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Fujikawa's method of evaluating the supercurrent and the superconformal current anomalies, using
the heat-kernel regularization scheme, is extended to theories with gauge invariance, in particular, to the
ofF-shell N = 1 supersymmetric Yang-Mills (SSYM) theory. The Jacobians of supersymmetry and super-
conformal transformations are finite. Although the gauge-fixing term is not supersymmetric and the reg-
ularization scheme is not manifestly supersymmetric, we find that the regularized Jacobians are gauge
invariant and finite and they can be expressed in such a way that there is no one-loop supercurrent
anomaly for the N =1 SSYM theory. The superconformal anomaly is nonzero and the anomaly agrees
with a similar result obtained using other methods.

The supercurrent and the superconformal current
anomalies for the on-shell Wess-Zumino model were eval-
uated using Fujikawa's method [I] with heat-kernel regu-
larization [2] in Ref. [3] (from now on referred to as III).
In this paper we extend this method to theories with local
gauge invariance and evaluate the supercurrent and the
superconformal anomaly for the on-shell N=1 super-
symmetric Yang-Mills (SSYM) [4] theory.

It is known that there is no manifestly supersymmetric
gauge-invariant regularization scheme. Hence it is not
obvious that a gauge-invariant regularization scheme will
preserve supersymmetry. In this paper we use a gauge-
invariant regularization scheme to evaluate the su-
peranomalies for the N =1 SSYM theory. Since we are
studying a gauge theory, a gauge choice has to be made.
A convenient choice is one for which the vacuum ampli-
tude is manifestly covariant under the background gauge
transformations [5]. However such a gauge-fixing condi-
tion is not invariant under supersymmetry (SUSY) trans-
formations. To ensure that the SUSY-transformed vari-
ables satisfy the same gauge-fixing condition as the un-
transformed variables, the SUSY transformation laws will
be modified by an appropriate field-dependent gauge
transformation. Since the theory is gauge invariant, we
can always do so. Further, the effective action also in-
volves the Faddeev-Popov determinant associated with
our choice of the gauge-fixing term, which will not be in-
variant under SUSY transformations. This will give an
additional contribution to the SUSY transformation
Jacobians.

We find that although the regularization scheme is not
manifestly supersymmetric the Jacobian for the SUSY
transformations is finite and can be expressed as the
SUSY variation of a gauge-invariant local counterterm
plus a total divergence. Thus there is no supercurrent
anomaly for the on-shell N =1 SSYM theory. The super-
conformal current anomaly obtained from the SUSY
anomaly calculation is nonzero but finite. The expression
for the anomaly so obtained agrees with similar results
obtained using other methods [6].

In Sec. I we go through the background gauge method
and derive the SUSY Ward identity. The relevant regula-
tors are evaluated in Sec. II, which are then used to
evaluate the Jacobian for SUSY transformations in Sec.
III. The superconformal anomaly is evaluated in Sec. IV.
Finally the conclusions are given in Sec. V.

I. THK BACKGROUND GAUGE METHOD

~a+f abcgbAc g@a fabcAbyc
P P p (2)

Here A' are the gauge transformation parameters and
f' ' are the structure constants.

As was done for the scalar multiplet in III, the fields
A„and 4 can be split up into the classical background
fields A„and A, and the fiuctuation fields a„and f as

@a g a +a a @a—pa+pa (3)

The gauge transformations (2) can now be expressed in
two different ways. One choice is the so-called back-
ground gauge transformations [5] where

|isa Q P +faabcg bye (D ~)a Qaa —(a XA)a
P P

5A.'= —(A X A, )', 5$'= —(A X @)' .

Here we have used the notation

f' 'u u'=(u Xu)', f' 'u'u w'=u Xu w,

(D„u )'=c)„u'+(A„Xu )' .

(4)

The transformations (4) have the property that the
Auctuation fields transform homogeneously and their

The X = I SSYM theory [4] consists of a Weyl fermion
A,
' and a gauge boson A„', in the adjoint representation of

the gauge group under study. Here a is the gauge group
index. The N =1 SSYM action

So= f d x( —4IF„'JF" '+i%''8' 0' )

is invariant under the gauge transformations
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5,A„'=i (sy„%'—4 'y„E), 5,4'=X„JV""s . (7)

Here X„,= —,'[y„,y ] and rest of the notation is as
defined in III. In terms of the background and the Auc-
tuation fields (3), the SUSY transformations (7) are

5,A ' =i (sy„A; A'y„—)E, , 5,a„' =i(Ey„p' —1t 'y„E),

5,A,'=X„g""s, 5,$'=X„(2(D„a )'+(a„Xa,)')e .

