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A new formulation on the lattice of a theory with a chiral fermion-scalar coupling and minimal field
content is proposed. The arbitrariness in the regularization is used in order to decouple the replica fer-
mions from the scalar. A continuum limit with just one fermion coupled to the scalar is obtained in per-
turbation theory and a Golterman-Petcher-like symmetry related to the decoupling of the replica fer-

mions is identified.

I. INTRODUCTION

The only sector, if any, of the standard electroweak
model (SM) in which one has to go beyond the perturba-
tive treatment based on the renormalizability of the
theory, is in the scalar-fermion sector. The formulation
of the model on the lattice is an appropriate framework
where one can study the possibility of having a strong
scalar self-coupling and/or a strong Yukawa coupling.
The relevance of the implications of such studies such as
the limitations on the masses of the scalars and fermions
as well as the possible influence of heavy fermions on our
present understanding of the Higgs mechanism is on the
basis of the recent activity in this area [1-3].

In order to obtain upper bounds on the masses of the
scalars and fermions in the standard model through nu-
merical lattice simulations (going beyond the upper
bounds determined perturbatively) a definition of a Yu-
kawa model on the lattice with a global chiral symmetry
is required. The chiral Yukawa models considered in the
literature go from the simplest toy model with one real
scalar field and a Z(2) global symmetry to the complete
scalar sector of the standard electroweak model. Anoth-
er way of classifying these models is according to the
solution used for the doubling problem that one finds
with fermion fields on the lattice.

Studies of a Yukawa model with one real scalar field
coupled to staggered lattice fermions [4] have shown how
a combination of analytic and numerical results can be
used to determine the rich phase structure of the model
and to put limits on the renormalized Yukawa and scalar
couplings on the phase boundary connected with the per-
turbative region (small Yukawa coupling). Another in-
teresting feature of this model is that while the continu-
um limit defined at the “perturbative phase boundary”
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does not depend on the details of the lattice regulariza-
tion, the phase structure at large Yukawa couplings and
the related possible nonperturbative continuum limit are
sensitive to the type of lattice regularization used [4].

A different formulation of lattice chiral Yukawa mod-
els, which makes contact with perturbation theory, is
based on the introduction of explicit mirror fermions in
order to use the standard Wilson term [5] to avoid the
fermion doubling and using the spontaneous symmetry
breaking of the global symmetry to give large masses to
the mirror fermions [6] or alternatively tune parameters
in order to decouple the mirror fermions from the scalar
field [7]. The introduction of new parameters and their
required tuning make the study of the phase diagram and
cutoff-dependent upper limit on the renormalized cou-
plings quite difficult to determine.

The last class of lattice Yukawa models essentially rely
on the Wilson method [8], now used in a manifestly
chiral-invariant way, with the scalar field, in the so-called
Wilson-Yukawa term. The main idea is that one can use
the strong Yukawa coupling phase structure to get a
mass for the replica fermions of the order of the cutoff
and at the same time to approach to the continuum limit
with a vanishing vacuum expectation value for the scalar
field in lattice units. The phase structure of a
SU(2)®SU(2) fermion scalar model which correspond to
the standard model with mass degenerated doublets has
been studied by a combination of analytical and numeri-
cal methods and arguments in favor of the possibility to
approach the continuum limit with a finite mass for the
physical fermion while the doublers get a mass of the or-
der of the cutoff have been given, both in the quenched
[9] and unquenched approach [10,11]. But in contrast
with the fermion-scalar sector of the perturbative stan-
dard model, the Yukawa coupling is a relevant parameter
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in the Wilson-Yukawa model. Also the crucial role
played by the definition of the continuum limit on the
phase boundary located in the strong Wilson-Yukawa
coupling region makes the studies of nonperturbative
effects quite involved, especially if one thinks of the SM
as an effective theory with a cutoff A~1 TeV, not much
higher than the scale which generates all the masses
(solution to the fine-tuning problem based on triviality).
Note that in this case the meaning of the decoupling of
the doublers would not be so clear.

One can ask whether the conclusions obtained so far
(additional fields are required in order to make direct
contact with perturbation theory which is the basis of our
understanding of the SM) are general to any lattice for-
mulation of the scalar-fermion sector of the SM or if they
are a consequence of the Wilson formulation. In other
words, the main question we address in this paper is the
following. Can we define a lattice Yukawa chiral model
with a minimal field content which allows us to define the
continuum limit around the Gaussian fixed point with
just one fermion for each fermion field coupled to the sca-
lar field?

