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We present results for the QCD spectrum and the matrix elements of scalar and axial-vector densities
at P=6/g =5.4, 5. 5, 5.6. The lattice update was done using the hybrid Monte Carlo algorithm to in-

clude two Aavors of dynamical Wilson fermions. We have explored quark masses in the range
m, ~ m~ ~3m, . The results for the spectrum are similar to quenched simulations and mass ratios are
consistent with phenomenological heavy-quark models. The results for matrix elements of the scalar
density show that the contribution of sea quarks is comparable to that of the valence quarks. This has

important implications for the pion-nucleon o. term.

I. INTRODUCTION

In this paper we present results of simulations of QCD
with two degenerate flavors of Wilson fermions. We have
generated lattices using the hybrid Monte Carlo (HMC)
algorithm [1] at @=5.4, 5.5, and 5.6. At each of these
values of P we have simulated a number of values of tr as
described in Table I. This exploration of parameter space
is necessary in order to (a) evaluate the behavior and
efficiency of the HMC algorithm as we reduce the quark
mass, (b) determine the chiral limit (a, ) and the lattice
scale for each of the three values of P, (c) study the effect
of quark loops as a function of the quark mass, and (d)
examine the scaling behavior of observables.

The details of our implementation of the HMC algo-
rithm and tests on g lattices were presented in Ref. [2].
In Secs. II and III we discuss the eKciency of the HMC
algorithm on larger lattices (16 and 16 X 32), at weaker
coupling, and at smaller quark masses. Most of the up-
date was done on the Connection Machine 2 (CM2). Our
present version of the code runs at a sustained speed of
over 5 GAops. The technical details of the implementa-
tion and the tests carried out are discussed in Appendix
A.

In this paper we present results for the following analy-
ses: (a) screening in the qq potential using Wilson loop

expectation values (Sec. IV), (b) hadron spectrum (Secs. V
and VI), and (c) the scalar density and axial-vector matrix
elements (Sec. VII). A preliminary version of these re-
sults has been presented in Ref. [3]. Results for the mo-
ments of the pion distribution function are given in Ref.
[4]. The calculation of the I =2 ~m scattering length and
weak matrix elements leading to the parameter Bz aris-
ing in E —K mixing is in progress. These first results
show that we have reached a stage where calculations in-
cluding the eff'ects of dynamical fermions can be done on
lattices as large as 16 X 32 with precision comparable to
quenched simulations for I m, . The limitations of the
present calculation are that the results are obtained for
quark masses in the range m, & m & 3m„and that the
weakest coupling used, P=5.6, is at best just at the begin-
ning of the scaling region.

II. OPTIMIZING HMC ALGORITHM

The parameters used in the update and the statistics
for all the runs done so far are presented in Table I. The
step size e is selected to give -70%%uo acceptance. We use
trajectories of variable length in the molecular-dynamics
(MD) evolution of the system: the length is
[i +jXranf ( )] steps. The two integers, (i;j) [listed un-
der the heading %MD(i; j) in Table I], are selected to
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5.4 0.160 0.017
5.4 0.161 0.015
5.4 0.162 0.010
5.5 0.158 0.011
5.5 0.159 0.010
5.5 0.160 0.008
5.6 0.156 0.013
5.6 0.157 0.009

NMD(& ~J)

(a)
45 20
50;20
70;35
70;30
70;40

100;40
60;30
80;40

old
Ntraj

310
320
400
400
220
440

600 —;60%%uo

1080 —;61%
74;—%
60;—%
60 —%

135 62;68%
460 84;73%
480 60;78%

TABLE I. (a) Run parameters for the 16 lattices after
thermalization. The trajectories are of random length

XMo =i +jX ranf ( ). The number of trajectories generated be-
fore (N;,'„.) and after (N"„'";) fixing the bug are given separately
along with corresponding acceptance rates. (b) Run parameters
for the 16 X32 lattices after thermalization. The trajectories
are of random length XMo =i +jX ranf ( ). Only the Wilson

loop data from these runs has been included in the present
analysis.

5.4
5.4
5.4
5.5
5.5
5.5

Kd

0.160
0.161
0.162
0.158
0.159
0.160

log (pR

—12
—13
—13
—13
—14
—15

MR(l)

63

84
145

MR(2)

49
68
81

110
185

5.6
5.6
5.6
5.6
5.6
5.6

0.156
0.157
0.1575
0.1575
0.1575
0.1575

—14
—14
—12
—13
—14
—15

78
110
98

114
135
155

100
150
150
165
185
202

TABLE II. Performance of the inversion algorithm during
update on the 16 lattices. R is the convergence criterion.
MR(1) and MR(2) are the number of iterations required for the
two steps in the fourth-order algorithm described in Ref. [2].
Cases where data does not exist have been left blank.

logic NMD(i; j) N„„Accep.

5.5 0.160 0.007
5.6 0.157 0.0085
5.6 0.1575 0.008

(b)
—15
—14
—15

120;60
100;50
60;30

300
400
280

70%
69%
65%

make the average trajectory of approximately unit length.
It has been argued by Mackenzie [5] that using a trajecto-
ry of random length helps decorrelate the system faster
when there exist well-defined Fourier modes. For indivi-
dual molecular-dynamics trajectories, QCD does appear
to have low-frequency periodic modes [6]. Whether such
modes persist over all phase space with the same period is
not established for a highly nonlinear, strongly interact-
ing theory such as QCD. Nevertheless, we use a trajecto-
ry of random length to avoid the possibility of getting
locked into a periodic orbit.

The HMC algorithm has only one source of systematic
error: lack of accuracy in the matrix inversions occur-
ring in the molecular-dynamics evolution and in the cal-
culation of the action. Throughout this paper our con-
vergence parameter is defined by

2 2
Mr —PR= (2.1)

x x
where y is the "solution" vector, P is the source vector,
and M is the operator matrix (the preconditioning factors
times the fermion matrix). We monitor the effect of in-
version error by calculating the change in the action dur-
ing a trajectory, AS, as a function of R. We pick a value
for R for which the error in AS is & 1%. For example, in
a particular instance at p=5. 6 and ~=0.1575, we find
that AS =0.4893, 0.4274, 0.4153, 0.4138 for
R =10 ', 10 ', 10 ', 10 ', respectively, and we pick
R =5 X 10 ' as our criterion for production runs. The
values of R used in the runs are given in Table II. The
mean number of iterations necessary for convergence in

each of the two steps of our preconditioned (fourth order
in ~), over-relaxed minimal residue algorithm [2] are also
given in Table II. The fluctuation in the number of itera-
tions is —10'f/o about the value quoted. The number of
iterations necessary for convergence is positively correlat-
ed with the plaquette; i.e., in the confined phase the num-
ber of iterations required is larger when the value of the
plaquette is larger.

The HMC algorithm has a number of tunable parame-
ters: pMD, aMD, e, and the trajectory length. In this
study we use trajectories of length —1 unit of MD time.
We try to choose the step size e to maximize the rate of
motion through phase space in CPU time, i.e., maximize
eX (acceptance). The optimal e is then itself maximized
as a function of pMD and aMD. With our limited statistics
it is difficult to use this method. Instead, we recall from
past studies that the optimal acceptance is =70%, and
that this acceptance occurs if AS lies in the range
[ —1, 1]. We then adopt this last criterion for our optimi-
zation, and carry out detailed tests on a few trajectories.

The method we use is as follows. For a given value of
P, l~, and lattice size we pick a thermalized lattice. We
study the trajectory starting from this lattice for a fixed
random number seed, so that both the pseudofermions
and the initial momenta conjugate to the gauge fields are
always the same. We fix the length of the trajectory to be
approximately 1.5 units, i.e., somewhat longer than the
trajectories used in production runs. We calculate the hS
after each molecular-dynamics step, rather then just at
the end of the trajectory. We then make the following
runs for a number of starting lattices.

(1) We set ~MD=a and PMD=P and vary e. We see
three features in the data: (a) b,S~0 as e~O as must be
the case; (b) the fluctuations in hS decrease as e~O; and
(c) the evolution decorrelates more quickly in molecular-
dynamics time as e is increased, in the sense that the
peaks and valleys do not correspond. In Fig. 1(a) we
show an example of the dependence of AS on e. Based on
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such runs we choose a value of e for
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pMD=p and irMD=ir. We find this is the case for both
Wilson and staggered fermions.

In Refs. [2] and [7] we carried out tests on 8 (Wilson)
and up to 10 X4 (staggered) lattices, respectively, and
found that the performance of the HMC algorithm is im-
proved if we set pMD & p and irMD & a (or m~ M~ )m~).
(This is true for the version of the leap-frog algorithm in
which the gauge links are updated in the first half-step. )
The qualitative change in our conclusions is a conse-
quence of the increase in lattice volume. To keep the ac-
ceptance rate constant as the volume is increased, e has
to be decreased. In the molecular-dynamics evolution the
leading-order effect of finite step size is a renormalization
of the couplings in the action, the shifts being proportion-
al to powers of e. The tuning aims to undo the effect of
these shifts and should therefore become less significant
with increasing volume.

