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Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which proba-
bilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined

by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems

are discussed whose histories are paths in a given configuration space. The action and the initial quan-

tum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns prob-
abilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual

classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those
sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory.
Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example,
given a single region, the set of all paths may be partitioned into those which never pass through the re-

gion and those which pass through the region at least once. A sum-over-histories decoherence function-

al is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the
definition and effective computation of the relevant sums over histories by operator-product formulas are
described and illustrated by examples. Methods based on Euclidean stochastic processes are also dis-

cussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are de-

scribed. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum

mechanics may be useful models for a generalized quantum mechanics of spacetime geometry.

I. INTRODUCTION

Conventional Hamiltonian quantum mechanics pre-
dicts probabilities for alternatives defined on spacelike
surfaces. A decomposition of spacetime into space and
time is thus required for a Hamiltonian formulation,
however invariantly such elements as its inner product
may be expressed [I]. By contrast, Feynman's sum-over-
histories formulation of quantum mechanics [2] deals
directly with spacetime quantities and in particular with
spacetime histories. This direct access to spacetime is a
unifying conceptual advantage in special-relativistic field
theories where there are many different ways of splitting
spacetime into space and time corresponding to the many
possible families of spacelike surfaces that can foliate Oat
spacetime. In quantum gravity spacetime is a dynamical
variable and there is no one fixed spacetime to split. As a
consequence, a sum-over-histories formulation of the
quantum mechanics of spacetime may be essentially
different from the generalizations of Hamiltonian quan-
tum mechanics commonly applied to this problem [3].

A spacetime formulation of quantum mechanics can-
not be considered complete if it calculates amplitudes by
spacetime means, but calculates probabilities only for al-
ternatives defined on spacelike surfaces. To restrict the
use of path integrals in quantum mechanics only to calcu-
late probabilities for successions of alternatives defined at
definite moments of time [4] would be to elevate again the
surfaces of constant time to some special status in the
theory. Both means and ends must be generalized to pro-
vide a complete spacetime formulation.

The use of the sum-over-histories formulation of non-
relativistic quantum mechanics to define probabilities for

alternatives defined by spacetime regions rather than on
spacelike hypersurfaces was discussed by Feynman in his
original paper on the subject [2]. In particular, he offered
a sum-over-histories definition of the probability that "if
an ideal measurement is performed to determine whether
a particle has a path lying in a region of spacetime. . .the
result will be afhrmative. " More recently, sum-over-
histories calculations of probabilities for alternatives not
restricted to spacelike surfaces have been discussed by
Sorkin [5], Yamada and Takagi [6], and the author [7].
However, these discussions were complicated by the per-
ceived need to provide something like a "measurement
theory" of such spacetime alternatives. Further, little at-
tention seems yet to have been given to effective pro-
cedures for actually calculating the relevant sums over
histories.

This paper has two aims: First, it aims to provide a
coherent and systematic discussion of the rules for assign-
ing probabilities to spacetime alternatives in the context
of a generalized nonrelativistic quantum mechanics of
closed systems [8]. Fundamental to this approach to
quantum mechanics is the notion of a set of alternative
coarse-grained histories of the closed system, that is, a
partition of its paths into exhaustive and exclusive
classes. Quantum mechanics predicts probabilities for
the individual histories in certain coarse-grained sets of
histories. The consistency of probability sum rules is the
primary criterion that determines which sets may be as-
signed probabilities rather than any notion of "measure-
ment. " The notion of a partition of paths is an intrinsi-
cally spacetime one and more general than alternatives
defined at a single moment of time. In this generalization
of familiar quantum mechanics, coarse grainings by
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spacetime regions are just as natural and just as straight-
forward as those defined by spacelike hypersurfaces
[7,10]. The general formulation of this quantum mechan-
ics is discussed in Secs. II and III. The second aim of this
paper is to develop effective operator techniques for cal-
culating the relevant sums over histories. This is done by
considering specific classes of examples in Secs. IV—VII.
Issues of causality, measurability, and the utility of space-
tirne coarse grainings are rudimentarily addressed in Sec.
IX.

The sum-over-histories formulation of the quantum
mechanics of nonrelativistic systems described in this pa-
per is both more and less general than usual formula-
tions. It is less general in that it is a sum-over-histories
formulation that deals only with alternatives defined in
terms of configuration-space paths. It is more general in
that it allows the assignment of probabilities to sets of al-
ternatives more general than those defined on sets of
spacelike surfaces. It is an example of the class of gen-
eralized quantum mechanics discussed in Refs. [10] and
[11]. In general, there is no equivalent Hamiltonian for-
mulation in the usual sense. In particular, as described in
Sec. X, there is no natural notion of "state at a moment
of time. "

Because it concerns closed systems, the quantum
mechanics of nonrelativistic systems described here is a
model for a quantum mechanics of cosmology. Because
it is a more general spacetime formulation, it addresses
the "problem of time, " which is a central conceptual
problem in the construction of a generally covariant
quantum mechanics of spacetime [12,10]. It does not
eliminate the preferred status of Newtonian time in the
formulation of nonrelativistic quantum mechanics, but
does generalize the alternatives considered from the usual
ones that require a decomposition of spacetime into space
and time for their specification to spacetime alternatives
that do not. Indeed, as will be argued in Sec. VIII, the
more general spacetime alternatives discussed here are
much more like those which may be realistically expected
in quantum cosmology than those defined solely on
spacelike surfaces. The present paper, therefore, may be
thought of as one step in the program of providing a gen-
eralized quantum mechanics for cosmology [13].