(8)

To obtain the SUSY Ward identity, the SUSY varia-
tion of the effective action (6) has to be computed. The
variation of the measure, according to Fujikawa s inter-
pretation, will then give the anomaly as the Jacobians of
the SUSY transformations. However, these Jacobians
have to be regularized, which can be done only in Eu-
clidean space. Hence we first continue the effective ac-
tion (6) to the Euclidean space and then compute its vari-
ation. As in III, this is done by letting t~ —it. The ex-
ponential of the Euclidean effective action is defined as

W [A, A, ]=f2)[a„]2)[g]2)[g]

XexpISO +SG+ln[Det(D )]],

and

So =f1 x [ —
—,'P~JF„' +f'(0+)'] (10)

S = — dx '(D a—G P P

Here 4 and 4 are independent Dirac spinors, unlike in
Minkowski space [7,8]. The Euclidean metric is 5„and
the Euclidean y matrices are Hermitian. The Euclidean
gauge transformations are the same as (4) and (5), and the

transformations do not involve the background fields.
Alternatively, the gauge transformations (2) can be split
up as the quantum gauge transformation, which leave the
background fields unchanged and are given by

5A„' =0, 5a„' =(D„A)'+ (a„XA, )',
M,' =0, 5$' = —[A X ( A, +Q ) ]' .

The exponential of the effective action in the presence
of the background fields 2„' and A,

' is given by

W[A, A, ]=f2)[a ]2)[P]2)[g]

X exp [iSO [A, A]+ i, SG [A]

+ln[Det( D)]]—
Here SG= —,'(D&a") i—s the background gauge-fixing
term, chosen such that (6) is invariant under the back-
ground gauge transformations (4). The [Det( —D )] is
the corresponding Faddeev-Popov determinant.

The SUSY transformations which leave the action (1)
invariant are

Xexp[SO +SG+1n(DetD )]

X 5,A„+5k,5 5
' ~5&„

X[S +S +ln(DetD )] .

Making the change of integration variables,

a„'~(a„')'=a„'+5,a„',
(0')'= 0'+58"
(4')'= 0'+5,0'

with 5, as in (12), and retaining terms which are at most
linear iri E gives

5, W = f2)[a~]2)[g]2)[g]e px[ So+SG+ln(DetD )]

X [5,[SO +SG+ln(DetD )]+J~(s)I . (13)

Here J (E) is the change in the measure to be evalu-
ated. Similar to the Wess-Zumino model calculation,
here too the Euclidean action So is not invariant under
rigid SUSY transformations. The change in the action
under rigid SUSY transformations is proportional to
V(5, A)% and involves four Dirac fermions. This is
nonzero because, unlike in Minkowski space, + and 4
are independent fermions in Euclidean space. (See, how-
ever Ref. [8], where these problems do not arise. ) How-
ever, as the Euclidean Ward identity will eventually be
continued to Minkowski space, where such a term van-
ishes by the Fierz rearrangement, it will not be written
explicitly. In this sense So is invariant under rigid SUSY
transformations. However, the gauge-fixing term is not
invariant under the SUSY transformations even in Min-
kowski space. Therefore we will now modify the SUSY
transformation laws such that they leave the gauge-fixing
term invariant. This is done by adding a field-dependent
quantum gauge transformation (5) to the SUSY transfor-
mation laws (12). The modified SUSY transformations
denoted by 5, are

S,a =5,a„+B„A+(A„+a„)XA
=5,a„+D„A+a„XA,

5,/=5, $+(A, +g) XA, 5,A„=5,A„, S,A, =5,A, .
(14)

The gauge transformation parameter A is chosen such
that 5,(D.a. ) =0; that is,

Euclidean SUSY transformations corresponding to (8) are

5,A'= —(sy A,
'—X'y E), 5,a'= —(Ey g' —g'y E),

5,X'= —X~g„' E, 5+'= —X (2D„a +a„Xa,)'c. .

Change in 8 under the SUSY variation of the back-
ground fields is given by

5,W [ A„,A, ]=f2)[a„]2)[g]2)[g]
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D a =[D —(ey A, —Xy E)]X[a (—ey P g—y E)+D A+a XA]=0
——(sy A,

—Ay E) X(D A, +a XA)+D (a XA, )+D A= —[ D—(ey f P—y e)—(ey A, —Ay e)xa +O(e ) j .