In Ref. [2], we proposed a scaling rule for critical slow-
ing down of the HMC algorithm. The four factors that
contribute, in the case of trajectories of length short com-
pared to decorrelation time, are (a} the overall factor of
lattice volume V, (b) the growth ( ~ I/m~ ) in the number
of iterations necessary to invert the Dirac operator, (c)
the growth [cc(1/m )] in the number of trajectories
needed for a decorrelated lattice, and (d) the decrease in
step size as V ' m to keep the acceptance rate fixed.
Putting all these factors together, we estimated that in
the worst case the computer time grows as V vlq for
zero-temperature and large-volume simulations. A re-
cent analysis by Gupta, Irback, Karsch, and Petersson [8]
shows that the step size has to be decreased only as
V pl

q
Even with this correction the computer

power required to probe the chiral limit of QCD grows as
m„' + + +'+' '=m ' with the present implementa-
tion of HMC algorithm. In arriving at this result we use
V-m and take the pion to be the lightest mode with
m ~ m~. (Using the results in [2], the above estimate
would change to m ' for trajectories of length
O(1/m„). ) Thus QCD simulations with dynamical fer-
mions still need a major breakthrough in update and ma-
trix inversion algorithms.

III. DETAILS OF LATTICE UPDATE
AND AUTOCORRELATIONS

The first 16 lattice we thermalized was at p=5. 5 and
re=0. 159 beginning from a hot start. We discarded 420
trajectories, of which the first 370 were run with the hy-
brid algorithm, i.e., without the accept-reject step.
Thereafter thermalization at other values of the parame-
ters consisted of taking a thermalized seed lattice and dis-
carding 200 trajectories, of which the first 150 were run
with the hybrid algorithm.

We have monitored the time history of up to 6X 6 Wil-
son loops and hadron correlators in order to check if the
HMC algorithm exhibits long autocorrelation times. In
Fig. 2(a) we show the time history of 1 X 1, 2X2, and
3 X 3 loops at ~=0. 156 and p=5. 6 on 16 lattices for the
post-thermalization part of the run. Long-distance ob-
servables such as the hadron correlators show similar be-
havior, as illustrated in Fig. 2(b} for the pion correlator.

I I I

I
I I I I

f

I I I I

[
I

0.568—
0 56' '

I I I I I I I I I l I I I I I I

0 17 200 400 600
I I I

f

I I I I

0 0380 200 400 600

0.034—
0 03g I I I I I I I I I I I I I I

0 200 400 600
Trajectory Number (P=5.60 L=0.156)

(a)

1500 (b)

x t=g
o t=10

1000

500

0 200 400 600
Traject, ory nulTIber

FIG. 2. (a) Time history of 1X1, 2X2, and 3X3 Wilson
loops at P= 5.6 and s.=0.156. (b} Time history of pion correla-
tor at time separation 9, 10, and 11 at P=5.6 and v=0. 156.
Points have been connected by a solid line to aid the eye.

Such figures show that our present data sets are too short
to determine autocorrelations accurately and that the au-
tocorrelation times could easily be as large as a few hun-
dred trajectories. We conclude that our initial lattices
are reasonably thermalized, but that, given the total num-
ber of trajectories [see Table I(a)], our studies will be lim-
ited by small statistics. In our error analysis we do not
include possible autocorrelations between configurations
and we caution the reader that the errors are most likely
underestimated.

Our initial updates of 16 lattices on the CM2 have the
following error: the front-end random-number generator
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(part of the *Lisp package on the SUN) used in the crucial
Metropolis accept-reject step was by default initialized
with the same starting seed at the beginning of each re-
start of the job. Since a large fraction of the time a run
consisted of a few trajectories, using the same random-
number sequence is expected to produce a bias. Table
I(a) shows the breakup of runs before and after we fixed
the bug. So far we have not detected any significant
difference in results between the two sets of runs. Since
this problem only effects the accept-reject step, the up-
date probably has errors similar to the step size errors in
the simple hybrid algorithm, which are small for the
values of e used here. We estimate that the bias generat-
ed by using a random number of period 2—10 is at worst
of the same order as the statistical errors.

We have begun generating 16 X 32 lattices at the
smaller quark masses. The status of this update is given
in Table I(b), and we include only the Wilson loop data in
the present analysis.

IV. WILSON LOOPS AND SCREENING
IN THE qq POTENTIAL

The presence of light qq pairs in the QCD vacuum
causes the Aux tube between a heavy qq pair to break
leading to the formation of two mesons. The interaction
between these mesons is through a screened potential
V(r)-( I /r)exp( r/R, ), whe—re R, is the screening
length. The distance scale at which the linear confining
part is replaced by the screened potential will depend on
the quark mass. Thus, as a first step to quantifying the
effects of vacuum polarization it is necessary to demon-
strate the vanishing of the linear confining part of the po-
tential. At the same time we would also like to check if
there is any change in the short-distance structure of the
potential.

To calculate the qq potential, we have measured up to

TABLE IV. Wilson loop data at @=5.5.

0.1580 0.1590 0.1600

1X1
1x2
1x3
1x4
1X5
1x6
2X2
2X3
2X4
2X5
2x6
3X3
3x4
3XS
3x6
4x4
4X5
4x6
5X5
Sx6

0.554 83(10)
0.335 44(14)
0.206 83(14)
0.128 13(12)
0.079 45(10)
0.049 29(8)
0.146 36(16)
0.068 99(12)
0.033 24(9)
0.016 11(6)
0.007 84(4)
0.026 89(8)
0.01101(5)
0.004 59(4)
0.001 90(3)
0.003 85(4)
0.001 37(4)
0.000 50(2)
0.00042(3}
0.000 17(3)

0.557 27(12)
0.338 90(16)
0.210 24(16)
0.13102(14)
0.081 78(11)
0.051 06(8)
0.149 97(16)
0.071 79(13)
0.035 15(9)
0.017 35(6)
0.008 58(4)
0.028 72(10)
0.012 06(6)
0.005 17(4)
0.002 20(3)
0.004 45(5)
0.001 76(3)
0.000 67(2)
0.000 60(4)
0.000 23(2)

0.560 33(4)
0.343 27(6)
0.214 65(7)
0.134 89(6)
0.084 87(5)
0.053 41(4)
0.154 73(7)
0.075 58(6)
0.037 82(5)
0.01904(3)
0.009 62(2)
0.031 26(4)
0.013 59(3)
0.006 01(2)
0.002 70(2)
0.005 28(3)
0.002 11(2)
0.000 86(1)
0.000 77(1)
0.000 30(1)

V(,r)l= lim ln
IV(,r, t)l

8'(,r, t + I )
(4.1)

The resulting data for P= 5.5 are shown in Fig. 3.

TABLE V. Wilson loop data at P= 5.6.

6X6 Wilson loops in all the runs. These expectation
values are given in Tables III, IV, and V for P=5.4, 5.5,
and 5.6, respectively. From these we extract V(,r), the
potential between a heavy qq pair, using

TABLE III. Wilson loop data at P=5.4. 0.1560 0.1570 0.1575

1X1
1X2
1X3
1x4
1XS
1x6
2X2
2X3
2X4
2X5
2x6
3X3
3x4
3XS
3X6
4X4
4XS
4x6
SX5

0.1600

0.534 18(26)
0.308 67(34)
0.18149(32}
0.107 16(26)
0.063 37(20)
0.037 48(15)
0.121 16(34)
0.051 08(24)
0.022 06(15)
0.009 58(10)
0.004 19(6)
0.016 69(14)
0.005 73(8)
0.001 99(5)
0.000 67(4)
0.001 68(5)
0.000 45(4)
0.000 11(4)
0.000 04(4)

0.1610

0.537 97(20)
0.313 81(27)
0.18642(26)
0.11120(22)
0.066 38(17)
0.039 62(12)
0.126 28(28)
0.054 72(20)
0.024 22(13)
0.01078(8)
0.004 82(5)
0.018 66(12)
0.006 66(7)
0.002 43(3)
0.000 87(3)
0.001 9S(4)
0.000 64(2)
0.000 16(2)
0.000 16(3)

0.1620

0.540 58(17)
0.317 53(24)
0.19004(24)
0.11422(20)
0.068 77(15)
0.041 37(12)
0.13003(26}
0.057 47(19)
0.025 96(12)
0.011 80(8)
0.005 37(5)
0.020 31(12)
0.007 53(6)
0.002 85(4)
0.001 08(2)
0.002 37(4)
0.00077(3)
0.000 27(2)
0.000 22(2)

1x1
1x2
1X3
1x4
1x5
1x6
2X2
2X3
2x4
2X5
2x6
3X3
3x4
3X5
3X6
4X4
4X5
4x6
SX5
Sx6
6x6

0.569 62(6)
0.354 66(8)
0.225 37(8)
0.143 91(8)
0.092 00(6)
0.058 83(5)
0.164 83(10)
0.082 91(8)
0.042 68(6)
0.022 15(4)
0.011 51(3)
0.035 69(6)
0.016 14(4)
0.007 43(2)
0.003 42(2)
0.006 58(3)
0.002 76(2)
0.001 16(1)
0.001 06(2}
0.000 43(1)
0.000 15(2)

0.571 46(4)
0.357 34(5)
0.228 10(6)
0.146 34(5)
0.094 00(4)
0.060 41(4)
0.167 88(6)
0.085 40(5)
0.044 47(4)
0.023 34(3)
0.012 27(2)
0.037 43(4)
0.017 24(3)
0.008 08(2)
0.003 81(l)
0.007 21(2)
0.003 11(1)
0.001 34(1)
0.001 23(1)
0.000 50(1)
0.000 20(1)

0.572 17(6)
0.358 33(8)
0.229 12(8)
0.147 24(8)
0.094 76(7)
0.061 02(5)
0.168 92(9)
0.086 25(8)
0.045 06(6)
0.023 71(4)
0.012 55(3)
0.038 05(6}
0.017 60(4)
0.008 30(3)
0.003 93(2)
0.007 41(3)
0.003 19{2)
0.001 39(2)
0.00130(2)
0.000 53(1)
0.000 22(2)
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decrease in the value of V(r) as a function of a. This
trend is due to the decrease in the lattice scale a with in-
creasing a at fixed f3 and should not be interpreted as evi-
dence for screening.