II. GENERALIZED QUANTUM MECHANICS

We begin by briefly reviewing a very general frame-
work for quantum theories of closed systems such as the
universe as a whole [14]. The most general objective of
quantum theory is to compute the probabilities of the in-
dividual alternative histories of a closed system in an ex-
haustive and exclusive set of such histories. A charac-
teristic feature of a quantum-mechanical theory is that,
because of interference, not every set of histories that
may be described can be assigned probabilities. A rule,
therefore, is needed to specify both which sets of alterna-
tive histories m'ay be assigned probabilities and what
their values are. Very generally, a quantum-mechanical
theory is one for which that rule is constructed from the
following elements:

(1) The possible sets of alternative fine grained his-

tories, of the closed system, tfj, which are the most
refined descriptions allowed in the theory. There may be
many such sets.

(2) A notion of coarse graining by which the sets of
fine-grained histories are partitioned into mutually ex-
clusive classes. Each such set is a set of alternative
coarse grai-ned histories of the system, [h j. Further par-
titioning of these sets results in further coarse graining so
that there is a partial ordering of all the possible sets of
coarse-grained histories.

(3) A complex-valued decoherence functional D (h', h)
defined for each pair of histories in an exhaustive set of
alternative histories, either fine grained or coarse grained,
with the following properties: (i) hermiticity,

D (h, h') =D*(h', h);
(ii) positivity,

D(h, h) ~0;

(2.1)

(2.2)

(iii) normalization

g D(h, h')=I,
h, h'

(2.3)

where the sum in (2.3) is over all members of the exhaus-
tive set.

(4) A superposition principle with respect to coarse
graining for the decoherence functional. If [hj is a
coarse graining of I h j, then D satisfies

D(h, h')= g g D(h, h'),
hEh h'Eh'

(2 4)

for all pairs (h, h') in the coarser-grained set. If a set of
histories is a coarse graining of two different finer-grained
sets, the same decoherence functional must result. In
particular, once a decoherence functional D (f,f') obey-
ing (i) —(iii) above is specified for the fine-grained sets [fj,
the decoherence functional for any coarser-grained set
may be computed by the principle of superposition,

D(h, h')= g g D(f f') .
fFh f'Eh'

(2.5)

(5) A decoherence condition which determines which
sets of alternative histories may be assigned probabilities
and what these probabilities are. The most general form
of this condition [15] is

ReD(h, h')=0, for hAh', (2.6)

p(A)=D(Ii, /I) . (2.7)

As a consequence of the decoherence condition (2.6) and
the properties of the decoherence functional (i)—(iii) in (3)
above, the numbers p(h) are real, positive, and sum to
unity over the set [h j:

O~p(h)~1, gp(h)=1 .
h

(2.8)

for all pairs (h, h ) of difFerent histories in a given set [16],
although other, more restrictive, conditions are some-
times useful [11]. Sets of alternative histories which satis-
fy (2.6) are said to decohere. They may be assigned the
probabilities
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Most importantly, as a consequence of the decoherence
condition (2.6) and the principle of superposition (2.4),
the numbers p (h) satisfy the probability sum rules. (For
a derivation, see Ref. [9] or [10].) In their most general
form these relate the probabilities of any further partition
of the set of histories, {h ], into exhaustive and exclusive
classes {h] (that is, any coarse graining of {h]) to the
probabilities of the original set {h]:

p(h)= g p(h) .
hah

In particular, for the empty set P and for the completely
coarse-grained set of all possible histories u, we have

p(P)=0, p(u)=1 . (2.10)

Equations (2.8)—(2.10) are the defining requirements [17]
for a probability theory on a sample space which consists
of a set of coarse-grained histories, {h].

It will not escape the reader that in this statement of
the principles of quantum mechanics no mention has
been made of "measurements" or "observers" or even of
"state of the system at a moment of time. " In this formu-
lation these are consequent notions, not fundamental
ones. They may be appropriate for some quantum
theories of closed systems, but not for others. We shall
return to such issues brieAy in Sec. X, but for a fuller dis-
cussion, see Refs. [9—11].

We take the elements (1)—(S) to be the minimal defining
elements of a quantum theory [18]. If one adopts the
weakest decoherence condition (2.6), then a quantum
theory for a closed system is specified by its fine-grained
histories, its notion of coarse graining, and its decoher-
ence functional. Hamiltonian quantum mechanics is one
way of specifying these ingredients, but it is not the only
one. We will now turn to the sum-over-histories im-
plementation of these requirements in nonrelativistic
quantum mechanics.

III. NONREI. ACTIVISTIC
SUM-OVER-HISTORIES QUANTUM MECHANICS

We now describe the sum-over-histories quantum
mechanics of nonrelativistic systems using the general

S [X(t)]= f dt [T(X)—V(X)], (3.1a)

where V'is the kinetic-energy quadratic form

(3.1b)

The remaining quantity to be specified in the quantum
framework of the previous section is the decoherence
functional for the fine-grained histories. This is to de-
scribe a closed nonrelativistic system obeying the dynam-
ics summarized by (3.1)—a model quantum cosmology.
We may think, if we wish, of the quantum mechanics of a
system in a box whose evolution is to be described over a
finite time range [O,T]. In general, a decoherence func-
tional could be constructed with both specified initial and
final conditions [19]. However, to keep the discussion as
close to familiar quantum mechanics as possible, let us re-
strict attention to the realistic final condition of future
indifference. The sum-over-histories decoherence func-
tional for the fine-grained histories is then

schema of the preceding section. We consider systems
described by a v-dimensional configuration space IR .
The fine gr-ained histories are paths in this configuration
space parametrized by the physical time t. We denote the
paths by X(t) or (X'(t),X (t), . . . , X (t)) when it is
necessary to specify the individual coordinates. A
defining feature of a nonrelativistic system is that its fine-
grained histories are single-ualued functions of the physi-
cal time —one and only one X for each value of t. It is a
characteristic feature of sum-over-histories formulations
of quantum mechanics that a unique fine-grained set of
histories is assumed. In this case it is the set of paths in
configuration space that are single-valued functions of
time. A coarse graining of these fine-grained histories is a
partition of the paths into exhaustive and exclusive
classes. Specific examples will be given below.