This equation has to be solved for A. As is evident, every
term in the solution will contain c,. Since, at most order-c,
terms are needed, terms of the type c.A can be ignored.
The solution of A so obtained will be at least of order a„
or it. Further, for our purposes we need to keep the
terms which are at most quadratic in the fluctuation
fields. Therefore we need to keep the terms which are at
most linear in the fiuctuation fields a„or g in the
transformed gauge-fixing condition. Thus Eq. (15) for A
reduces to

(D )' Ab=[D (ey g gy E)+(—sy A. —Ay e)xa j'.
This equation can be solved for A'(x) to yield

A'(x)= f d x'G' (x,x')[D (sy g —gy E)

+(Ey A,
—Xy e)Xa ]",

(16)

where the Green's function G' (x,x') satisfies the rela-
tion

5,W= f2)[ a„]2)[g]2)[g]exp[iS 0+iS G+In Det( —D ) ]

X i f (Q "a„e+a"eQ„)d x+J(e)

+5,1n Det( D)— (19)

II. EVALUATION OF THK REGULATORS

Our task now is to evaluate the Jacobians and the vari-
ation of the Faddeev-Popov determinant. For this pur-
pose we need the appropriate regulators. As in case of
the Wess-Zumino model, to obtain the necessary regula-
tors, we define a quantity S~, which contains all the
terms in (S0+SG) which are bilinear in the fiuctuation
fields a„, g, and g. The double functional differentiation
of S with respect to the relevant variables gives the re-
gulators. Using (3) S~ can be extracted from (10). Thus

(D )' G '(x x')=5"(x —x')

Since S0 is invariant under the quantum gauge transfor-
mations,

S,S, =5,S, =f (Q„a„E+a„eQ„)dx,

where Q„=—X.F'y„'0' is the Euclidean supercurrent.
As required S,SG=O. Thus the Ward identity (13) be-
comes

S~=fd x Pa„'[(D )' 5„,+2F„' f" ]a"

+P'(BP)'+k'(Axe)'+y'(/xk)'j . (20)

The last two terms are off diagonal in the boson-fermion
pair and would lead to boson-fermion mixed regulators,
which are inconvenient to handle. Hence (20) is diago-
nalized using the new variables:

5,~ = f&[a~]&[/][2)g]exp[SD +SG+ln(DetD~)]

X f (a„Q„e+Ea„Q„)d'x

a„"(x)=a„'(x),
Q"(x)=Q'(x)+ f d y G ' (x,y)(@XX)b(y),

f "(x)=Q'(x)+ fd y(XX&) (y)G b'(y, x)

where the Green's function 6 satisfies the condition

(21)

+5,1n(DetD )+J (e) B„' G '(x,y ) =G ' (x,y )B '= 5 (x —y )5" (22)

where J (E) is the Jacobian of the modified SUSY trans-
formations (14). After evaluating J ( E ) and
5, 1n[DetD ] in a regularized way, the result can be con-
tinued back to Minkowski space to obtain the required
SUSY Ward identity:

with

@ab g5ab+g ache c

In terms of the new variables (21), the diagonalized S~
(20) becomes

S~=f d x f d ya„'(x)[ —,'[(D )'5„+2E„' ]5(x —y) —X "(x)y„G' (x y)y A,
" (y)ja + 'g "D' g'—(23)
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where we have use the notation f""X'—:X'".
The bosonic Jacobian to be discussed in Sec. III will be

regulated by the operator e' ",where B„ is obtained by
differentiating S with respect to a„'(x) and a (y), and is

given by

8„'b(x,y) =B„"(x,y) A.
"—

( x)y„G '"(x,y)y, k (y)

—X '(y)y G '"(x,y)y A, '(x), (24)

where

g', (x,y)=[(D2)' 5„,+2F„' ]5(x —y) (25)

gab (y 2)ab (D 2)ab+ y ~ab (26)

is the local part of the bosonic regulator B„.
Unlike the case of the Wess-Zumino model discussed

in III, the operator 8 has a definite Hermiticity property
= —g . Hence g' and g' can be regulated by the

same regulator exp(t V), with

The SUSY variation of the ghost determinant can be nat-
urally regulated using the operator exp(tC), where

Cab (D2)ab (27)

In terms of the new variables p' and g', all the regula-
tors are diagonal in the boson-fermion pair. Further,
since g' and 1t

' are regulated using the same regulator V
(26) we need evaluate only the P Jacobian, which depends
on c.. For the bosonic Jacobian and the ghost deter-
minant also we shall evaluate only the c-dependent con-
tributions. The s-dependent part of the total Jacobian (in
Minkowski space) is then obtained by taking the Hermi-
tian conjugate of the F-dependent part. Hence in the fol-
lowing calculation, only the c-dependent contributions
will be displayed explicitly.

In terms of the diagonalizing variables, the SUSY
transformation of a„ in (14), with A as in (16), is

5,a„'(x)=fd y D'„G '(x,y) (eye)'"(y)a, (y) —f d4u D„'"[ey„G '(y, u)tt 'f(u)Af(u)]

+e,(x)y„G ' (x,y)tt '(y)iL'(y) +(a„-independent terms), (28)

where all the terms which do not contain the variable be-
ing transformed, i.e., a„, are dropped because, as ex-
plained in III, such terms do not contribute anything to
the Jacobian up to order c. Carrying out the covariant
differentiation D„ in the second term in (28) and using
(22) gives

5,a„' =2D„GEy Aa D„G(Ett) )Gy„ka— Ey„G—y Aa

(29)

where we have suppressed all the indices and spacetime
arguments for notational convenience. All the repeated
indices and spacetime arguments are contracted between
neighboring objects and summed or integrated, as is obvi-
ous by comparing (28) with (29).