II. LATTICE CHIRAL-YUKAWA MODEL

In order to answer this question we will consider a lat-
tice chiral Yukawa model, where we will handle the repli-
ca fermions in a different way from the Wilson method.
Let us consider a theory with a fermion field ® and a
complex scalar field ¥ interacting through the lattice ac-
tion

IV, ®)=15(®)+ (V) +1,(¥V D), 2.1

where
L@)=—Solo,+5—3 @, o +ole )
B X *Xx 2 x+p=x x T x4+
x X,

A3 (®lo, —1) 2.2)

is the naive free fermion action with the replica fermions
at 6,=m, 0 being the momentum in lattice units, and

(W==13 (0,7, ,,— T, 7. %)
X,

(2.3)

is the naive free fermion action with the replica fermions

at 9”=77', 0 being the momentum in lattice units, and

Iy (W0, @)=—y 3 (PO, ¥ + T @l W) 2.4
X

gives the coupling of the fermions and the scalars.

The way to implement the decoupling of the replica
fermions is based [12] on the use of the component W1,

¥(6)=F(6)¥(0), F(6)=T]f(6,),
I

f(0)=cos

, 0€(—mm], (2.5)

in the interaction term. In coordinate space the fields
\I/;” corresponds to an average over the ¥ components
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defined in an elemental hypercube in the positive direc-

tion

y= feexp [i [9 [x +iy0 ] ] F(6)¥(0)
I

1 D
=75 ¥t 2 2 Wx+ﬂil+---+;’1i

, (2.6)
2D n:l‘ui1<---<pi

n
n

and then the interaction does not spread out over the
whole lattice. The arbitrariness in the regularization al-
lows many other options for the f(8) function, but the
expression in (2.5) corresponds to the most local and rota-
tional invariant possibility. The fermion-scalar vertex of
the model in (2.1)-(2.5) is given by V(8,0)=yF(0)F(0)
and it vanishes for all replica fermions (6,=m), due to
the choice of f(6) in (2.5). The model has a global
U(1)® U(1) symmetry

Y, e T, Wp—e KW, ,

ia —ia 2.7
D e L<I>e R
and could be immediately generalized to the fermion-
scalar sector of the SM by adding appropriate fermion
and scalar fields, but all the properties of this sector are
already present in this simplified model.

The crucial point in order to prove the validity of the
model in (2.1) as a way to solve the doubling problem, at
the level of the scalar-fermion interaction, is to see
whether quantum corrections do not destroy the decou-
pling of the replica fermions implemented at the classical
level.

This problem can be studied in perturbation theory
and the result is that, as a consequence of the extension
to the lattice of the standard power-counting theorem
[13], the continuum limit of any Green’s function calcu-
lated with the model (2.1) coincides after renormalization
with the Green’s function of the Yukawa model in the
continuum with one fermion [14]. The only thing one has
to check is that all properties in order to establish the
power-counting theorem on the lattice are satisfied by the
lattice Yukawa model in (2.1). The reason why the proof
does not work in the case of the naive fermions is that the
denominator Dy of the fermion propagator is of order 1
at some points at the boundary of the Brillouin zone
(doubling problem). The proof of the power-counting
theorem [13] requires that, for lattice spacing a, smaller
than some value a,, |Dp(k,a)| > Ak?, for some constant
A, where k,=(2/a)sin(ak,/2). For k, near m/a, the
denominator Dy is of order one, while Ak? can be arbi-
trarily large for a —0. On the contrary, in the case of the
model in (2.1), this proof works. The reason is that for
any Feynman diagram, an internal propagator is always
accompanied by F(60) factors coming from the vertices,
and then, in the power-counting arguments, the naive
denominator is replaced by D =Dy(k,a)/F*ak), which
now can be bounded by Ak 2 in all the Brillouin zone. As
an example, an explicit one-loop calculation can be found
in the Appendix.

The former result (i.e., that the continuum limit of any
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Green’s function coincides after renormalization with the
Green’s function of the continuum Yukawa model with
one fermion), based on the Reisz theorem [13], may be
heuristically understood on the basis of a symmetry of
the action (2.1) which is a consequence of the use of the
component W' in the interaction term Iy. Actually, the
action is invariant under the 2°—1 transformation of the
fermion field

V. W+ ei“'ﬂrﬂ e

f‘e"’ i=2,---20, (2.8)
where Gﬁf)=0,7r and at least one component is different
from zero (momenta corresponding to the replica fer-
mions).

The naive free term, I in (2.3), is invariant under this
transformation, in fact it is also invariant under the trans-
formations with € 2~ Ex- The invariance of the interac-
tion term I follows from the invariance of the ¥(!)
ponent under the transformation (2.8).