We have compared our results for the expectation
values of Wilson loops (Tables III—V) to those from pure
gauge theory. For every Wilson loop calculated in pres-
ence of dynamical fermions, we determine the matching P
of the pure gauge theory that produces the same answer.
The shifts bP are given in Table VI for Wilson loop data
at P=5.5. If the only effect of dynamical fermions is an
overall shift of the coupling P, then hP should be in-
dependent of the loop size at physical distances. On the
other hand, if there is screening we expect b,P to increase
with loop area. The data show clearly that b,)t3 increases
with loop area, and provide indirect evidence for screen-
ing.

The data show that the asymptotic value of V(r) is ap-
proached from above as t ~ ~ and only results for r & 3
have converged to better than 1%. In physical units, we
have measured V(r) for r (0.5 fm with the dynamical
quark mass in the range m, & m & 3m, . It is clear from
Fig. 3 that we need data at larger values of r in order to
test the onset of screening.

Plots of V(r) at fixed P and r (e.g., Fig. 3) show a small

TABLE VI. The difference in gauge coupling b,P required to
match nf =2 Wilson loop data at P=5.5 with the pure gauge
theory. For this matching we use a linear interpolation of pure
gauge theory data.

0.1580 0.1590 0.1600

1x1
1X2
1x3
1X4
1x5
1x6
2X2
2X3
2x4
2X5
2x6
3X3
3X4
3X5
3x6
4X4
4X5
4x6
5X5

0.231(4)
O.244(2)
0.250(1)
0.253(1)
0.255(1)
0.255(1)
0.261(1)
0.268(1)
0.271(1)
0.272(1)
0.273(1)
0.275(1)
0.279(1)
0.282(2)
0.282(3)
0.274{2)
0.277(5)
0.276(8)
0.266(10)

0.244(3)
0.259(1)
0.265(1)
0.267(1)
0.269(1)
0.271(1)
0.276(1)
0.284(1)
0.288(1)
0.291(1)
0.293(1)
0.294(1)
0.299(1)
o.3o4(2)
0.308(3)
0.302(3)
0.313(4)
0.315(8)
0.309(10)

0.260(2)
0.276(1)
0.283{1)
0.287(1)
0.289(1)
0.290(1)
0.296(1)
0.307(1)
0.313(1)
0.316(1)
0.319(1)
0.320(1)
0.326(1)
O.331(2)
0.346(7)
0.335(3)
0.341(7)
0.352(19)
0.340(15)

FICi. 3. The heavy qq potential V(r) at P=5.5 and x.=0.158,
0.159, and 0.160. We use the same symbol at a given value of
R /a for different values of t, and the data points show how the
result converges from above as t is increased.

V. SMEARED QUARK PROPAGATORS

The positivity of the transfer matrix guarantees that
for any interpolating field operator 6, the logarithmic
rate of decrease of the two-point function ( 06) will con-
verge from above to the mass of the lightest state with
the quantum numbers of 8. Thus, we can extract accu-
rate mass estimates from lattice simulations if we can fol-
low the signal in the two-point correlation functions for
large enough time separations. In current calculations
there are two sources of error: (a) statistics (the signal to
noise ratio falls exponentially in all but the pion channel),
and (b) the shortness of the lattice in the "time" direction
(so that even if a signal exists, it cannot be followed far
enough to extract the mass of the lowest state).

To reduce the second problem, we calculate the quark
propagators on lattices doubled in the time direction, i.e.,
16 X16—+16 X32. We use periodic boundary conditions
in the update for both gauge and fermion fields. The cal-
culation of quark propagators on doubled lattices also
uses periodic boundary conditions in all four directions.
Our data show that doubling allows us to follow the
correlators long enough that the errors in the mass esti-
mates are dominated by statistics.

In order to enhance the signal at large separation, we
aim to maximize the overlap of the operator 8 with the
wave function of the hadron being created. In this study,
we use the Wuppertal source and sink method to calcu-
late smeared quark propagators and to build hadron
correlators out of them [9,10,6]. We use two types of
smeared quark propagators in our calculation:

SF (z, t;y, O)= QK(z, t;w, t)G(w, t;x, O)
X,W

XK(x,O;y, O)5(y, O),
(5.1)

SP (z, t;y, O)= QG(z, t;x, O)K(x, O;y, O)5(y, O),

where G is the usual point-to-point Wilson fermion prop-
agator and K is the inverse of the covariant Klein-
Gordon operator in three dimensions. The lattice tran-
scription we use is
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3

IC '(x;y)=5 ~
—x'xo g [U(x, i)5 +;~+Ut(x, i)5„, ].

(5.2)

To obtain SGS and GS propagators we first smear the
point source

P(x) =E (x;y)5(y), (5.3)

For the data presented here we choose KKG as large as
possible while keeping the fluctuations in 0 small, i.e.,
~ 10%%uo. On our lattices we find that for 0) 5 the norm
of the hadron correlators Auctuates by orders of magni-
tude between configurations. Such large fluctuations
would give rise to a poor statistical average, so the values
of ~zG were selected to give a smearing radius 0=4.
Even with this choice, the variation in the norm of the
hadron correlators between configurations is, in some
cases, as large as S.

The Wuppertal smearing procedure is blind to the spin
structure and is expected to work best in cases where the
hadron wave function approximately factorizes as a prod-
uct of quark and antiquark spatial wave functions.
Within this approximation, the optimal 0 should roughly
correspond to a typical hadronic size and one expects to
improve the signal by tuning KKG.

A virtue of this smearing procedure is that only covari-
ant derivatives are used, so that the final propagator (SGS
or GS) has exactly the same gauge transformation proper-
ty as that calculated with a point source. Thus, gauge-
invariant hadron correlators are given by exactly the

TABLE VII. Parameters used in the calculation of quark
propagators and the number of lattices analyzed.

Kg =KU KKCr +lattices

5.4
5.4
5.4
5.5
5.5
5.5
5.6
5.6

0.160
0.161
0.162
0.158
0.159
0.160
0.156
0.157

0.187
0.187
0.184
0.184
0.184
0.184
0.181
0.181

4.1(2)
4.3(1)
4.0(2)
4.4(2)
4.3(1)
4.5(1)
4.1(2)
4.2(2)

15
15
14
15
17
27
32
45

and then use P as the source for the inversion of the
Dirac equation. This yields the GS propagator; to get the
SGS propagator we apply the inverse Klein-Gordon
operator to GS on each time slice.

The hopping parameter ~KG controls the size of the
smearing and can be tuned to optimize the signal. We list
the values of ~KG used in the quark propagator calcula-
tions in Table VII. The size of the smearing is character-
ized by 0 which is defined on each configuration as

yr'~y(x) ~'

(5.4)

same expression in terms of the smeared propagator as in
terms of the point propagator. For a further discussion
of different types of quark sources and their relative mer-
its, see Ref. [11].

The calculation of the quark propagators is done on
Cray XMP's and YMP's, with the convergence criterion
set to R =10 ' for all lattice parameter values. To
check that this criterion is sufficient, we increased the in-
version accuracy to R =10 ' on a few lattices at the
smallest quark masses and compared results. We failed
to detect any significant difference in the elements of
quark propagator.

VI. HADRON SPECTRUM

The fitting procedure we use to extract the mass of the
lowest state from the hadron correlator introduces a cer-
tain systematic error when the signal does not extend to
very large separations. To control this systematic error,
we first examine the effective mass plot for the existence
of a stable plateau, and then make a single mass fit over
this range of the plateau. We use the full covariance ma-
trix in the fit, and the errors in the fit parameters are cal-
culate using the single elimination jackknife method. We
repeat this procedure dropping points from the plateau.
In most cases, the y /XD„ is of order 1 and is insensitive
to the range of the fit, and we quote a result from the fit
to the full plateau. The remaining cases almost always
correspond to very small eigenvalues in the covariance
matrix. In such cases we reduce the range of the fit to
eliminate the small eigenvalues and to bring the g /XDF
close to one. We find that fits using the covariance ma-
trix typically give mass estimates that are 1o higher than
the case where correlations between time slices are
neglected.