The SUSY transformation law for g', obtained using
(14) and (16), is

5,Q'=GD„(sy g')A, +Gy„k(Zy„g' DGD (Ey„f'))—

h„(x,y, t)= (y Ie' "'Ix ), (31)

h(x, y, t) =
&yle "Ix &, (32)

respectively, with the regulator operators B„and 2 as in
(24) and (26). The regularized transformation laws corre-
sponding to (29) and (30) are

and

5,a„=2D„GEy A, h a DG(ej5)—Gy„Aha.
—Ey„Gyah a (33)

5,g'= Gy„k(Ey„h P')+ G(PA, )GD„(ey„h g') . (34)

Thus the regularized Jacobians corresponding to the
SUSY transformations (33) and (34) are

I

mation laws (29) and (30) are regulated using the heat
kernels

+(P'-independent term) .

Herc, too, we will not worry about the terms which do
not contain P' since they will not contribute anything to
the Jacobian. Integrating the third term in the above
equation by parts and using (22) yields

S,g'=Gy„i(Ey g')+G(BA. )GD„(ey„g') . and

Det
5(a„+S,a„)

5a
=1+2TrD„Gc.y A,h „

+TrD„G(e. tl)Gy A,h „
—TrKy„Gy A,h „ (35)

Note that, in the present notation,

(@g)—(~g)ab fabc(ygb+f —bdeg dye)

To get the regularized Jacobians, the SUSY transfor-

5(f'+ 5,g')
Det =1+TrD (ey„h )G(NA, )G

+TrKy„h 6y„i, , (36)
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where, in the present notation,

TrEy„hGy„k, —:tr f f d x d y E(x)y„h ' (x,y)

SUSY transformations (8) of the background fields is

5, 1nDetD =Tr[(D ) '5,D ] . (38)

XG '(y, x)y„A(x), We shall rewrite this equation in terms of the Green's
function G, defined as

and similarly for other terms. In (35) and (36), the last
terms arise due to the SUSY transformations, whereas all
the rest of the terms are due to the modifications of the
SUSY transformation laws, which were made so as to
leave the gauge-fixing term invariant. Using (22), (26),
and (32) we see that G and h are made of the same opera-
tor D. Hence Gh =hG. Making this change in the
second term in (34) gives

(D )' G"'(x,y) =5"5 (x —y) .

Further (38) is regulated using the heat kernel

h(x, y, t)=&yle' Ix & .

Equation (38) thus becomes

5, 1n(DetD )=TrG [D (Ey A, )]h —2TrGD ey A, h

(39)

(40)

D„(Ey~h )G(gA)G =.ey GhgA, GD„

=(E8)Ghg KG+Eh&AG . (37)

The change in the ghost determinant in (18) due to the
I

(41)

Collecting the Jacobians from (35)—(37) and the variation
of the ghost determinant (41) gives

J (E)+5,1n(DetD )=Tr[Ey„hGy„A, —ey„Gy Ah,„]+Tr[2D„Gey Ah „2GD E—y„A, ]

+Tr[e86hgAG+G(Ec}„)Gy, ih „D„]+Tr[ Eh@KG] +Tr[ G(D (ey A, ))h] . (42)

These expressions have to be evaluated in the limit
t~0. The pair of terms in each pair of square brackets
will be calculated together, so that in the limit t~0 the
cancellation of divergences between various traces is
transparent and the calculations simplified. We shall use
the short-distance expansion of the heat kernel and the
Green's function involved. The short-distance expansion
for a generic heat kernel is discussed in III and the
relevant expansion coefficients evaluated in Appendix A
of III. As in case of the Wess-Zurnino model, the bosonic
regulator B„ in (24) has a nonlocal contribution. In or-

der to deal with such a regulator operator we define a
heat kernel h„' (x,y; t) from the local part B„'„(25)of the
bosonic regulator B„„(24)as

h (x,y;t)= &yle"'Ix & . (43)

For a generic regulator with a nonlocal contribution the
procedure for separating the contribution to the Jacobian
from the nonlocal part is developed in Appendix 8 of III.
Substituting for B„, and B„'„from (24) and (25) in Eq.
(B10)of III yields

h„(x,y, t)=h„' (x,y, t) f d u [h„' (—x, u,—t)[X(u)y G(u, y)y A(y) —X(y)y G(y, u)y A(u)]

+[A(x)y„G(x,u)y A(u) —A(u)y G(u, x)y A(x)]h' (u,y;t)] . (44)

R = +2X.B+B.X+X + Y .