In order to see the implications of this symmetry, we
consider the partition function with sources 7,7%,J, and
Jt coupled to the elementary fields

com-

Z(9,7,J,0)= [D® DY DV exp(1,) ,

(2.9)

L=1(V,®)+ 3 (¥ 9, +7,¥, +Jo +ol7).
X

[Dpo DY DT [wé,s*e —yFoAg+F, [ X508 5
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In order to avoid complicated nonlinear terms, it is
also convenient to introduce sources XX coupled to some
composite operator A4 —[P,_<I> +Pp @, W' and its
partner A Then our starting point is

Z(n,7,0,05x.0= [DeDYDVexp(I,), (2.10

where I, =1,+yA+ 4Ay.
It is simpler to work in momentum space, where

1,,(\11)+1Y(\11,<1>)=fe%sg‘we—yff7 fg%FgQ‘;’_gFe\Pe,

(2.11)
with
-1 . .
Sg =—i3¥y,sin,),
o N (2.12)
Qg =P Pygt+Pr®_g,
the Fourier transform for the scalar is defined

through &, feexpz [6(x + ‘Z,u)]d)g, and fe deQ/

(2m)P for 6€(—m,w]P.

If we consider the two independent transformations for
the fermion fields ¥ and V¥,
V(0)—>W(0)+e(0), V(O)—TV(0)+&0) (2.13)

we find the Ward identities

0]:0’

[DpoDpwDT" [Sg’\Pg—yFBAG—FFe .28 oxztmo ] =0.

(2.14)

The reason for the introduction of the extra sources is that we can write the Ward identities in the form of a linear func-

tional differential equation:

1. 0 d
S a”fl yFaaX Fefg)(gQg 5 7o |InZ=0,
4 0
Sg'——yF +F +7y|InZ=0,
l 0 o7, y 68)( eer oXgt 1Mo | In
where
d d
4=P, —— +Pp—— 2.16
QG LaJ9 RaJT_a ( )

These identities can be written in a more convenient
form by introducing the generating functional T

de?endmg only on the classical fields ¥, ¥, @',
LA A
LW, ¥,0", &% 4", ') =InZ (4,7,J,7 ;. %)
+7V +W'n+J !
+o T+ A'y+yv4, 217

with the relations

(2.15)

lIl,=_E)1nZ, T= dlnZ ,

o7 anln

, dlnZ —,

A ::__n_’ A =a_1£ R (2.18)

oy dx
q)l alnz T aan

Tagt ~ 437 -

aJ aJ

The Ward identities are given in terms of I" and the clas-
sical fields by

_ U 'l ar ar
S, W,—yF, A, +F e+ =0,
o Yo~ yFogAg+F, A,§Q9—9 o,
or _ or _ (2.19)

So'Wo—yFody—F, [ 0%,

od, v,
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Now if one takes =6 for i =2,. . .,2° one has
o or

—=0, —————=0. (2.20)
aw'(6") oW'(6'")

Then, for finite a, one finds that the inverse of the exact
propagator vanishes for 0 exactly equal to 6 and there-
fore the position of the replica fermion in momentum
space is not changed (see the Appendix for an explicit
one-loop calculation). Also by taking the functional
derivative of (2.19) with respect to the classical fields, one
finds that any one-particle-irreducible amputated Green’s
function vanishes if at least one external fermion line has
0=0'". Nevertheless, the control of the limit a —0 re-
quires one to come back to the former perturbative argu-
ment.

The decoupling symmetry (2.8) is in correspondence
with a similar symmetry found [15] in the case of the
Wilson-Yukawa formulation of the standard model
which allows one to prove the decoupling of the right-
handed neutrino in the continuum limit. The right-
handed neutrino is always required in order to construct
the Wilson term; but because it appears only through
derivative terms, it decouples in the continuum limit for
both the Smit-Swift model and the mirror-fermion model
[16].

III. SUMMARY AND DISCUSSION

The model presented in this paper can be considered
just as a nonperturbative formulation of chiral Yukawa
theories or as a first step in a formulation of a chiral
gauge theory such as the standard electroweak model.

From the first viewpoint (without any reference to
gauge chiral models), we can summarize the discussion in
this paper by saying that a formulation of chiral Yukawa
models on the lattice has been found which allows a
weak-coupling perturbative analysis showing, using
power-counting arguments, that in this weak-coupling re-
gion the doublers are decoupled. The identification of the
decoupling symmetry (2.8) can be used to argue that also
in a nonperturbative regime the replica fermions decou-
ple, if a sensible continuum limit exists with only the
terms of the action (2.1) (i.e., if not unexpected diver-
gences occur).

This model presents very different features from the
most known lattice chiral models (mirror-fermions and
Smit-Swift-Yukawa models); mainly, the way unphysical
fermions are decoupled deals with light replica fermions
instead of heavy doublers. According with our results,
the model (2.1) has in common with Yukawa mirror fer-
mions the fact that the weak-coupling region is sensible
to define a continuum limit with one physical fermion,
and with the Smit-Swift-Yukawa model it shares a
minimal field content. Then, further numerical investiga-
tions should be interesting to figure out whether the mod-
el (2.1) works correctly (numerical evidence of the decou-
pling of the replica) and to compare with the results
known for these other lattice Yukawa models [16].