Using the above-stated procedure we extract masses of
m, p, ao, a &, and b, mesons and both parity states of the
N and 6 baryons. The effective mass plots for m, p, and
nucleon at the lightest value of the quark mass are shown
in Figs. 4 (P=5.4), 5 (P=5.5), and 6 (P=5.6). In these
figures, the solid line gives the result obtained using a sin-
gle mass fit to the points indicated. The dashed lines
show the spread corresponding to the 1o. error obtained
from the fit. This is to be compared with the variation in
the effective mass over the range of the plateau as a con-
sistency check. The range of the At, the correlated
y /XD„, and the final mass estimates are given in Tables
VIII —X.

In Figs. 4—6 we compare the effective mass plots for
both the SGS and the GS correlators. The errors in each
point are calculated using single elimination jackknife.
In nearly all cases the fits to the two different correlators
gave results that are almost identical. The quality of the
data is, however, diFerent: the fiuctuations in m(t) for
the SGS correlators are larger, while m (t) from GS
correlators takes one to two time slices longer to reach
the plateau. Overall, the gain in overlap with the lightest
state using SGS propagators is largely counterbalanced
by a noisier signal. This conclusion is based on a compar-
ison of signals from the SGS and the GS correlator on
time slices from which the asymptotic mass is extracted
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FIG. 4. EfFective mass plot at P=5.4 and a.=0.162 for the
pion, rho, and the nucleon. The data on the left-hand side are
for the SGS correlator while that on the right (time reversed to
ease comparison) are for the GS correlators.

FIG. 6. Same as Fig. 4 but for P=5.6 and x=0.157.

for the GS case. The cause of the extra noise is the addi-
tional smearing factors of K, which depend on the gauge
fields on the sink time slice, in the functional average.
Thus fluctuations of the gauge field, which are correlated
between time slices, enhance the fluctuations in the had-
ron correlators. This effect correlates with the value of Q
on the individual configurations. Those having larger
smearing size, and hence a larger norm for the correla-
tors, dominate the statistical average. Therefore one can-
not choose ~~G too large and we find that Q should not
be much larger than 4 for our lattice parameters.

For the pion and rho we have looked at two different
operators, and find that both give consistent results. We
show a comparison using the P=5.6,~=0. 157 data with
SGS correlators in Fig. 7. The operator mz—=y4y5 cou-

ples more strongly to the pion (the plateau is reached ear-
lier), but the fiuctuations in m (t) are larger. For the p
both operators have similar overlap with the state,
though the signal is marginally better with the spin struc-
ture y;. Mass estimates using both operators for each set
of values of P and a and for both kinds of correlators are
given in Tables VIII —X for the baryons we have averaged
over the upper and lower Dirac components for each par-
ity state.

The main drawback of the calculation presented here is
that the plateau regions in the rho and nucleon effective
mass plots have significant fiuctuations (see Figs. 4-6)
and errors of order 5% could easily be present in the
mass estimates. These errors are due to poor statistics,
especially in light of the large autocorrelation times we
observe in the update.

P=5.5 ted=0. 160 p=5. 5 L=0.157
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o p, (scs)
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)a iz'
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FIG. 5. Same as Fig. 4 but for P=5.5 and ~=0.160. We
display data for operators m.

2 and p2 to show that their behavior
is similar to that of ~ and p.

FIG. 7. Comparison of m, z(t) for the two pion and rho
operators: ~=—y& versus mz

=—y4y5 and p =—y; versus pz
=—y4y;.

The data are from the SGS correlators at p=5. 6 and @=0.157.
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Recently, the HEMCGC Collaboration reported seeing
"wiggles" in the effective mass plots which they attribute
to the use of the doubled (or quadrupled) lattices [12].
We find no evidence for such effects, so that, if present,
they are smaller than our statistical errors. We should
note however that our errors are larger than those of the
HEMCGC Collaboration so there is as yet no contradic-
tion.

We have only used one lattice size for each value of P
and K and therefore do not have a check on finite-size
effects. Nevertheless, we expect that such effects are
small for our quark masses, m )m„on our lattices of
size 16 . We expect this because in quenched calculations
at a similar lattice spacing (e.g. , P-6.0) there is no evi-
dence for finite-size effects in meson or baryon masses for
m )m, on 16 lattices (e.g., see the data at 13=6.0 given

in Tables V and VI of Ref. [13]). Now, finite-size effects
come largely from pion loops that wind "around the
world. " These effects are present in both full and
quenched theories, so we expect finite-size effects to be of
similar magnitude. Note that at small quark masses the
leading finite volume effect in a chiral expansion is absent
in the quenched approximation for some mesons. For
heavy quarks, however, this leading term is not dominant

We determine Ir, at each P by doing a linear fit of M
vs I/Ir, and finding the value of Ir at which M„vanishes.
Note that here we are holding ~va& Kdyz The fits are
shown in Figs. 8—10, and the resulting values of ~, are
listed in Table XI. To give a rough idea of the equivalent
quenched theory we list the pure gauge couplings P', ff,

which have the same ~, as determined by interpolation of
existing data.

TABLE VIII. (a) The meson spectrum at P=5.4. Two kinds of hadron correlators are constructed: entries with label S are using
SGS propagators and the other results are from GS correlators. The 6rst number in each box is the correlated y /N» for the fit, the
second is the range of the fit and the third is the mass estimate. (b) Baryon spectrum at P=5.4. Notation as in (a).

m.{y5) ~(y4y5) p(y;) p(y4r ) bl(e J.ky&yk )

0.160S

1.1
5 —11

0.76(1)

2.3
5 —11

0.79(2)

(a)
~d=0. 160;15 12 —+12 X24 lattices

0.35 0.28
5—11 5-11

0.86(l) 0.87(1)

0.81
3-6

1.56(7)

1.4
3—6

1.60(10)

1.5
3—6

1.36(5)

0.161S

1.2
6—11

0.69(2)

0.80
6—11

0.66(1)

~d=0. 161; 15 12 ~12'X24 lattices
1.0 0.85

6—11 6—11
0.78(1) 0.78(1)

1.1
3—7

1.20{5)

1.7
3—7

1.23(10)

0.94
3—7

1.14(5)

0.162S

0.162

1.3
7—13

0.580(7)
1.1

7—13
0.574(10)

0.58
9—15

0.569(10)
0.90
7—13

0.555(18)

wd =0.162; 14
1.5

7—13
0.724(16)

1.6
9—15

0.703(13)

16 ~16 X32 lattices
1.2

7—13
0.724(16)

0.68
7—13

0.720(15)

1.5
4—8

1.30(5)
1.4

4—9
1.21(5)

1.1
4—8

1.24(8)
1.0

4—9
1.09(6)

0.7
4—8

1.27(9)
0.24
4—9

1.20(6)

0.160S

~d =0.160;
0.59
2 —8

1.45(3)

(b)
15 12 —+12 X24 lattices

0.3 0.47
3—8 2 —8

1.98(7) 1.52{3)

0.93
3-7

1.93(14)

0.161S

~d=0. 161; 15 12 ~12 X24 lattices
0.84 0.68 1.1
4—9 3—7 4—9

1.31(3) 1.58(4) 1.40(4)

1.4
3—7

1.71(9)

0.162S

0.162

ad =0.162;
0.55
6—12
1.15(2)
0.18
7—14
1.15(3)

14 16 ~16'X32 lattices
0.40 0.59
4—8 7—13

1.59(3) 1.26(3)
0.5 0.1

4—8 7—12
1.58(4) 1.25(3)

1.3
4—8

1.53(6)
1.0

4-8
1.63(4)
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Having determined a„ the masses for all other states
are extrapolated to Ir, using linear fits of M vs I /Ir. These
fits are also shown in Figs. 8 —10. We estimate the lattice
scale I/a comparing the extrapolated M and Mz to the
experimental values. The resulting scales are listed in

Table XI. We should add a word of caution that linear
its are expected to be particularly unreliable for M, as
significant curvatore may be present at the two-pion
threshold [14].

In Figs. g —10 we also show f /Z~ calculated on the

TABLE IX. (a) Meson spectrum at P=5.5. Notation as in Table VIII (a). (b) Baryon spectrum at P=5.5. Notation as in Table
VII' (a).