The dynamics is specified by an action of nonrelativis-
tic form

D [X(t),X'(t)]=5(Xf—Xf )exp(i {S[X(t)]—S[X'(t)]]lh')p(XO, XO) . (3.2)

The path X(t) proceeds from an initial value Xo at time t=O to a final value Xf at time t = T. The path X'(t) proceeds
similarly between Xo and Xf. The initial condition is represented by the density matrix p(XO, X0) in the coordinate rep-
resentation. Explicitly,

p(XO, XO)= g g (Xo)pj's)*(XO),
J

(3.3)

(3.4)

for some set of orthonormal wave functions g and probabilities pj. The final condition of indifference is represented by
the 5 function, p„„,&

~ I. It is easy to verify that this decoherence functional satisfies conditions (i)—(iii) of element (3)
above. The only condition which is not immediate is the normalization (iii), but this is easily demonstrated: The nor-
malization condition (2.3) is a double path integral over the class u of all paths between 0 and T. We write this as a
path integral over all paths between end points X0 and Xf and a similar path integral over all paths between end points
X0 and Xf followed by integrals over these end points:

f 5Xf 5X'D[X(t),X'(t)]= fdX fdx, fdXO f 5Xe' ( '")" 5X'e ' ( '") (X,X') .[x,x ] [xx] e P 0 0 .
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The path integrals with fixed end points are the propagator or its complex conjugate:

f ts(&(&)]I@ (X i

HT—/'AiX ) (3.5)
f XpXy ]

e

where H is the total Hamiltonian. Using completeness of the states ~X&), the right-hand side of (3.4) collapses to the
normalization integral for p, which is unity by construction, viz. ,

f SXf SX'D[X(t),X'(t)]=f dX p(X, ,X )=1. (3.6)
Q Q

The decoherence functional for coarse-grained sets of histories may be constructed from the decoherence functional
for fine-grained histories by the principle of superposition (2.5). Let u denote the set of all paths between time 0 and
time T and let [c ] denote a partition of that set into exhaustive and exclusive classes c

c =u, c Ac&=/, aWP .

The decoherence functional for the set of coarse-grained histories [c ] is then

D(e. ,c., )=f 5Xf SX'S(X~—XI)exp(i[S[X(t)]—S[X'(t)]]/A')p(XO, XD),

(3.7)

(3.8)

where the two path integrals are over all paths in the
classes c and c ., respectively. With this definition the
necessary ingredients for a generalized quantum mechan-
ics are complete.

The most familiar type of coarse graining is by regions
of configuration space at successive moments of time (see
Fig. 1). Suppose, for example, we consider sets of exhaus-
tive nonoverlapping regions of R, Ib, ' (t, )],

X)

~, A, (t, )

I b, (tz )], . . . , [ b, (t„)], at a discrete series of times,

t ), . . . , t„.At each time tk,

(3.9)

Since the paths are single valued in time, they pass
through one and only one region at each of the instants
tk. The class of all paths may be partitioned into classes
corresponding to the diff'erent possible ways they cross
these regions. Coarse-grained histories are thus labeled
by the particular sequence of regions, a&, . . . , a„,that
are crossed at times t„.. . , t„.We write them as
c . . . . The individual coarse-grained history c

n 1 n j

corresponds to the particle being localized in region
(t, ) at time t„b, (t2) at time t2, and so forth.

1 2

Coarse grainings specified by alternatives at individual
moments of time arise naturally in Hamiltonian quantum
mechanics as we shall describe more fully below. From
the spacetime perspective, however, there is no need to
restrict coarse grainings to this special type. We shall
discuss more general possibilities in Sec. V, but first we
review how to calculate the path integrals in (3.8).

Xo IV. EVALUATING SUMS OVER PATHS

FIG. 1. Coarse graining by regions of configuration space at
successive moments of time. The figure shows a spacetime that
is a product of a one-dimensional configuration space (X) and

the time interval [O,T]. At times t, and t, the configuration

space is divided into exhaustive sets of nonoverlapping inter-

vals: [6 (t, )] at time t, and [6 (Tz)] at time t2. Some of

these intervals are illustrated. The fine-grained histories are the

paths which pass between t=O and T. Because the paths are as-

sumed to be single valued in time, the set of fine-grained his-

tories may be partitioned according to which intervals they pass

through at times t
&

and tz. The figure illustrates a few represen-

tative paths in the class c» which pass through region A, (t & ) at
time t, and region 68(t2) at time t2.

D (ec)=, g, p K;,.(c )K;,*.(c .),
lJ

where

K;,(c )=f 5XQ,'(XI)e' ( '")g (X )
a

(4.1)

(4.2)

To calculate the decoherence functional (3.8), we must
evaluate Feynman path integrals. This section reviews

briefly how to do that.
Introducing an arbitrary complete set of final states

~P; ) in the Hilbert space & of square-integrable func-
tions on R and using (3.3), the decoherence functional
(3.8) may be written
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units having been chosen for this and subsequent sections
so that Pi= 1. Feynman path integrals of the form (4.2}
are therefore the most general of interest. How are they
de6ned and how do we compute them?