The study of the corrections to the perturbative bounds
on the renormalized Yukawa and self-scalar coupling ob-
tained by going to the strong-coupling region and the

study of the possibility to define a nonperturbative con-
tinuum limit requires one to determine the phase diagram
of the model. This can be done with a mean-field ap-
proach [17]. The next step in the nonperturbative formu-
lation of the standard electroweak model would be to in-
troduce gauge interactions in the scalar-fermion model.
There are two possibilities corresponding to having gauge
invariance at the level of the regularization or asking only
for gauge invariance in the continuum limit after a tuning
of appropriate counterterms on the lattice action. The
first possibility looks more natural, but when applied to
our case it leads to a perturbatively nonrenormalizable
model with similar characteristics to the model based on
the Wilson-Yukawa term [8]. This option is essentially
nonperturbative and therefore escapes the reach of this
work. If we want the present formulation of chiral Yu-
kawa models to be interpreted as a global symmetry limit
of a chiral gauge theory for which a perturbative ap-
proach is possible, only the second possibility remains.
The structure of counterterms required in order to recov-
er gauge invariance (and Lorentz covariance) at the per-
turbative level has been considered in the Wilson-
Yukawa model [7]. In this case, the consistency of the
method at the one-loop level with an anomaly-free fer-
mion field content has been established. A nonperturba-
tive tuning associated with the divergent mass term for
the gauge field is present due to the gauge noninvariance
of the regularization and the structure of counterterms
required to obtain a gauge-invariant continuum limit
only makes sense in the presence of the gauge fixing and
Faddeev-Popov term [7], so that one must keep such
terms also at the nonperturbative level. The main
difference between this Wilson-Yukawa case [7] and our
method is that the fermion sector has a global chiral sym-
metry at the level of the regularization; this symmetry
avoids the appearance of a mass counterterm for the fer-
mion field.

It is an open question whether a sensible continuum
limit can be defined along these lines for a formulation of
a chiral gauge theory based on the model presented in
this paper.
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APPENDIX

In this appendix, we perform an explicit one-loop com-
putation of the fermion propagator to show how the
mechanism described in this paper works. For simplici-
ty, we work in the symmetric phase where (®)=0; no
mass term is generated for the fermion and the one-loop
vertex correction is 0. The mass of the scalar particle is
called M. The one-loop self-energy is found to be

y*F(ap)|*I(p,M,a) , (A1)
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where

z d¥ —iy,sin(k,)
.7(p,M,a)=lf+ ._d_kle(k)Py—l.‘z_i‘_

a9’ -7 (2m) >, sin“(k; )
A
1
X . (A2)
23 [1—cos(k,—ap,)]+a’M?>

p

From this expression, we see that the mass renormaliza-
tion J(0,M,a) vanishes, a direct consequence of the

|

J(p,M,a)=39(0,M,a)
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chiral symmetry of the action. Second, as the factor
|F(ap)|? vanishes when the momentum p coincides with
one of the naive replica, (A1) implies that the positions of
the replica in momentum space are not affected by the
quantum corrections. These F factors come from the ver-
tices and will accompany all the external fermion legs of
any given Green’s function; they will prevent the cou-
pling of the replica.

We study next the behavior of J when a —0 for a fixed
value of p. We can first subtract and add the integrand at
p =0 and change the variable k into ak; we then have

—l—sin(ak )
q w/a 4 M
—iy#—z—sin —% f_+ /(—;’%W(ak”2 la 2 2
/e tem F%sinz(akk) ~“3 S [1— coslak,)]+M*
p
—l—sin(akp—ap—p)
x a 2
%E[I—COS(akv—apv)]—FMz
a v
1 .
B Zsm(akp)
25 [1— cos(ak,)]+M?
a v
i 2 | 9P _2~f+1r d% |F(k)|*—1
Vu 2 |dJd-r 2n) [22[1——cos(akv)]+a2M2)2
. .| 9Py |2 47 d% 1
iy sin | =G S (A3)

—7 (27)4 [22[1—cos(akv)]+a2M2]2 ’

With the use of the Lebesgue’s lemma, it is possible to show that the limit a goes to O and the integration can be ex-
changed for the first integral in Eq. (A3) which then converges toward its continuum limit; the expected logarithmic
divergence lies in the last integral which can be studied with usual methods [18] and gives

f+ﬂ d*k 1 1
~7 (27)? [2[1-—cos(akv)]+azM2 2 1672

v

[Foooo— ¥ £ — In(a’M?)],

(A4)

where y  is the Euler constant, and Fyy, =4.369 is a constant defined in [18]. The limit of the second integral is trivial
and gives a constant independent of M but dependent of the explicit choice made for the function F.
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