Using Eqs. (25)—(27) it is easy to see that

(45)

(46)

for all the regulator operators and

The contribution from the nonlocal part of the regulator
is entirely contained in the curly brackets in (44). We will
first evaluate the contribution from the local part, i.e., re-
place h„by h„' in (42).

As in the case of the Wess-Zumino model discussed in
III, the heat kernels h, h„', and h will be expanded in
powers of t for small t. The regulator operators B„', P,
and C defined in (25)—(27) have the form of a generic re-
gulator R, Eq. (33) of III:

Y=2F, Y=X-F and Y =0 (47)

for B„'„,V, and C, respectively. For small t the generic
heat kernel h (x,y; t) has an asymptotic expansion

g a„(x,y)t" .
n=0

(48)

Here a„are the expansion coefBcients. The heat kernels
(31), (32), (40), and (43) have a similar expansion with the
corresponding expansion coefficients denoted by (a„)„„,
a„, a„and (a„' )„„, respectively. The relevant heat
coefBcients and their derivatives at coincident point are
evaluated in Appendix A of III for the generic regulator
(45). Substituting for X„and I' from (46) and (47) in the
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results obtained there yields the required heat
coefficients. These are tabulated below. The derivatives
with respect to the first or the second argument of the
heat coefficient are denoted by B„or8„, respectively. The
coeKcients (a„)„,are expressed in terms of (a„')„,using
Eq. (44) and hence we need tabulate only (a„')„,. The
coincident point values of the zeroth heat coefficients are

ao „=ao
~

„=1, (ao )„„~=5„ (49)

All the derivatives of ap are equal to those of ap and
derivatives of (a o )„are equal to 5„ times derivatives of
ap; hence, we will tabulate only the derivatives of ap:

lowed in III. Thus

G(y, x)= lim f dt h(y, x, t)
~~ oo 0

ao(y x) 1 z——ln a, (y, x)
z2 4 4w

(51)

(where z„=y„—x as usual). The Green's function 6
which satisfies gG(x, y)=5 (x,y) can be obtained from
the Green's function 6', defined as B G'(x, y)=5 (x,y),
as

G'(y, x)= lim f dt h(y, x, t)
wahoo 0

a„a,~= —A„, a„a.aors= —,'(—a„A„—a.A„+[A„,A, )),

a„a,(=A„, 5„a~,(=-,'(a„A„+a.A„+[A„,A. ) ),
a, [=r F, a„a, (=-,'(a„r F—Ir F, A„)) +a„ Io,

~„a, l=-, (a„r F+[A„r F))—a„I„«;)„.1=2F„.,

hence,

G(y, x)=gG '

ao(y x)
4m z

1——ln a, (y, x)
4~

a.(a', )„.~ =-,'(B.F„.—IF„., A. ) )+a.&,5„.,

Q (a', )„)=—,'(c} F„+[ A,F„)) —8 Yo5~

a, [=0, B„a,(=B„1'o, S„a,(= —B„Yo .

(50)

Here Yp contains B.A and A, and as will become clear
later, the contributions from such terms cancel off be-
tween diFerent Jacobians. Hence Fp need not be evalu-

ated explicitly.
The Green's functions G and 6 defined in (22) and (39)

can be expressed in terms of the expansion coefficients a„
and a„, respectively. The procedure is similar to that fol-

1 2g'
ap+ a&—

4 2 4

&ao 1 z'+—ln Qa
&4 4~

III. EVALUATION OF THE JACOBIANS

We start with the first set of square brackets in (42)
with only the local part of the bosonic heat kernel (44),
i.e., h„replaced by h„':

(52)

Using these expressions for G and 6 and the coincident
point values for the expansion coefficients, the Jacobians
in (42) can now be evaluated

Tr[E(x)y„h (x,y)G(y, x)y„k(x) —E(y)y„h '„(x,y)6(y, x)y,A(x) ]

—z /4t ao co
( f)m= f d4x f d z tr E(x)y„g g

' [a„5„—(a„') „]~» „6(x+z,x)y„t(x)
16m t "„=0~=0

E(x)y„g g (a„'),
~

G(x+z, x)y A, (x) ~',
(za)' " " (z$)

n=0 m =0
(53)

where all functions of y are expanded around x as
y =x +z. Later z will be replaced by 2+tz' so as to have
the coincident point limit when t~O. Since the second
arguments of the heat kernel coefficients a„are expanded
around the first, we have derivatives with respect to the
second argument, i.e., B. Similarly all the a„appearing in
6, given by (52), when Taylor-expanded will have a
derivative with respect to the first argument, i.e., B.
After z' integration is done, all the terms with positive
powers of t will vanish in the limit t ~0 and hence are ir-
relevant. The terms with negative powers of t constitute
the divergent contributions. In particular the first term
in 6 in (52) is proportional to z, i.e., t » and hence
singular in the limit t~O. Since t-x, this will corre-
spond to a cubic divergent contribution. In (45) we have
seen that (ao)