General arguments [20] show that it is not possible to
introduce a complex measure on the space of paths to
de6ne the Feynman integral. However, path integrals
may be defined and computed by other means [21]. Here
we take the point of view, introduced by Feynman [2],
that expressions such as (4.2) are to be dined by the lim-
its of their values on polygonal (skeletonized) paths on a
time slicing of the interval [O,T]. Suppose that this inter-
val is divided into X subintervals of equal length e= T/N
with boundaries at to =0, t, , t2, . . . , tN = T. A polygonal
path is specified by giving the values (Xp, . . . , Xii() of
X(t) on the N+1 time slices including the value Xp at the
initial time t=0 and the value XH (

—=Xf ) at the final time

N —1

$(Xiv, . . . , Xp)= g e
k=0

+k+1 +k —V(Xk )

(4.3)

Any partition of continuous paths will also partition
the polygonal paths. Let e (Xiv, . . . , Xp) be the function
which is unity on all polygonal paths in the class c and
zero otherwise. Then, with these preliminaries, we define
an expression such as (4.2) as the limit

tN= T. The polygonal paths consist of straight-line seg-
ments joining the points (Xp, . . . , Xi(() at the times
defining the subdivision. The nonrelativistic action (3.1)
is straightforwardly evaluated on polygonal paths when
the spacing e is small:

K, (c )= l.im f dXiv f dXi((, . f dXpp(N)P, *(Xi(i)e (.Xiv, . . . , Xp)e
' ' '

(ti (Xp),
N —+ oo

(4.4)

where p(N) is an N-dependent constant "measure" factor
and the integrals are all over R .

The definition (4.4) is not, by itself, a computationally
eff'ective way of evaluating Feynman integrals. Operator
methods provide a more efficient tool. If the limit in (4.4)
exists, it is clear from its linearity in f and antilinearity
in P; that it defines a linear operator C in the Hilbert
space of square-integrable functions on R for each histo-
ry in a set of coarse-grained histories. The matrix ele-
ments of this operator are

K,z. (c )=f 5XQ; (Xf)e' '
1' (X )

a

(4.5)

p2
H = g + V(X }=H(i+V .

1 2mi
(4.8)

The propagator for the free part of the Hamiltonian is an
elementary calculation

the existence of limits such as (4.4) and of evaluating the
class operators C to which they correspond. As the
most familiar example, consider the propagator which is
the path integral (4.2) evaluated on the class u of all paths
on the time interval [O,T]. Then e =1. Divide the total
Hamiltonian H following from the action (3.1) into a free
path Hp corresponding to the kinetic energy V' and the
potential V:

When the class operators [ C ] for a coarse-grained set of
histories, [c ], can be identified, the calculation of the
decoherence functional is immediate. For then

II J

(X"le
' lX'& =F(t)exp it T

where

(4.9)

D(c,c ~ )=Tr(C pC ~ ) . (4.6)

—e
—iHT (4.7)

One general relation among the C follows from (4.5),
u = U c, and the fact [cf. (3.5)] that the Feynman in-

tegral over all paths between [O,T] is the propagator.
This general relation is

(4.10)

It follows that, if the constant p in (4.4) happens to be
[F(e)],then we can write

K. (u)= lim ((t'. lie o e iv(T/Ni)Nlq
&

—
(4 11)

It is an interesting question which sets of operators satis-
fying (4.7) can be represented as a family of Feynman in-
tegrals of the form (4.5) with U c =u. These sets of
operators are the spacetime analogues of "observables. "
Sum-over-histories quantum mechanics predicts the
probabilities of these classes when the sets of coarse-
grained histories to which they correspond decohere.

As was first recognized by Nelson [22], operator-
product formulas provide both a way of demonstrating

But if Ho and V are densely de6ned, self-adjoint, and
bounded from below, the Trotter product formula [23]
states

o( ~ ~ —iv(T/N) N '( o+ v~r
lim e e =e

N~ co
(4.12)

Thus the limit in (4.4) exists, and the path integral K;i(u)
is evaluated as

(4.13)
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XP"-' P'e ' "
an -1 aI (4.14)

where P is the projection on the configuration-space re-

gion 6 (tk ) at time tj, . The expression is more compact
k

with Heisenberg picture operators

iHTPn (r
—). . . Pl (r ) (4.15)

This is enough to show that the C in general will neither
be unitary nor Hermitian. Neither is it true that
C C&=0 for distinct histories.

The relations (3.9) expressing the conditions that the
regions of configuration space are exhaustive and ex-
clusive at each time translate into

gP" (&, )=I, P" (r„)P",(r„)=5,P" (t„). (4.16)

The relation (4.13) is hardly a surprise. It is the path-
integral expression for the propagator originally derived
by Feynman [2].

By such methods the class operators C for coarse
grainings defined by alternatives at a discrete sequence of
times may be readily evaluated. These coarse grainings
were discussed at the end of the last section. If
a=(a„,. . . , a&) denotes the coarse-grained history in
which the paths pass through regions

(t&), . . . , b, (r ) at times O~t ~t2~ . . ~t ~T,
then

—iH( T —t„)„—iH(t„—t„&)C . . . =e P e
n 1 n

where I is the Euclidean action

I [X(r)]=f dr[%(X')+ V(X)] .
0

(4.19)

A measure on the space of paths can be used to define
strictly Euclidean path integrals [24], and there is a close
connection with stochastic processes. This connection
can be exploited to yield practical ways of evaluating Eu-
clidean path integrals by "Monte Carlo" methods. The
variety of methods is enhanced because, as a consequence
of the central-limit theorem, there are many discrete time
stochastic processes which yield the same path integral in
the limit of vanishing time steps. If the partition c is
piecewise time independent on finite-size subdivisions of
[O,T], separate Wick rotations may be carried out on
each time interval and the results composed. The use of
such Euclidean methods was illustrated in Ref. [6]. We
shall do more below.