0.158S

0.158

0.1595

0.159

m(y, )

0.47
6—13

0.567(5)
0.78
8-14

0.568(5)

0.77
6-14

0.480(4)
0.54
6—14

0.473(6)

~(y4y5)

0.65
6—13

0.569(8)
0.42
8—14

0.569(7)

0.79
6—14

0.480(S)
0.89
6—13

0.476(8)

p(y;)

vd =0.158;15
0.13
6—13

0.672(8)
O.S7
8 —14

0.672(9)

&cd=0. 159; 17
0.94
6—14

0.598(8)
0.82
6—14

0.593(6)

p(y~y )

(a)
16 ~16'X 32 lattices

1.2
6—13

0.672(9)
0.55
8—14

0.672(9)

164—+16 X32 lattices
0.68
6—14

0.599(9)
1.6

8-14
0.607(7)

al(y;y~)

1.2
3—8

1.10(4)
0.1

5—9
1.11(3)

2.0
3—8

1.11(4)
0.38
3—8

1.07(2)

ao(1)

2.1

3—8
1.07(4)

1.3
4—9

1.08(5)

0.47
3—8

1.04(S)
1.2

3—8
1.02(3)

1.7
3—8

1.12(5)
1.8

4—9
1.15(3)

2.6
3—8

1.06(4)
0.75
3—8

1.06(2)

0.160S

0.160

0.76
8—15

0.350(10)
1.4

9—15
0.363(12)

1.3
7-15

0.376(9)
1.3

7—15
0.374(11)

ed=0. 160; 27
0.78
8 —15

0.518(15)
0.42
9—14

0.516(10)

16 —+16 X32 lattices
0.72
7—15

0.513(14)
2.5

8—16
0.527(13)

4.1

4—8
0.81(5)

2.6
7—12

0.70(9)

1.6
4—8

0.79(6)
1.4

7—12
0.70(12)

0.81
4—8

0.94(6)
1.4

7—12
0.84(8)

0.158S

0.158

~g =0.185;
0.30
6—13
1.10(2)
0.06
7-13
1.09(2)

(b)
15 16 —+16 X32

0.68
4—10
1.49(5)
0.48
6-10
1.44(6)

lattices
0.31
6—13
1.17(3)
0.48
7—13
1.16(2)

1.2
4—9

1.68{10)
0.77
6—10
1.59(7)

0.159S

0.159

ed=0. 159; 17
0.81
6-14

0.94(2)
0.34
6—11

0.96(3)

0.87
6—9

1.27(8)

16 —+16 X32 lattices
0.74
6—14
1.02(2)

1.1
6—11
1.07(3)

0.78
6—9

1.41(9)

0.160S

0.160

~d=0. 160; 27 16 —+16 X32
0.77 0.22
8—15 6—10

0.77(2) 0.98(6)
1.2 0.70

9-15 7-12
0.77(2) 1.06(6)

lattices
1.4

8 —15
0.88(3)
0.92
9—15

0.88(2)

1.5
6—10

1.17(12)
0.12
7—12

1.25(11)
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TABLE X. (a) Meson spectrum at P= 5.6. Notation as in Table VIII (a). (b) Baryon spectrum at P= 5.6. Notatin as in Table VIII
(a).

Kv

0.156S

0.156

0.78
8—15

0.463(5)
1.6

9—15
0.451(6)

~(y4y5)

1.1
8-15

4.463(7)
3.0

9—15
0.458(7)

p(y;)

~d =0.156;32
0.86
8 —15

0.55(1)
1.2

9—15
0.55(1)

p(y4y }

(a)
16 ~16 X32 lattices

0.70
8—15

o.ss(1)
1.5

9—15
0.55(1)

a~(y;y5)

1.1
5—10

0.84(2)

ao(1)

1.1
5—10

0.84(3)
1.0

5—10
0.85(3)

bi(ep, y, yk )

2.0
5—10

0.87(3)

0.157S

0.157

0.63
8—15

0.352{5)
0.81
9—15

o.3s2(s)

0.46
8—15

0.355(7)
1.5

9—15
o.3s8(7)

vd =0.157; 45
0.74
8—15

0.456(10)
0.53

10-15
0.454(9)

16 ~16 X32 lattices
1.2

8—15
0.447(14)

0.96
9—15

0.441(9)

1.1
3—8

0.85(2)
1.4

5 —10
0.83(2)

0.31
3—8

0.76(2)
0.73
5 —10

0.75{3)

0.52
3—8

0.87(2)
0.15
5 —10

0.87(2)

0.156S

0.156

vd =0.156;
0.28
8—14

O.87(2)
0.86
9—15

0.87(2)

(b)
32 16 ~16 X 32

0.1

7—12
1.11(6)

1.6
7—12
1.18(3)

lattices
0.19
8—14

0.91(2)
1.6

9—15
0.93(3)

1.3
7—12
1.18(7)

1.5
7—12
1.24(4)

0.1575

0.157

zd =0. 157; 45 16 —+ 16 X 32
0.64 0.86

10-15 6—11
O.68(2) 1.O8(3)
0.65 0.66

11-15 7—11
0.69(2} 1.10(3)

lattices
0.34

10-15
0.74(2)

1.4
11-15
0.77(2)

0.51
7—11
1.05(7)
0.66
7—11
1.16(4)

same set of lattices [4]. We find that a linear extrapola-
tion in I/a gives a good fit to the data. We use this extra-
polated value to give a third estimate of the lattice scale
in Table XI.

The key physics question in any spectrum calculation
is the behavior of the ratio Mz/M as a function of the
quark mass. We show the APE Collaboration mass plot

of our nf =2 data in Fig. 11, and compare it with the best
quenched data for Wilson fermions at P=6 in Fig. 12
[15]. To guide the eye we also give two phenomenologi-
cal parametrizations: the solid line for M„/M )0.7 in
the figures is derived using a potential model based on
hyperfine interactions [16] while the second solid line is
the linear term in a chiral expansion [17]. There is, how-

TABLE XI. The chiral limit ~, is determined using linear extrapolation of M„data at each of the
three values of P. The lattice scale is determined using a linear extrapolation for M, M~, and f /Z„
to x„and then fixing M =770 MeV, M~=938 MeV and f =132 MeV. We use Z„=0.86. For com-
parison we also list the pure gauge couplings that have approximately the same a, and a rough estimate
of ~ corresponding to the strange quark.

Ice

Lattice scale and ~, for nf =2 %'ilson fermions
1/a (GeV) 1/a (GeV} 1/a (GeV) a(m, )

5.4
5 ' 5
5.6

0.164 50
0.161 45
0.158 53

5.718
5.858
5.95

(M )

1.45(10)
1.9(1)
2.6(3)

(M~ )

1.2(1)
1.7(1)
2.3(4)

(f )

1.5(3)
1.8(2)
2.3(4)

0.163
0.160
0.1576
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FICr. 8. The mass spectrum at P=5.4 as a function of I/Ir.
The solid lines are a linear fit to the data and extrapolated to ~, .

FIG. 10. Same as Fig. 8 but at P=5.6.

ever, an important caveat in using these curves as a
guide: in our data we hold ~,&=&cd „while the curves
correspond to holding the mass of the sea quarks fixed at
their physical value and varying just the valence quark
mass.

The ratio M /M =0.7 corresponds roughly to
m~=m, [18]. In Table XI we give a rough estimate of
the value of ~ corresponding to m, for each of the three
values of p. We see that our nf =2 data falls in the range
m, (m (3m„and that it is roughly consistent with

I I I I

]
I I I I

J

I I I

Ma

M„

both the quenched results and the potential model. To
see substantial effects of fermion loops will certainly re-
quire better statistics and will most likely require smaller
quark masses.

The data show a clear increase in the mass splitting be-
tween the nucleon and the 5 as the quark mass is
lowered. In the nonrelativistic quark model (NRQM),
this splitting is due to the hyperfine interactions and is
expected to scale as (1/m„„„;,„,„,). Our lattice data
qualitatively reproduce the effect as shown in Fig. 13
where we plot the splitting in baryons versus that for
mesons [19]. We also find that the nf =2 data is in good
agreement with quenched results.

It is interesting to make a detailed comparison of our
results at p= 5.6 with those for the quenched spectrum at
p=6. 0 The latter, which are collected in Table XII,

APE Plot

M

O

6. 1 6.2

M„

f„/z„

1.4—

1.2 ~~—
0 0.5

(M„/M )

x p=5.4

o p=5, 5

FICr. 9. Same as Fig. 8 but at P=5.5. The points labeled
with a fancy cross at @=0.160 are from Ref. [21].

FIG. 11. APE plot for the nf =2 theory based on spectrum
data presented in Tables VIII —X.
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FICs. 12. APE plot for the quenched spectrum data at P= 6.0
given in Table XII.

FIG. 13. Comparison of hyperfine splitting between the nu-
cleon and the 6 versus that between the p and the m. We show
both our nf =2 data and quenched results at P=6.0.

come from (a) the APE Collaboration (using a multicube
source) [15],and (b) our results on 16 X 40 quenched lat-
tice (using a Wuppertal source with Q-4) [20]. We note
that our results are in reasonable agreement with those of
APE. There is a 2o. discrepancy in the 6 mass, which
may be an artifact of the different fitting procedures,
combined with some finite-size effects at ~=0.155.

We find that there is a reasonably good match between
the ~=0.157 dynamical data and the ~=0.154 quenched
results, and between ~=0.156 dynamical and ~=0. 152
quenched. What is clear from this comparison is that
r)M/B(1/2a') is about twice as large for the nf =2 theory
as compared to the quenched case. We will come back to
this point in Sec. VII when we discuss the pion-nucleon o.
term.