~

=5 and ao~ =1. Thus the cubic diver-
gent contributions in the first term in (53) cancel off be-

I

tween bosons and fermions. All the other terms in (53)
are less singular than t . The coincident point values
of the a„, tabulated in (49) and (50), and the expression
for 6 in (52) can now be substituted in (53). Performing
the z integration and retaining all the terms with non-
positive powers of t, the right-hand side of Eq. (53) be-
comes

f d x tr[ —,', Ey~ (2F„+XF5„„)y4~

,'8 E(2y g „y y—„—y X F+F y„y—)]y„A, . (54)

This can be simplified using the identity

[D,F „]y„y y =0 =9X F= DX Fy—
obtained from the Bianchi identity. Thus,
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Tr[Fy„hGy„A, —ey Gy A,h„' ]

C,
4~2 8 "" 4

d~x tr (D—F )'y ——E8&.F'

'From equation (All) of III and Eqs. (47) we see that the
heat coe%cients a„satisfy the heat equation

(1+z.D )a, =D'ao .

Using this and (50), (57) reduces to
+—B„KF„' y4 P Pv v (55)

—,
' [(a,D +D a, )+[D,D ]ao] = ,'D&F—& (58)

where we have used F„',=f"F„'„, and f"f'"
= —C,5'". Here C, is the Casimir constant of the ad-
joint representation of the gauge group.

Notice that all the divergent contributions have can-
celed off and the answer is finite. The first term in (55)
can be expressed as a SUSY variation of F„'g„'„and the
last two terms can be absorbed in the supercurrent as an
improvement. This completes the calculation of the first
set of square brackets of Eq. (42). Let us now evaluate
the second set of square brackets in Eq. (42). Displaying
all the spacetime arguments, these terms can be written
as

2f f d x d y tr[E(x)y k(x)]

X[—h(x, y, t)G(y, x)D +h &(x,y, t)D&G(y, x)] .

Substituting for G from (51) and for the heat coefficients
from (49) and (50), this term takes the form

This Jacobian is also finite and it can be expressed as a
SUSY variation of F„'g„' .

Now we consider the third set of square brackets in
(42):

dxdudyGyu c. u Gux

X[h(x,y;t)BA(y)+yP(x)h „(x,y, t)D„] . (60)

This involves a product of two Green's functions. The
short-distance expansion of such an object can be ob-
tained as follows. Define

Substituting this for the second term in (56) and doing the
z =2&t z' integration gives

+- C„
2TrEy A( hG—D +h ttDtiG)= z [~&(D F t )i'l'p&'] .

4m

(59)

1
—z /4t

, f f d'x d'z ', , trEy. z
2772 16~ t M(y, x)= f d u G(y, u)(s8(u))G(u, x) . (61)

X — DpF p2z2
From the definitions of G and G in (22) and (39), the fol-
lowing conditions can be derived for N:

Using

(z.a)'+
q

+z Az. B ( —aoD +D ao) ~

z'

(56)
and

D M(y, x)=s8(y)G(y, x)

M(y, x)@=G(y,x)E8(x) .

(62)

(63)

2

fd'x' z /4f
1 p/4

z„z,=—f d"z e

the last term in (56) can be written as

—,'(0+2A 8)( aoD +D ao)—
=

—,'[D ( aoD +D ao) ——A ( aoD +D a—o)] .

(57)

The second term vanishes because aoD =O=D ao.

The right-hand sides of the above equations are known
from (49) and (50) for y near x. M is then evaluated by
writing all the possible terms that can appear in it and
the coefficients of these terms fixed by demanding (62)
and (63). From (61) we see that each term has to be of
the form (EP) times a mass dimension-3 object. The most
singular terms in G and 6 are A„ independent and pro-
portional to gz and z, respectively. Hence the most
singular term in M has to be of the form gz . All the
other terms will be less singular and will contain A„and
its derivatives. After a lot of straightforward algebra we
find that, up to order z,

M(y, x)= — — [1—z A+ —,'(z ~ AD z)]— X FP+ ln $X Fs(y) 8, — 1 1 z
4~2 2z 2 32 16 4~

(64)

F(y) f 1 1 z
ao(y, x)— a, (y, x)/+ ln Za, (y, x)

z2 32 ' 16 4~
(65)
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Note that we have evaluated M up to order z, i.e., &t.
This is necessary because the Jacobian here has a term
h „D„which has a contribution proportional to t
Plugging in (65) and the values of a„, the Jacobians (60)
become