V. COARSE GRAININGS
DEFINED BY SPACETIME REGIONS

U;R;=M, R;AR =P. (5.1)

Figure 2 illustrates the general situation. The regions R;

In this section we shall consider a very general class of
coarse grainings defined by how paths pass through re-
gions of the manifold M = [0, T] XIR . We shall call this
product of configuration space and a time interval
"spacetime" at the risk of being misleading. It is space-
time in the case of a single particle, but a larger dimen-
sioned space in the case of many particles. We fix a
division of M into n disjoint regions R:

These are enough to show explicitly that (4.7) is satisfied
and further that

an . a
C . . . C . . . =1, (4.17) R(

R7

for this particular class of coarse grainings.
Coarse-grained sets of histories defined by alternatives

at definite moments of time have been extensively dis-
cussed in Refs. [9] and [11]. In fact, the C's of Eq. (4.15)
are exactly the C's of Ref. [11]except for an overall fac-
tor of exp( —iHT) whose presence or absence leaves the
decoherence functional (4.6) unchanged. In the following
we shall find the class operators for a much more general
class of coarse grainings by spacetime regions.

Euclidean methods can sometimes be useful in evaluat-
ing Feynman integrals for coarse grainings corresponding
to partitions of paths which do not discriminate one time
from another over a finite time interval. Then the parti-
tion is unaffected by a continuation of t~ —i~. For ex-
ample, if condition c is time independent over the whole
of the interval [O,T], we expect the corresponding Feyn-
man integral to be the analytic continuation of the Eu-
clidean path integral over the interval [O,w] back to real
times. That is, we expect

IC;J(c )= f 5XQ,*. (Xf)e ' ')g (X )
a

(4.18)

R5

t=o Rio

FIG. 2. Division of spacetirne into regions. The figure illus-
trates a spacetime which is a product of a one-dimensional
configuration space (X) and the time interval [O, T] (drawn up-
ward). The spacetime has been divided into an exhaustive set of
ten spacetime regions R &,R2, . . . , R &o. Some such as R

&
and

R2 extend to infinite ranges of X. Some such as R9 are only at
one moment of time. Some such as R4 are degenerate in the
spatial direction. Others such as R2 are disconnected. The set
of fine-grained histories, which are the paths passing from t=O
to T, may be coarse grained by how they pass through such
spacetime regions. For one region the paths may be partitioned
into those which never pass through that region and those that
pass through at least once. Further partitions of this kind with
respect to all of the regions give the spacetime coarse graining
discussed in the text.
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r; = [X(t)~X(t) ER,. for all t H [0,T]] . (5.2b)

Clearly, r; and r; define an exhaustive and exclusive parti-
tion of the all fine-grained histories u:

r; Ur;=u, r; nr;=p . (5.3)

The whole set of fine-grained histories may now be par-
titioned according to whether they lie in the class r; or r;
for each region R, . We can enumerate the coarse-grained
histories by introducing an index n, , which is + 1 if the
coarse-grained history is in class r,. and 0 if it is in r, An
individual coarse-grained history is thus labeled by a se-
quence a=(a), . . . , a„),u; = + 1 or 0. For example,

, =., n., n-. , n., n-. , n-., n n.„.
(5.4)

More specifically, consider just three regions R „R2,and
R 3. The coarse-grained history c

& &0
=r

&
0 r2 fl r3 consists

of all paths which intersect regions R& and Rz at least

may have infinite volume as does R, in Fig. 2, vanishing
volume as does the degenerate R9, and may be discon-
nected as illustrated by R2. If we were only interested in
regions of the configuration space of a many-particle sys-
tem that defined the behavior of each of the particles with
respect to three-dimensional space, the regions R; would
be unions and intersections of regions of configuration
space of the special form of a product of a region
[O,T]XR for one particle and entire R 's for all the rest.
More general alternatives, however, are defined by re-
gions of M that do not have this special form.

Each region defines a partition of the fine-grained his-
tories (the paths) proceeding from t=O to T into the fol-
lowing two classes: (1) the class r; of all paths that inter-
sect R; at least once, and (2) the class r,. of all paths that
neuer cross the region R;. In symbols,

r; = [X(t)~X(t) ER; for some t H [0,T)], (5.2a)

once but never enter region R3. The whole set u consists
of all possible sequences (a), . . . , a„)in which the a' s
take the values +1 or 0. Thus

c =u, c nc&=p, any akwpk . (5.5)

We shall shortly illustrate such coarse grainings with
simple examples. First, however, we need to understand
how to compute the Feynman integrals over the classes
C~.

We first consider one region R in M and understand
how to calculate the sum over paths in the class r which
never cross R and that over in the class r which cross R
at least once. First, consider r. The Feynman integral
over the class r is the limit of the integral over polygonal
paths in r as in (4.4). Each constant-time cross section of
R is a region of configuration space b, (t). Let ez(X) be
the indicator function that is 0 when XE.A and unity
when X Eh. In the limit of large N, the indicator func-
tion e„for the polygonal paths in r will be increasingly
well approximated by

e (XN, . . . , X())=e&(T )(XN) .
e&(T )(X0), (5.6)

in the sense that the left- and right-hand sides of (5.6) will
fail to coincide on a negligible set of paths. [If the boun-
daries of R are piecewise parallel to the x or t axis (rec-
tangular boundaries), (5.6) is exact for all N. ]

By introducing projection operators on the regions 6
at the various times, the integrals over polygonal paths
may be expressed as matrix elements of operators. Let
Pi,(,)

denote the projection onto the complement of b, (t).
Pz~, )

is time dependent, not because it is a Heisenberg
picture operator, but because the region b, (t) is time
dependent. Clearly,

(,X")P,~X' /=5(X" X)e,(X ) .—- (5.7)

Using this, (5.6), and the free propagator (4.9), the path
integral over the class r can be written as the limit

N —1

N~ oo
(5.8)

where the product is time ordered, written with the earliest P&[,)
s to the right.

The projection P& can be written in the form
—Ez (.~)e—e

b,(t) (5.9)

where e is an arbitrary positive number and Ez is the excluding potential for the spacetime region R, that is,

0, (X t)KR,
+ao, (Xt)ER . (5.10)

Choosing e = T//N, we may then write (5.8) as

—iHO( T/N) —i [ V iE~ (kT/N)]( T/N)—
I(

~J
1 Ip PQ( T) lim II e e

k=0
(5.11)
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Again, the operators in (5.11) are time ordered with the
earliest on the right.