The only earher calculation we can compare our re-
sults against is that of Fukugita and Ukawa at P=5.5
and jr=0. 16 [21].They used a second-order Langevin al-

gorithm to update 9 X18 lattices and calculated the
spectrum for three different step sizes. The zero step size
limit was determined using a linear extrapolation. We
show their results in Fig. 9 and for clarity displace them
slightly from ~=0. 16. The pion and rho masses are in
agreement, and the errors in their estimate of the nucleon
mass are too large to make a useful comparison. The er-
rors in our data are considerably smaller, which we attri-
bute to the use of smeared sources and a larger spatial
volume.

VII. SCALAR DENSITY AND AXIAL-VECTOR
MATRIX ELEMENTS

The matrix elements of quark bilinear operators, qI q,
where I is a Dirac matrix, in hadronic states are simple
probes of the physics of QCD. They occur in parametriz-
ations of hadronic mass splittings, semileptonic-decay

TABLE XII. Quenched Wilson fermion spectrum at P=6.0. The results on 18'X32 and on 24'X 32
lattices are from the APE Collaboration.

0.152

Lattice

18'x 32

Configs.

104 0.474(1) 0.545(2) 0.861(5) 0.905(6)

0.153
0.153

18'x 32
24'x 32

104
78

0.420(1)
0.423(2)

0.504(3)
0.509(2)

0.792(6)
0.805(6)

0.843(7)
0.87(1)

0.154
0.154

16'x40
18 X32

35
104

0.365(4)
0.361(1)

0.465(7)
0.463(3)

0.736(11)
O.721(7)

0.82(2)
0.782(10)

0.155
0.1S5
0.155

16'x40
18 X32
24 X32

35
104
78

0.301(6)
0.295(1)
0.297(3)

0.420(12)
0.422(4)
0.428(4)

0.663(15)
0.6S1(10)
0.647(6)

0.78(2)
0.723(14)
0.745(15

0.1558

0.1563

24 X32

24'x 32 78

0.234(5)

0.186(7)

O.397(7)

O.377(9)

O.57(1)

0.52(2)

0.67(3)

O.61(6)
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N

V, =—g 5%,"5%",
n=1

(7.2)

where the index n runs over the configurations and i,j
over the range of times slices to which the fit is made.
For the ratio of correlators, the diff'erential 5%,". is taken
to be

y;"—&y; )

&y;)
(7.3)

We find that the ratio in Eq. (7.1) shows linear behavior
from an earlier time than that at which the lowest-mass
state saturates the individual correlation functions. In

term in Eq. (7.1). The errors are calculated using a single
elimination jackknife procedure. For each jackknife sam-
ple the covariance matrix for calculating the g /1VDF
used in the fit is constructed directly for the ratio
%(t):—&x (t) ) /&y(t) ), using the formula

Table XIV we give the results of the fits, together with
the range of t over which we make linear fits, and the
y /XD„. We show examples of plots of the ratios of
correlators from which F&, D&, Fz, and Dz are extracted
in Figs. 15(a), 15(b), 15(c), and 15(d), respectively. The
quality of the signal in all quantities except D, is similar,
and one can make reliable fits keeping 5 —6 time slices.
The data for Dz is poor, especially at the heavier-quark
masses where D& -0.

In order to evaluate whether vacuum-polarization
effects play any role for m )m„we repeat the analysis
on the quenched 16 X 40 lattices [20]. The results, which
are of similar quality as for the unquenched lattices, are
given in Table XV.

We begin by discussing the axial-vector matrix ele-
ments Fz and D&, which have the smallest errors. These
were first calculated in Ref. [9], with results that interpo-
lated well between the infinite-quark mass and experi-
mental values. Most of the change in g~ =—F„+D~ oc-

! ! ! !
/

! !

Proton(Fs)

10—
Proton(D ) (b)—

10— CD

0-
()

0 ! !

10 :30

!
~

! ! ! ! ! r~
Proton(I'A) (c)

30
Proton(DA)

10—

10—

X

0
0 10 20

gpb~a3

:30

X

0ix
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FIG. 15. (a) Plot of the ratio of three-point function to the two-point correlator from which the reduced matrix element I'z is ex-
tracted using the form given in Eq. (7.1). The data are from P=5.6 and a.=0.157 lattices. The points labeled with symbol X are for
the proton and those with Q are for the opposite parity nucleon. (b) Same as (a) except that the data are for Ds. (c) Same as (a) ex-

cept that the data are for I' ~. (d) Same as (a) except that the data are for D„.
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curred for M /M )0.8, below which the results were
consistent with the experimental numbers. Our results lie
in the range 0.7&M„/M &0.88 and show little varia-
tion with mass. This lack of variation is con6rmed by the

fact that the quenched results of Ref. [24] at, 13=6,
a=0. 152 agree with our quenched results at larger ~.
Furthermore, the results depend little on P, or on the use
of the quenched approximation. This all suggests that

TABLE XIV. Nonsinglet scalar density and axial-vector current matrix elements at P= 5.4, 5.5, and
5.6. The renormalization constant Z& have not been determined for these lattices. An estimate based
on perturbation theory and quenched calculations is Z„/f -0.86. No numbers are given where the
signal is poor and the notation is as in Table VIII (a).

0.1605

fF, /zs

1.1
3—7

0.81{4)

fD, /Zs

2.0
2—7

—0.08(3)

f+~ /Z~

0.50
3—7

0.54(3)

fD„/Z„
0.51
3—7

0.81(4)

fp, /zs

0.98
3—7

0.75(4)

f~, /Zs

1.9
3—7
1.9{2)

5.4 0.161S

31.0
3—9

0.87(3)

0.37
2—7

—0.04(2)

13.6
3—9

0.57(2)

19.0
3—9

0.86(5)

0.81
3—7

0.77(3)

11.0
3—7

2.2(2)

5.4 0.162S

0.67
3—8

0.99(3)

0.75
3—8

0.55(3)

0.47
3—8

0.83(4)

2.6
3—9

0.79(3)

1.0
3—8

2.9(1)

5.4 0.162

0.38
4—9

1.02(5)

0.43
5—9

—0.16(9)

0.98
4—9

0.56(3)

1.2
4—9

0.85(2)

2.5
4—9

0.79(3)

1.7
4—9

2.7(1)

5.5

0.158S

0.158

1.5
6—12

0.96(5)

1.6
3—8

—0.06(3)
2.6

4—10
—0.05(3)

2.3
3—8

0.55(3)
1.5

6—12
0.56(3)

2.3
3—8

0.85(2)
2.2

6—12
0.88(2)

8.0
5—13

0.85(6)

4.3
5—12
2.4(1)
0.23
6—12
2.5(2)

5.5

5.5

0.159S

0.159

1.0
5 —10
1.13(7)
0.85
5—10
1.10(5)

2.2
4—8

—0.08{4)
0.82
4—8

—0.15(4)

2.3
4—8

0.59{3)
0.49
4—8

0.58(2)

0.95
4—8

0.87(1)
1.4

4—8
0.85(2)

1.2
5—10

0.83{7)
1.1

5—10
0.88(6)

0.75
4—8

2.6(3)
1.4

4-8
2.5(2)

5 ' 5

5.5

0.160S

0.160

0.39
6—11

1.04(12)
0.75
5 —11
1.01(6)

0.99
4—10

—0.36(7)
2.0

5—11
—0.28(6)

3.1

4—9
0.55(5)

4.0
5—11

0.51(5)

0.13
4—9

0.81(3)
2.0

5 —11
0.90(4)

1.4
5—12

0.77(7)
0.63
5—11

0.75(6)

0.45
4—10
2.0(3)

1.2
5—11
1.9(2)

5.6

5.6

5.6

0.156S

0.156

0.157S

0.157

1.3
5 —10
1.00(4)

3.0
6—12
1.03(5)

1.4
5 —10
1.12(8)

0.18
4—9

—0.13(3)
0.66
5—10

—0.12(3)

0.63
4—8

—0.17(5)
1.9

5—9—0.18(6)

0.28
4—9

0.54(2)
0.53
5—10

0.55(1)

0.56
4—10

0.56(2)
1.3

5 —11
0.58(2)

1.3
5 —10

0.86(2)
0.85
6—12

0.86(2)

1.4
4—10

0.86(3)
0.86
5—9

0.89(3)

0.69
6—11

0.96(4)
0.59
7—12

0.93(4)

2.3
7—12
1.07(8)

1.5
7—12
1.06(8)

0.55
5—10
2.7(2)

1.6
7—12
2.6(2)

0.50
6—10
3.0(5)
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TABLE XV. Nonsinglet scalar density and axial-vector current matrix elements for quenched lat-
tices at P= 6.0. An estimate of the renormalization constant for the axial-vector current is
Z„ /f -0.86. The notation is as in Table VIII (a).

