T, ) =5,d 5b, . The identity element in this
basis is g T, . If we restrict the indices to run from 1 to 5
only, these matrices can be regarded as forming a basis
for AL5 as well. This corresponds to an embedding of A, 5
into At6 that we referred to earlier. The commutation re-
lations satisfied by these matrices are
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which gives the Lie algebra of U(6) [or U(5) when the in-
dices run from 1 to 5 only].

We construct the derivatives acting on %,5 as follows.
We want SU(3) color and U(l) electromagnetism to sur-
vive spontaneous symmetry breaking, or, in other words,
their generators to be annihilated by D. They are as-
sumed to be embedded into the above algebra in the
usual way: SU(3) being generated by traceless combi-
nations of T,"'s for a, b = 1,2, 3 and U(1) being
diag( —1/3, —1/3, —1/3, 1,0,0). We thus choose the au-
tomorphisrn group associated with the subalgebra
SU(2)U(1) that is generated by T~, T6, (T5 —T6)/2 and
S, where

S=diag(1, 1, 1, —3,0,0), (4.3)

and define the derivatives, E, 's, in terms of these genera-
tors:

E+(F)= —[T5,F), E (F)= —[T6,F],
2 ' '

2

mE3(F)= [T~~—T6,F], E4(F)=A[S,F],
(4.4)

where F is an element of A, 5 and m, M, and A are three
mass scales that need to be introduced into the theory.
E+ and E3 satisfy the commutation relations (3.8), while

E4 commutes with them.
Next, it is straightforward to introduce anticommuting

objects dx"'s and 8's, and define the exterior algebra A*.
The exterior derivative is, as before, D =d+Q, where Q
is given by our earlier expression (3.9) except for an addi-
tional term, 04E4. The connection one-form has the
structure

co= A + —HO + —HtO++gh83+gXO~, (4.5)
2 2

with

+Q4 040+ +Q340304 (4.8)

where again Q„=igF„gives the field strength associat-
ed with the gauge fields. The next four terms yield co-
variant derivatives of the scalar fields just as in Eq. (3.16).
The remaining terms in the expansion turn out to be

2 2

Q+ = [H, H ]—gME+m T6—

0+3= — —AH,g
v'2

Q3 =Q+3,
2

Q+4= — —XH, 04 =0~4, 034=g [b„X] .g
2

(4.9)

Continuing this approach, we next write down a La-
grangian using this field strength as in Eq. (2.31). The
trace is now taken over 6X6 matrices. The indices i and
j are summed over the full range: the space-time and the
internal directions (+, —,3, and 4). Along with the usu-
al covariant kinetic terms,

—
—,
' Tr(F„„F")+ Tr(2)„Ht2)"H)

+ Tr(2)„~"b,)+ Tr(2)„XZ)~X), (4.10)

where one obtains a Higgs potential V(H, b„X) given by

b. and X (apart from singlets) transform in the adjoint
representation "24" with zero U(1) charge.

The field strength, Q=Dm+co, transforms under the
gauge transformation as 5Q=Qe —eQ. To find its com-
ponents it is convenient to first decompose it as

0=—,'Q„gx "dx +0„+dx "8 +Q„dx"8+

+Q„3dx "03+Q„4dx "84+Q+ 0 0+

+Q+3g g3+ Q3 g3g+ +Q+40 04

A = —ig A„dx", A„—A„b T,",

H=H'T h=h'T X=X'T
b a& b a (4.6)

2

H ~H — T5, b, ~A — (T', + T6 —1),
2gM

A
X—+X——S.

(4.7)

We will assume in the following that these shifts have
been performed. Writing down the transformations more
explicitly, we find that the model has SU(5)U(l) gauge
invariance. H transforms in the fundamental representa-
tion "5"of SU(5) with a U(1) charge equal to one, while

where g is again the coupling constant of the theory. A' s
turn out to be the gauge bosons, while H's, 6's, and X's
are the scalars.

As before, under a generalized gauge transformation,
the gauge potential co transforms as 5m=De+coe —@co,

where the gauge parameter e has the decomposition
e= —igebT, . There are inhomogeneous terms in the
transformations of the scalar sector. Hence we shift the
scalars as

'2
1 1 y m

V(H, b, X)=—H H—
4 g

2

2
1 + M m+ Tr —HH'—

g 2g

+Htb, H+HtX H —Tr[b, X], (4.11)

where H is written as a five-component column vector.
The Higgs potential, again being a sum of squares, can

be minimized quite easily. The vacuum expectation
values of H and 5 can be taken to be

mH =(0,0,0,0, m /g), 6= diag(1, 1, 1, 1,0) . (4.12)

The expectation value of X is not determined uniquely,
except for the fact that its fifth row and fifth column van-
ish. Radiative corrections to the Higgs potential will set-
tle this issue, most probably making this expectation
value zero. This corresponds to SU(5)@U(1) being bro-
ken down to SU(4) U(1).
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X=v—diag(1, 1, 1,0,0)A
(4.13)