As a generalization of the Trotter product formula
(4.12), we expect

iH—O( T/N) i—[ V iER—( kT/N) I( T/N)
lim e ' e

N~ook

T=T exp i J—dt(HO+ V —iER(t)], (5.12)

Now a sum over paths in a set which is a di8'erence is
the difference of the sums over paths. (A sum over a
union of sets is not the sum of the corresponding sums
unless the sets are disjoint, because of overcounting. ) The
class operators corresponding to sets that are the inter-
sections of r; can be calculated according to (5.12) or
(5.13) using a potential which excludes the union of the
corresponding regions or exp( iH—T) for the class u.

Thus, for example, corresponding to (5.18),

where T denotes the time-ordered product [25]. That is,
the right-hand side of (5.12) may be interpreted as UR ( T),
where UR (t) is the solution of

C„()=UR3(T) UR)
—UR3(T) UR U—R3(T)

+ UR, UR, UR, (T) . (5.19)

dUR(t)
i = [H() + V iER—

( t) ] UR ( t ),dt

with the boundary condition

UR(0)=I .

(5.13)

(5.14)

Physically, (5.13) represents Schrodinger evolution in the
presence of a completely absorbing potential on the
spacetime region R. Paths that once cross into the region
R do not contribute to the final value of U. We shall dis-
cuss more explicitly how to solve Eq. (5.13) in the next
section.

Equation (5.12) allows us to identify the class operators
for the coarse graining based on a single spacetime region
R. There are two coarse-grained histories in the set: r,
the fine-grained histories which cross R at least once, and
r, the fine-grained histories which never cross R. For r
we have

C„=UR(T)

T
=Pa(T)T exp i —dt[HO+ V iER(t)]—

0
(5.15)

The operator C, then follows from the fact that the set of
paths r which cross R at least once is the difference be-
tween the set of all paths u and the set which r which
never cross R:

r=u —r, (5.16)

C„=e 'HT —U (T), (5.17)

which is the same as (4.7).
The generalization of this analysis to the general coarse

graining based on many spacetime regions is straightfor-
ward. In a given coarse-grained history, e.g. , (5.4), write
all the factors r; in the form u —r;. Expand this using
a [l(b —c)=(a [lb) —(a flc), etc. , into differences of in-
tersections consisting exclusively of the r, . For example,

c»o=ri Ar28r3
=(u —r, )A(u —r )Ar
=[&3—(), A r3)]—[(r2 Ar3) —(r, A r2 P r3)] .

(5.18)

where, as usual, a b:—a [lb. —Equation (5.16) is just Eq.
(5.3) rewritten. The corresponding relation for the class
operators is

In this way the class operators for each history in the
spacetime coarse graining based on an exhaustive division
of spacetime into exclusive regions can be calculated.
They will neither be unitary nor Hermitian as the sim-
plest example of partitions by alternatives at discrete mo-
ments of time shows (Sec. IV) and as Eq. (5.13) confirms.
They will, however, satisfy the general relation (4.7).
With the class operators the decoherence functional for
the coarse-grained set may be calculated by (4.6) and
probabilities assigned to this very general class of space-
time histories of the closed system when the set of alter-
native histories decoheres.

VI. EXAMPLES AND THEIR COMPUTATION

The simplest examples of coarse grainings by space-
time regions are provided by exhaustive sets of regions of
configuration space at a set of discrete momentst„.. . , t„aswere discussed at the end of Sec. III. Space-
time is partitioned into regions R(, )

=b. (tk ) of negli-

gible extent in time plus the region Ro exterior to all of
them. Many of the coarse-grained histories of the form
(5.4) are then empty. For example, the set ro is empty be-
cause every path passes through the region Ro sometime
(assuming t)&0 and t„&T).Further, a set in which both

r(, )
and r(«) occur for akWpk for a given tk is emp-

k k

ty because a fine-grained history crosses a surface of con-
stant time just once. The nonempty coarse-grained his-
tories are then easily seen to be labeled by the sequence
(a„,. . . , a)), indicating which region of configuration
space the paths cross at times t„.. . , t„.The class
operators for these partitions are displayed in Eq. (4.15).
Coarse graining by alternative regions of configuration
space at discrete instants of time is thus a special case of
coarse graining by spacetime regions. We shaH now con-
sider some less familiar examples and the computation of
their class operators.

A. Simple example

Consider a free particle (V=O) in one dimension so
that spacetime M is [O,T] X IR. Consider the partition ofI into two spacetime regions; R

&
where X&0 and R,

where X)0. A partition of the fine-grained paths be-
tween t=0 and T based on these regions would consist of
the four coarse-grained classes coo, co&, c&o,c» labeled ac-
cording to (5.4). The class consisting of paths which nev-
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er cross either region c00 is empty. The description of the
remaining classes may be abbreviated as follows: co1, all
paths which never cross the region X&0; c10, all paths
which never cross the region X&0; c11, all paths which
cross both the regions X(0 and X& 0. Clearly, this is an
exhaustive and exclusive set of coarse-grained histories.
They are illustrated in Fig. 3.