0.154S

0.154

fFs/Zs

2.2
6—13

0.99(6)
1.2

7—12
1.02(6)

fDs/Zs

1.4
4—10

—0.13(4)
0.59
5 —9

—0.11(4)

fF~/Z~

0.56
6—13

0.55(2)
0.89
7—13

0.55(2)

fD„ /z~

1.1
6—13

0.77(3)
0.57
5—11

0.81(2)

fps/Zs

0.73
7—11
1.05(8)

1.6
10-15

1.12(10)

f~s/Zs
2.0

7—13
3.4(3)

1.0
10-15
3.2(5)

0.155S

0.155

2.9
7—12

1.13(15)
1.5

8—12
1.22(15)

2.5
4—8

—0.21(8)
0.89
5—9

—0.21(9)

0.43
7—12

0.58(4)
1.5

8—12
0.56(6)

0.69
7—12

0.83(8)
1.2

8—12
0.83(8)

0.58
7—12

1.06(12)
1.3

10-14
1.16(17)

0.76
7—12
3.5(5)
0.56
9—13
F 1(6)

the extrapolation to the chiral limit of Fz and Dz data
may be reliable. Assuming this, we can compare our re-
sults to experiment. To be concrete we average the re-
sults at P=5.5 and 5.6, yielding fF&/Z„=0. 56 and
fD„/Z„=0.87. For our values of a, the parameter f
varies between 0.97 and 0.94. Perturbative and nonper-
turbative estimates of Z~ lie in the range 0.80—0.86 [27].
Taking Z~/f =0.86 as a reasonable estimate, we get
Fz =0.48 and Dz =0.75, which are close to the experi-
mental values (Table XIII). This comparison is most reli-
able for F~ /D„, where renormalization factors cancel.

We now turn to the scalar matrix elements in the pro-
ton, Fz and Dz. First we note that our sources have im-

proved the signal compared to that for the point sources
of Ref. [22]. Our results are of comparable quality to
those of Ref. [23], which are also obtained using smeared
sources. The most notable trend in our results is that
~Ds~ increases as the quark mass decreases. There is
some evidence for a small increase in F&. These trends
have been observed in quenched calculations [22,23], and
are required if the results are to extrapolate to the experi-
mental values. Our results with dynamical fermions are
in reasonable agreement with quenched results (both
those of Refs. [22] and [23] and our own [20]), if we com-
pare them at the same M„/M .

In principle, we can extrapolate F& and D& to the
SU(3)-symmetric point, and use the continuum baryon-
octet mass splittings to extract the lattice value for
m, —(m„+md)/2 (see the first reference in [23]). This
must be divided by the (poorly known) renormalization
constant Z& to be compared to the continuum quark
masses. The extrapolated value of the ratio D&/F& re-
quires no renormalization and can be compared directly
to experiment. In practice, however, we do not think our
data merits such an extrapolation. We only note that
Dz /Fz is rapidly becoming more negative. This indicates
the onset of relativistic motion of the bound quarks.

Our results for ps and b.s show an increase with P.
Such a trend is consistent with renormalizaton-group
scaling due to the anomalous dimension of the scalar den-

sity. There is no obvious pattern of variation with quark
mass. The only constant feature is that bs/ps=2. 5 —3,
which is consistent with quenched results [23]. This re-
sult is to be compared with the experimental value of
=3.5 and the infinite quark mass limit of 3.

The most interesting results concern the pion-nucleon
o. term, for here we can see clearly the e6'ect of dynamical
quarks. Recall that

o ~=m (Ni(uu+dd)""'iN), (7.4)

where m =0.5(m„+md). We cannot directly calculate
a & as this requires extrapolating the matrix element to
very small quark masses. What we can do is calculate the
ratio of the full matrix element (valence plus sea) to its
valence part, which is given by o."z=—(3Fs Ds). This—
gives an indication of the importance of insertions on
quark loops.

We calculate the full matrix element, including sea
contributions, by taking numerical derivatives of the had-
ron masses

Z,' am
+dd )""'IN &

= f B( 1/2x. )
(7.5)

Using the numerical derivative circumvents the calcula-
tion of the noisy three-point function of Fig. 14(b), but
does require a number of data points to get a stable re-
sult. Since we take the ratio of this quantity to a similar
(valence) matrix element, we need not worry about the
factor of Zs/f needed to convert the matrix element to
continuum normalization. Our data are shown in Fig.
16, where the valence part is the average of the values at
the two ~ used in the derivative. We see that the sea con-
tribution is 1—2 times the valence part. This is qualita-
tively in agreement with our previous results at stronger
coupling, and with the experimental data. For more dis-
cussion, see Refs. [25] and [28].

We also find a similar factor of 2 —3 between the
valence and the full value for both p& and b,&. Further-
more, the magnitude of the matrix element is roughly
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FIG. 16. Ratio of the full o term to its valence component
shown in Fig. 14(a) plotted as a function of (M /M~) .

proportional to the number of valence quarks. This is in
agreement with a model for constituent quarks in which
the quarks are dressed strongly, and in a manner which is
independent of the state that they are in.

As a check, we can repeat the analysis with the
quenched data. Here the two methods should agree. For
example, the average value of f(3' Ds)/Z+ —for the
proton at x=0. 154 and 0.155 is 3.4(S) from Table XV,
while taking the numerical derivative gives 3.5(9) using
data in Table XII.

The above calculation do not provide a first-principles
result for m, (P~ss~P), i.e., the strange-quark contribu-
tion to the proton's mass. For this we need I3Mt, /Bm„
evaluated holding the masses of u, d quarks at their physi-
cal values and varying the strange-quark mass near
m, =25m. Such a calculation is still a number of years
away.

VIII. CONCLUSIONS

We use the HMC algorithm to simulate QCD with two
flavors of Wilson fermions on 16 lattices down to the
strange-quark mass. The CM2 is very well suited to run
QCD in production mode and the present version of the
code for updating 16 X32 lattices runs at a sustained
speed of 1.3 GAops on a 16K machine.

The preconditioned over-relaxed algorithm we pro-
posed for matrix inversion is very efBcient: the conver-
gence is exponential for all values of the parameters we
have used so far. The step size used in molecular-
dynamics evaluation has to be decreased as mq as
shown by Gupta et al. [8]. While this is a much weaker
dependence on the quark mass for HMC algorithm than
the worst-case scenario proposed by us, the CPU time
still scales as m ' . Thus a major improvement in algo-
rithms is still necessary in order to probe the chiral limit
of QCD.

Our runs are not long enough to measure autocorrela-
tion times, but we suspect that decorrelation times are of

order a few hundred trajectories. This translates to ap-
proximately 1000 GAop hours to produce a decorrelated
16 X32 lattice at mq-m, .

We have presented detailed results for Wilson loop ex-
pectation values for a number of values of P and v. From
this data we extract the potential between a heavy qq pair
for r ~0.5 fm. This separation is too short to demon-
strate screening due to vacuum polarization. However,
the results are qualitatively different from those obtained
in the pure gauge theory.

We calculate quark propagators using the Wuppertal
smearing method. We find a strong signal in the hadron
correlators and find that the lowest state starts to dom-
inate for t in the range 6—9. This allows us to extract ac-
curate mass estimates for pions on our lattices. The sig-
nal for the rho and the nucleon is not as good and sys-
tematic and statistical errors could be as big as S%%uo. We
have made a detailed comparison with quenched results
and find qualitatively similar behavior for the two
theories. This, we feel, is not unexpected for m ~m, .

We show that a good signal is obtained in three-point
correlation functions of the nonsinglet scalar density and
axial-vector current operators inside hadrons. The re-
duced matrix elements F~ and Dz show little variation
with P or the quark mass and their values are consistent
with experimental numbers even though m ~ m, .

In case of the matrix elements of the scalar density, we
find that the contribution from insertions on the sea
quarks is comparable to the valence contribution. Since
the valence contribution to the pion-nucleon o. term is
=26 MeV, our result suggests a value closer to the exper-
imental number of 45 —65 MeV for the full theory [29].
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APPENDIX A: PERFORMANCE OF THE HMC
ALGORITHM ON CM2

Our QCD code is written in LISP with computational-
ly intensive matrix multiplications written in CMIS (Con-
nection Machine Instruction Set). It runs at a sustained
speed of 1.6 GAops on a 32-bit rnachine. The code per-
formance has been further enhanced to 5.3 GAops on the
latest versions of the CM2 with 64-bit Weitek coproces-
sors and 256 kbyte of memory per processor. Both per-
formance numbers have been prorated to the full 64K
processor machine. For comparison the same problem
sustains = 1 GQop on an 8 processor Cray YMP.

The larger memory CM2 allows us to rearrange the
data to make memory access more efficient, though the
major part of the speed up comes from using rnultiwire
news instructions (facility provide by the Thinking
Machines Corporation to do simultaneous bidirectional
communications in four dimensions). With this perfor-
mance we can carry out detailed calculations with two
flavors of Wilson fermions on 16 X32 lattices on the
CM2. The details of the implementation have been
presented in Ref. [30].