—z /4E

expression for G, and expanding y around x, this term
yields

C, f ,'E—XF.'(gA)', d'x .
4m

Consider now the last term in (42). It is easy to verify
that

XtrE8 —
( ,'y F—t3yt3A,+ ,'z yt—iAFt3 )

2z2

Tr f f d x d y G(y, x)D (Ey A, )h (y, x)=0 . (69)

zX.FA, =0 .
2t

Tr f d y f d x G(x,y)E(y)h(y, x)BA,(x) . (67)

Substituting the relevant expansion coefficients and the

Thus the Jacobians (60) contribute nothing to (42). With
this, we are left with evaluation of the fourth and the fifth
terms in Eq. (42). These calculations are rather easy.
The fourth term reads

This is because a, ~

=0 and the most singular term in G is
proportional to z . Hence only ao contributes, and ao
contributions from G cancel with those from h.

With this we have evaluated all the fermionic Jacobi-
ans, the variation of the ghost determinant and the local
part of all the bosonic Jacobians. We are left with evalu-
ation of the contribution from the nonlocal part of the
bosonic regulator in Eq. (44), to the bosonic Jacobians in
(42). Consider the bosonic Jacobian in the second term in
(42). Using (44) it yields the following nonlocal contribu-
tion:

—f f f d x d y d u trs(y)y„G(y, x)y A(x)[h' ( xu, t)[A(u) yG(u, y)y„i(y) X(y—)y„G(y, u)y A(u)]

+[A(x)y,G(x, u)y A(u) —X(u)y G(u, x)y &(x)]h'„(x,y, t)] . (70)

e
—z /4t Z

, f fd'x d'y ', , trEy„
4m mt " 2z

zg
z4

x y.x[X(y.y.y„+y„y.y„y.] (71)

', —' fd' —.y„zzy„X=0 .4~' 8

The last step follows due to Fierz rearrangement of the

These terms again involve the product of two Green's
functions. Since G is of dimension 3, N =j[G ][G ] is of
dimension 2. Thus the most singular term in the in-
tegrand of (70) is proportional to t '. Since the integral
is already multiplied by t, the most singular term is the
only term which gives nonzero contribution in the limit
t —+0. Comparing the expression for G in (52) and that of
G in Eq. (46) of III, we see that the most singular term,
i.e., the first term in (52), is —

—,
' times the first term in Eq.

(46) of III. Hence N, the product of two G here, is —
—,
'

times a similar N obtained in equations (53) of III. Sub-
stituting these expressions, (70) becomes

Minkowski-space value of (71). Thus there is no contri-
bution from the nonlocal part of the bosonic regulator to
the second term in (42).

It will now be shown that the other two bosonic Jaco-
bians in (42) also receive zero contribution from the non-
local part of the bosonic regulator. Consider the third
term in (42): D„GEy Xh„=eye(D„Gh, ). From di-

mensional arguments, Lorentz invariance, and the form
of the nonlocal portion in (44), it is obvious that the
coefficient of cy A, has to be proportional to A,y X. Hence
this term would have to be proportional to cy A,ky A,

which is zero in Minkowski space due to Fierz rearrange-
ment. Now consider the sixth term in (42). Since it al-

ready contains (Etl), from dimensional arguments and the
form of the nonlocal term, it is clear that this term can
contribute expressions with positive powers of t alone,
which vanish in the limit t ~0. Thus the nonlocal part of
the bosonic regulator does not contribute anything to the
entire set of Jacobians.

Thus all the terms in Eq. (42) have been evaluated.
Collecting the results from (55), (59), (66), (68), and (69)
into (42) gives

[J (s)+5, 1nDetD ]=— f d x j —,
' [(EDF„' )yk'+2(X F)'(gA, )']+—,'B„s(y„XF' —F„' y„)'A, ] . (73)

Continuing this back to Minkowski space using t ~it, A„B„~—A„B",and y„B„~+i8 leads to
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[J(e)+5,1nDet( —D )]=i,f d x —e[(D"F„)'y'A,'+2(X F)'(gA, )']+ 8—"e(y„X F' F—„' y )'A; +H. c.

(74)

Since g and g' are treated identically, the e-dependent part of the total Jacobian is obtained by taking the Hermitian
conjugate of the e-dependent part, and such a contribution has been added to Eq. (74). Integrating by parts the second
term in the right-hand side of (74) and using the SUSY transformation laws (8) yields

C„[J(e)+5 lnDet( —D )]=i f d x —8"e y X.F' F' —y"1,'— XF—'y A,'+H. c.— 5 (F'+"") . (75)
E 4 2 4 P Pv 3 P ' '

16 c P

This expression can now be substituted in the SUSY
Ward identity (19). To obtain an effective action invari-
ant under SUSY transformations, we define a modified
action

only two independent terms of this form: c.y„A,D„E„and
eX Fgk, Th. ese can be written as 5,(F„'g""') and

5,(A,QA, ). Hence there cannot be any supercurrent anom-

aly for the N = 1 SSYM theory.