The class operators for these coarse-grained histories

are straightforward to calculate. First, C00 =0. Next,
consider the class co1. The class operator Co, is given by
the solution to the evolution problem (5.13) with X(0 ex-
cluded. Ez is constant in time, equaling 0 for X& 0 and

+ ao for X&0. The class operator CO, is thus the propa-
gator for free, unitary evolution on X&0 calculated with
the boundary condition [25] that it vanish for X=O. Ex-
plicitly,

&x"~c„~x'&=8(x")8(x)
2&l T

1/2

exp i (X"—X') —exp i (X"+X')
2T 2T

(6.1)

Here 8(X) is 1 for X)0 and 0 for X(0. In a similar way, the matrix elements of C,o are
1/2

&x"ic„ix'&=8( —x")8(—x')
2'77l T exp i (X"—X') —exp i (X"+X')

2T (6.2)

The class operator C11 is constructed by
—iHO T

C =e —C —C11 Ol 10

so that the sum rule (4.7) is satisfied. Explicitly, the matrix elements of C& &
are

1/2

(6.3)

&x"
~
c„~x'& = [8(x")8(—x')+8( —x")8(x')]

27Tl T

+ [8(x")8(x')+8(—x")8(—x')]
277l T

exp i (X"—X')
2T

1/2

exp i (X"+X') (6.4)

With these class operators the decoherence functional for this set of coarse-grained histories may be computed accord-
ing to (4.6).

B. Spacetime regions decomposable into rectangles

The techniques illustrated by the simple example above apply more generally in the case that the boundaries of the
spacetime regions are piecewise parallel to the time axis or to surfaces of constant time. The general situation is illus-
trated in Fig. 4. In this case any excluding potential EIt (t) is piecewise constant in time —infinite on the excluded re-
gions of configuration space and zero elsewhere. A propagator Uz (t) "excluding a spacetime region R" is, in each time
interval on which Ez is constant, the propagator for unitary evolution on R minus the excluded region of configuration
space. Specifically, consider the example in Fig. 4. The matrix element of Uz(T), where R is union of all regions
shown, is

&X"~U (T)~x'&= f dX . f dX, K (X"TX t )K,(x t,X,t, ). K (X, t, ,X'0) . (6.5)

Here each integral is over R . The propagator
Kk(xt, Xktk ) is the solution of the Schrodinger equation
that is 5(x —X& ) when t coincides with r& and that van-

ishes when X lies on the boundary of the excluded region
between tk and tk+, . The propagator vanishes when X or
Xk lies in the excluded region R.

The above construction makes clear that, when the
spacetime regions R; are decomposable into rectangular
regions, the class operators are well defined and comput-
able by solving the Schrodinger equation in appropriate
domains of configuration space. Put differently, Eq. (6.5)
is the heart of a demonstration that the Trotter product
formula (4.12) can be extended to include singular exclud-
ing potentials Ez in the form (5.12) provided the region
R is decomposable into rectangles. A mathematically

precise route can thus be traced from the path-integral
definition to the class-operator result in this case. It is
plausible that the class operators for general regions with
smooth boundaries can be approximated by regions
decomposable into rectangular regions of an increasingly
large number of time steps.

The composition of propagators can also be used to
reduce the computation for the class operators for gen-
eral spacetime regions into a series of Schrodinger evolu-
tion problems having an excluded region with a moving
boundary such as are illustrated in Fig. 2. Solutions can
be shown to exist for the analogous parabolic equations,
at least, if the boundaries of the regions R,. never become
tangent to a constant-t (characteristic) surface [27].
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FIG. 3. Simple spacetime coarse graining of the histories of a
free particle in one dimension. The regions R

&
and R & are

[O,T]X {negative X) and [O, T]X {positive X), respectively. The
paths which pass between t=O and T may be partitioned into
the classes c» which pass through R2 at least once but not R l,
the class c&o which pass through R& at least once but not
through R2, the class e» which pass through both regions at
least once, and the empty class coo of paths which are never in
either region. Representative paths from each of the nonempty
classes is shown.

FIG. 4. Region decomposable into rectangles. The propaga-
tor that is the sum over all paths excluding the spacetime region
R may be calculated as the composition of propagators over
time intervals in which R is constant according to (6.5). In
these time intervals the propagators represent unitary evolution
in the presence of a potential constant in time, which is infinite
inside R, but zero outside it. These propagators vanish for all
points on the boundary of the excluded region. They may be
calculated by solving the Schrodinger equation in these time in-
tervals with this boundary condition and a 6-function boundary
condition on the initial surface.

C. Euclidean methods

In cases such as those discussed above, where EE(t) is
constant on an interval [t„t2],Euclidean path-integral
methods may be used to construct the propagator
UE (tz, t, ). To keep the notation simple, let us rescale the
time so that t, =0, t2 = T, understanding that several
different rescalings may be required for piecewise con-
stant EE (t) in the original interval [O,T]. If t is continued
to —it and T to —i~, then, as discussed in Sec. IV, there
is a measure theoretic notion of the path integral. The
product formula (5.12) now becomes

—Ko(~/N) —( V+E~ )(7IN) N
—(Ko+ V+Es )~

lim (e ' e =e
Pj—+ oo

(6.6)

The excluding potential Ez does not rotate in passing
from (5.12) to (6.6) because a projection (5.9) excluding
paths from the region R has the same expression in terms

of Ez in both real- and imaginary-time regimes.
Kato's generalization [26] of the Trotter product for-

mula shows that the left-hand side of (6.6) converges to
the right-hand side if Ho and V are self-adjoint and
bounded from below and Ez is positive even when, as
here, Ez is not densely defined. Further, by the
Feynman-Kac formula, the right-hand side of (6.6) is the
result of carrying out the Euclidean path integral. Final-
ly, existence and uniqueness can be shown for appropri-
ate boundary-value problem of the parabolic equation
which results when (5.13) is rotated to imaginary times
[27]. There is thus a happy confiuence of mathematical
results in the imaginary-time case.