This model will be more realistic if X gets an expecta-
tion value of, say,

(for some constant x) breaking SU(5)U(1) to
SU(3)SSU(2)U(1)U(1) so that further breaking to
SU(3)U(1)SU(l) is achieved by the expectation value of
H. To obtain the resulting gauge boson masses, we define
various gauge fields by

1 1A„= A„+ —C„

G — —B2
&30

X
(4.14)

X 1 3
~—Wi+ —B

—8'q + —B1 3

2 30 p

where X and Y stand for the leptoquark gauge bosons,
while G collectively represents gluons. 8'+, 8'z, and 8
are the usual fields of the electroweak theory. C is an ex-
tra gauge boson that comes from the U(1) of our
SU(5)sU(1) model. The mass terms for these fields can
be evaluated to be

(aA) X "X + (aA) +—m 1+p YPY„

2

+ m2 1+ ~P
2M

2

+—m
1

2
—8'i+ —B+ —C

1 3 1

2 &30 5
(4.15)

2 1 &30 1—8'i+ B— —C

couples to diag( —1/2, —1/2, —1/2, 1,0) and hence cou-
ples to the bosonic sector of the electroweak theory like
the photon. An alternate possibility is to embed the elec-
tric charge as diag(0, 0,0, 1,0, ) in which case the second
massless state couples to diag(1, 1, 1,0,0) and hence
decouples from the bosonic sector of the electroweak
theory. Because we have not as yet incorporated fer-
mions into the theory, it is not clear what the full impli-
cations of these results are.

This shows that, in the neutral sector, there is only one
massive state, "Z," given by the combination of 8 z, 8
and C that appears above. It couples to diag(0, 0, 0, 0, 1).
Of the two massless states orthogonal to Z, one should
correspond to the photon. It is not clear at this stage,
which this combination is. In the context of a fiipped
SU(5)U(1) model [10], electric charge is embedded as
diag(2/3, 2/3, 2/3, 1,0). In this case, the photon corre-
sponds to the combination

1/2
3 1 1 3

.P

—Wi — —B+ —C

which is orthogonal to Z and hence massless. The second
massless state,

V. SUMMARY AND CQNCLUSIGNS

The geometric formulation of the bosonic sector of
nonabelian gauge theory has clearly several attractive
features. Geometry dictates the origin of both the gauge
fields and Higgs fields. In the extended algebra, we find
the gauge fields and the Higgs fields unified and on the
same footing. While the C-valued coefficients of the an-
ticommuting differentials dx"'s describe the gauge fields,
the C-valued coefficients of the corresponding anticom-
muting 0's are the Higgs fields. These Higgs fields are
determined by the subalgebra used to construct the
derivation operator g, which itself is dictated by which
symmetries one wants unbroken at the end. Thus, in the
case of SU(5)U(1) studied in this paper, we chose a
specific subalgebra SU(2)U(1), where the surviving sym-
metry contains SU(3)U(1) so that we can identify SU(3)
as the SU(3) color and U(l) as the electric charge. The
most interesting feature of the Higgs potential that
emerges is that it consists of a sum of terms each of
which is a perfect square. It defines, barring the trivial
solution in which all the fields vanish, and hence none of
the symmetries are broken, an absolutely minimized
symmetry-broken vacuum given by the vanishing of each
term in the potential.

It should be noted, however, that the Lagrangian we
obtain is not the most general one allowed by gauge in-
variance and renormalizability. In fact, there are no
quartic terms in the Higgs fields belonging to the adjoint
representations. There are only the coupling terms im-
plying the vanishing of a number of arbitrary parameters,
which generally are present when one constructs a Higgs
potential starting with a given set of fields. It should also
be noted that the quartic coupling is equal to the only di-
mensionless coupling, in the model, namely, the gauge
coupling. These facts seem to suggest some underlying
symmetries whose origin is not apparent in the present
formulation. Whether these symmetries prevail and the
restrictions on the couplings remain valid when one con-
siders higher-order corrections to the potential is an ex-
tremely interesting and important question that needs in-
vestigation.

Likewise, the scale parameters we introduce are arbi-
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trary. Making some plausible assumptions, we have de-
rived physical results concerning the Weinberg angle and
the masses of the surviving Higgs particles. These results
appear to be reasonable. However, the model is far from
a realistic one without fermions. Adding the fermion sec-
tor in an ad hoc way to the bosonic Lagrangian discussed
in this paper is not the solution. A natural way, which is
also geometric in origin, has to be found to include the
fermions if this approach is to succeed in providing a
realistic model. A possible way that suggests itself is the
extension of this work to incorporate supersymmetry.
Indeed, the form of the Higgs potential (a sum of squares)
and the relations in the coupling constants at prescribed

mass scales strongly suggests a supersymmetric frame-
work. The nonrenormalization of certain interactions in
such theories will enable us to give a meaningful interpre-
tation of the results discussed in this paper.
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