3C,S' =S + F'g'"0 0 64 p iM

and a modified supercurrent

3iC,Q„'=Q„+,(y„X F' F„' y —,'X F'y—„)k—'.
16~

(76) IV. SUPERCONFORMAL ANOMALY FOR
THE N = 1 SSYM THEORY

Let us now evaluate the superconformal anomaly for
the N =1 SSYM theory. The action (1) is invariant un-

der the superconformal transformations

With these definitions it is easy to see that the modified
effective action

5;A„=i (e 'yz% %'y—„e'), 5;O'=X Pe'

with c'= —iy x"c. FurtherP

5;S,[~e], f=(a„eS~+S„a"e)dx,
X exp[i (So +SG )+ln Det( —D ) ] (78)

where
satisfies the Ward identity corresponding to (19):

5,W'[ A, k]= f2)[a„]2)[g)2)[f]

X exp[i (So +SG ) + ln Det( —D ) ]

X i f d x(B" QE„+'Q „'8"e) . (79)

Thus the Jacobian of the SUSY transformations can be
expressed as a SUSY variation of a local term and a term
proportional to c times a total divergence. These contri-
butions can be absorbed in the classical action and in the
supercurrent to obtain an improved effective action
which is invariant under rigid SUSY transformations.
Hence there is no one-loop SUSY anomaly for the on-
shell %=1 SSYM theory. The absence of an anomaly
can be understood as follows. Since our regularization
scheme, although not manifestly supersymmetric, is
gauge covariant and parity preserving, any contribution
to the regularized Jacobian has to be Lorentz, gauge, and
parity invariant and of mass dimension 4—

—,
' (e has di-

mension —
—,'). For rigid SUSY transformations, there are

S =( ig)Q =(g)X F—'y 4' (81)

+k(E)+5; ln Det(D ) (82)

When the SUSY transformation parameter E is re-
placed by e ' iEX=in the result obtained in the earlier sec-
tion for the SUSY anomaly we get the Jacobian k(s) of
the superformal transformations and the variation of the
Faddeev-Popov determinant. Making this change in (75)
yields

is the super conformal current. The superconformal
Ward identity, obtained in the same way as the supersym-
metry Ward identity (19), is

5;8'[ A, A, ]= f2)[a„]2)[g]2)[g]exp[i (So+SG )

+ln Det( D)]—

[k(e)+5;inDet( D)]= f d x——
—,'sX F'A, '+ (d"e)(ig)(y„X—F' F„' y' ,'X F'y„)A, ' —+H. c. ——

+ 5'(F'g" ')



3312 MAYANK R. MEHTA

In terms of the modified action (76), the modified
efFective action (78), and the modified superconformal
current,

S„'=( i—g)Q„'

where Q„' is as in (77), the superconformal Ward identity
becomes

&;~'[~,~]= J&[~„]&[01&[4]

Xexp[i(SO+SG)+ln Det( —D2)]
T

X i Jd x(S„'t)"e+t)"eS' )

3iC, f d x ( EX.F 'A, '+ H. c. )
Sm

(85)

Thus the superconformal symmetry is anomalous and the
anomaly is given by the last term in this equation.

Note that unlike the dilatation anomaly calculations
[1], the Jacobian for the SUSY and the superconformal
transformations do not have any infinite contributions
and the results are finite.

namely, the N= 1 SSYM theory. Here an additional
problem of noninvariance (under SUSY transformations)
of the gauge-fixing term and the corresponding Faddeev-
Popov determinant was encountered. We have used a
regularization scheme which is manifestly gauge invari-
ant but not supersymmetric. This was done by adding a
field-dependent gauge transformation to the SUSY trans-
formations so that the modified SUSY transformations
left the gauge-fixing term invariant. The Jacobian of
these transformations and the SUSY variation of the
Faddeev-Popov determinant were calculated in a gauge-
invariant, regularized fashion. The resultant Jacobian
was gauge invariant and finite and could be absorbed in
the action and the supercurrent such that, the modified
supercurrent was gauge invariant and conserved. Thus
we have seen explicitly in this paper that although our
regularization scheme is not manifestly supersymmetric
there is no one-loop supercurrent anomaly for the on-
shell X =1 SSYM theory. The superconformal anomaly
was then obtained from this calculation using the same
trick as the one used for the Wess-Zumino model. The
expression for finite superconformal anomaly so obtained
agrees with results obtained using diFerent methods [6].
The method established here can be taken over to the
case of extended SSYM theories in a natural fashion [9].

V. CONCLUSIONS

The method established. in III for evaluation of the su-
peranomalies for the on-shell Wess-Zumino model, using
Fujikawa's method and heat-kernel regularization, has
been extended to a theory with a local gauge symmetry,
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