The issue of machine precision is very important for
the stability of the HMC algorithm. The present calcula-
tions on the CM2 have all been done using the 32-bit
Weitek chips. We find that 32-bit precision is adequate
for the gauge part of the calculation. In the remaining
part of the code, loss of precision with 32-bit arithmetic
can arise in three ways, but as explained below none of
these presented a problem on the CM2.

(1) Roundoff errors at each step of the inversion of the
fermion operator: for QCD the number of arithmetic
operations necessary per site is approximately 1500. This
number is independent of the lattice volume, since the
Dirac operator involves only nearest-neighbor sites.
There are no divisions in the arithmetic operations, and
all numbers are of order unity. For such a computation
32-bit precision is adequate. In iterative algorithms (e.g.,
conjugate gradient, minimal residue etc.), one also per-
forrns a global sum over sites. These inner products in-
volve the residue vector, the elements of which are small
and fluctuate in sign, so the accumulant stays small. To
make sure that roundoff errors do not build up in the
residue vector we use the following test: we run a trajec-
tory of 100 MD steps, (each step takes on average 150
iterations for matrix inversion, i.e., 600 matrix multipli-
cations, at m = m, ), two different ways: (a) the residue is
calculated only at the beginning of each inversion, and (b)
the residue vector is recalculated every 10 iterations. We
find that the difference after 100 MD steps is typically in
the ninth significant figure for each of the three terms in
the action; this is a negligible error for the present set of
parameters. In production runs we recalculate the resi-
due every 20 iterations as an additional precaution, since
the overhead is small.

(2) Global sums: For a 16 lattice one adds =1.6X10
numbers in a global accumulate. Even for sums involving
numbers of the same sign and approximately of unit mag-
nitude we do not need any special algorithms to circum-
vent adding small numbers to a large accumulant, since

on the CM2 all intrinsic global accumulate functions use
a binary tree involving nearby sites. Thus at each step
numbers of comparable magnitude are added. Also, in
each iteration the result of global sum multiplies the
over-relaxation parameter. Since the performance of the
algorithm is insensitive to the precise value of this param-
eter co (as long as it is in the range 1.15—1.5 [2]), errors
due to lack of precision in the global sum are equivalent
to small Auctuations in co for that iteration. Lastly, our
implementation of the minimal residue algorithm is self-
correcting: if a systematic drift does exist due to 32-bit
arithmetic, it is removed by the periodic recalculation of
the residue vector as explained above.

(3) Accumulating b,S: The three terms in the action
(pseudofermion, momentum, and gauge field) are all of
order 10 on a 16 lattice. For =70% acceptance in the
Metropolis step ES has to be of order 1. It is clear that
for this step the 32-bit accuracy is not sufficient if one
wishes to monitor the three terms separately. We, there-
fore, convert the value for each of three terms at each site
to 64 bits before doing the global sum and then evaluate
AS in 64-bit precision. The performance of the code is
not affected by this step, since this global sum over the
lattice has to be done only once per trajectory. Alterna-
tively, one can first calculate hS at each site. Since this
result is small and fluctuates in sign from site to site, the
final global accumulate can be done in 32-bit precision.

The latest versions of the Connection Machine use 64-
bit Weitek chips. The advantage of using 32-bit data is
much better performance due to more efficient use of re-
gisters and from half as much memory access. Our con-
clusion based on the above analysis is that the HMC al-
gorithm runs efficiently and without precision problems
with either 32-bit or 64-bit data structures for m m, .

APPENDIX 8: CALCULATING MATRIX ELEMENTS

(P(t)P(0) ) = f dp P(t)P(0)e —ze
f ~ oo

(82)

where P is an interpolating field with p =0, and d p, is the
usual measure in the functional integral. M is the mass

In this appendix we explain how the result Eq. (7.1) is
derived, emphasizing the approximations that are made.
Nearly all of the following discussion is drawn from Refs.
[22], [23], and [9]. Our aim is to collect the arguments in
one place, and to clarify certain subtleties.

We wish to calculate the matrix elements of bilinear
operators between hadron states (denoted generically by
Ip)):

~r=(p Gr~p) Gr= f q(x)I q(x) . (Bl)

In the following discussion we are not concerned with

spin factors, and so proceed as though the hadron is spin-
less. We use the normalization (p~p) =1, which is the
standard normalization for baryons at rest, though it is
nonstandard for mesons.

To calculate these matrix elements in continuum QCD,
we can use Euclidean two- and three-point correlators.
The two-point function behaves at large t as
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f —g~ Qo

7 —+ Qo

—M (t r) — Mr—
(83)

Thus we can extract At, r from the ratio

f —7 —+ Qo

Q~ Qo

& P(t)P(o)&
(84)

In lattice QCD we evaluate essentially the same quanti-
ties, except that integrals are replaced 'by sums, and the
correlators are de6ned only for discrete values of t. Since
the lattice correlators go over to those of the continuum
when the lattice spacing vanishes, we use the lattice ver-
sion of Eq. (84) to define the lattice matrix element

Ar(r)=

t —~~ Qo

Q~ Qo

( P(t)P(0})
(85)

Ati differs from Atr by terms of 0(g ) and of 0(a). In
our actual calculations we extract Jkr using

Ar =+%i-(~) ——const+ tA, „.t~ Qo
7

(86)

To derive this equation we note that, by summing over all
r, we are combining three contributions: (a) the "on-
shell" matrix element of Eq. (83) (t )r )0); (b) that from
excited states (r-0 and r t); an-d (c) that from "off-
shell" terms (r) t and r(0). The "on-shell" term de-
pends linearly on t, because each extra time slice gives an
identical contribution of the form of Eq. (83). The other
contributions, however, are independent of t aside from
exponential tails.

Numerical calculations are done at Anite lattice spac-
ing. To quote results in physical units, one needs to know
the relationship between the lattice matrix element Air
and the desired continuum matrix element A, r. There
are two parts to this relation. First, the lattice operators
have to be converted to continuum normalization. This
necessitates the calculation of the Z factors, which ac-
count for all terms which are functions of g, both per-
turbative and nonperturbative:

of lightest hadron with the same quantum numbers as P.
The three-point function, with an operator inserted at
time ~, behaves for large ~ and t —~ as

r(()J(q(* )rq( ))r(o))„„
X

for each 1.
To choose a form for fr which interpolates between

these limits, it is helpful to use an alternative expression
for A(l i- If w. e add a source term to the action,
5S„=hi g„q(x)I q (x), then we have that

1n( P(t)P(0) )r (810)

Equation (82) still applies for the two-point function, ex-
cept that M now depends on h r. Thus for large t,

%r=const+t
Bhr "r=o

so, comparing with Eq. (86), we find that

am

Bhi ir=o

(811)

(812)

Now, for the scalar matrix element the source hz just
adds to the mass term in the Lagrangian, which is

1 1 1
m 'g=—

2
(813)

and references therein). We have, wherever possible,
presented results as ratios of matrix elements in order to
cancel such factors. For mass splittings, Zz cancels in
the renormalization-group-invariant combination m qq.

Second, we consider the 0(a) terms in the relation be-
tween ALr and JMr. To remove these terms one has to
"improve" not only the operators [31]but also the action
[32]. This means that, for a given operator, the 0(a)
terms depend on the initial and final states, and thus can-
not be removed by a multiplicative factor. On dimen-
sional grounds there are two types of 0 (a) terms one has
to consider: 0(AQODa) and 0(mqa) ignoring g depen-
dence. Even though we cannot tackle 0 (AQcDa) correc-
tions in our present set up, we can account for certain
known 0 (m a) terms by defining

JKi =f„(m a)A(.r/Zr+0(a) . (88)

In particular, one can calculate the ratio in Eq. (85) for
very heavy quarks (i.e, ~—+0) using a hopping-parameter
expansion. The results are correct except for an overall
factor 2~. By "correct" we mean that the scalar matrix
elements count the number of quarks, the axial-vector
matrix elements measure the quark spins, etc. So fr
should have the limiting behavior

1 for v —+sc, ,

2~ for sc~Q, (89)

[q(x)I q(x)]""'=Zi-[q(x)I q(x)] +0(a) . (87) Thus we can rewrite Eq. (812) as

The Z factors approach unity only as 0 (g )=0(1/ln(a))
in the continuum limit, and are thus more important than
the 0(a) corrections from small enough a. Ideally they
should be calculated nonperturbatively, but in many
cases only perturbative results are available. They have
been extensively discussed in the literature (see Ref. [22],

BM
amL'g (814)

At finite lattice spacing, it is more appropriate to use
Wilson's definition of quark mass (which is based on the
expression for the pole mass in free field theory):
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mq =ln 1 1 11+—
2 K K~

(815)

aM,

Z~ Bmq
(B16)

Such a modification ensures, for example, that the proton
mass is three times the quark mass for heavy quarks.
Thus we define fs such that

which requires

Bmq

am L'g
q

1

1 1 11+
2 K K

(B17)

This choice satisfies both criteria of Eq. (B9). For simpli-
city, we adopt this choice for all fr. We emphasize,
however, that this choice is not unique, nor do we claim
that it takes care of all 0 (a) corrections.
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