Euclidean-time path integrals may be effectively com-
puted by exploiting their connection with stochastic pro-
cesses. Consider, for example, the path integral for the
Euclidean propagator (X"~C ~X')E„,between X' at t=O
and X" at t =~ defined by a class of paths c . In a time
slicing of N steps, the repeated integrals analogous to
(4.4) are

—r(x",x„,, . . . , x')KN(X"r, X'0;c )= dXN t
. dX, p(N)e (X",XN t, . . . , X')e (6.7)

The path integral is the limit of such expressions as N —+ ~, keeping X",X', and w fixed. At any intermediate stage, E&
may be thought of as a "probability" distribution in X" which is the result of an ¹tep stochastic process with the
"probability" of each step proportional to e (assuming )t(, is chosen so this "probability" is normalized). Paths are
"absorbed" in those regions of spacetime where e =0 and propagate according to this "probability" distribution else-
where. Because of the central-limit theorem, a variety of stochastic processes will give the same results in the limit as
N ~ 00. This can be useful in explicit computations.

The Euclidean analogue of the one-dimensional example discussed in Sec. VIA above provides a simple example.
Consider, specifically, the matrix element (X"

~
Co(X') E„,for the class of paths which never intersects the region X(0.

By techniques identical to those used in the real-time case, one arrives at the Euclidean analogue of (6.1):
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1/2

(x"
~
c„~x'),„,=e(x")e(x')

7T7
exp — (X"—X') —exp — (X"+X')

27- 27
(6.8)

Figure 5 shows the result of a numerical calculation of
the same matrix elements using stochastic methods. In
the case of a free particle, each time step in (6.7) corre-
sponds to a Gaussian random walk with a distribution

M
2n(r IN).

' 1/2

exp — (X"—X')
2(r/N)

(6.9)

For fixed X'&0, one can compute the path integral by
carrying out a large number of ¹tep random walks with
this Gaussian distribution and discarding all walks that
cross X=O. The distribution in end points after N steps
is an approximation to integral which should become
better and better as N is taken larger and larger. Figure 5

shows that this is the case.
A modestly more sophisticated example of the use of

the same techniques is the direct calculation of the matrix
element (X"~c&& ~x')E„,in the same example. The class
of paths is all those which intersect both the regions X&0
and X&0 at least once. This matrix element was, in fact,
calculated by stochastic methods for X"& 0 and X' & 0 in
Ref. [7], although in a slightly different notation. We
shall not repeat the details of that calculation here, but
merely note some essential features. Spacetime was di-
vided into a lattice of points spaced by e in the time
direction and g in the X direction. The stochastic pro-
cess used was not the Gaussian random walk with the

"probability" distribution (6.9), but rather a single-step
random walk with a "probability" of —,

' of moving one lat-
tice spacing to the left or right. The two distributions are
equivalent in the limit of large N because of the central-
limit theorem. The utility of using a single-step random
walk as the stochastic process is that all the relevant
"probabilities" may be computed analytically by
difference equation methods and the continuum limit
studied explicitly [28]. The Euclidean versions of (6.1) or
(6.2) for the matrix elements (X"

~ Co, ~x' )E„, or
(X"

~ C,o ~X')E„„for example, are straightforwardly
recovered.

The matrix element (X"~c» ~x')E„,corresponding to
the sum over all paths starting at X' & 0 which cross X=O
at least once was computed as follows: First, the "proba-
bility" of a first crossing of X=O at time t, was comput-
ed. This is a random walk from X' at t=O to X=O at
t =t, with an absorbing barrier at X=O. Next, the
"probability" of starting at X=O at t = t, and arriving at
X" at t =r was computed. The total "probability" to ar-
rive at X" at ~ via paths which cross the origin at least
once is the product of these two "probabilities" summed
over t, between 0 and ~. Finally, the limit e~O, g —+0,
keeping Ejg =M, was taken.

The result obtained in Eq. (6.5) of Ref. [7] for the con-
tinuum limit of the lattice sum over paths corresponding
to the (X"

~ C» ~x') E„,was (in the present notation) when
X'& 0 and X"& 0:

(x"ic„ix),„,= J 'dt,
1/2

2m.(r t )
)—MX"

exp 2(r —t, )

' 1/2
X' exp

27Tt 1

MX'
2t1

(6.10)

(x"
/
c„fx'),„,= M

27TX

1/2

exp — (X"+X')M
2v

(6.11)

This is the same result as would be obtained by the in-
direct method of computation discussed in Sec. VI A us-

ing excluded regions and the sum rule (4.7). That is,
(6.11) is (6.4) evaluated at imaginary times for X') 0 and
X"&0. The coincidence between these two different

The term in the first pair of large square brackets is the
continuum limit of the unrestricted random walk from t1
to ~. That in the second pair is the continuum limit of
the random walk with absorbing barrier between t=O

The integral in (6.10) can be carried out analytically.
The result is

methods of calculating (X"~c» ~X')E„,is a reassuring
check of the methods under discussion.

VII. FINER AND COARSER GRAININGS

Dividing the coarse-grained histories of a set parti-
tioned by spacetime regions into smaller mutually ex-
clusive classes is an operation of fine graining. Combin-
ing coarse-grained histories into larger mutually exclusive
classes is an operation of coarse graining [9,11]. If the
starting coarse-grained set decoheres, then all coarser
grainings of it will decohere because the probability sum
rules defining decoherence for the coarser-grained set are
already contained in those of the starting set. Finer
grainings of the starting set may not decohere. In this
section we discuss some simple examples of finer and
coarser grainings of sets of histories partitioned by space-
time regions.
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FIG. 5. Numerical calculation by stochastic methods of the
sum over histories defining the matrix elements of a class opera-
tor. The paths of a free particle in one dimension between
points X' & 0 at t =0 and X"& 0 at t = v. may be partitioned into
the class of all paths that never cross X=O (class c» ) and the
class of all paths which cross X=O at least once (class e» ). The
figure shows a numerical evolution of the Euclidean sum over
paths defining the matrix element (X"

~ Co, ~X')s„,representing
the class c». X'=0.5 in units that have been chosen so that
A'=M=1. The sum over paths is defined as the limit of the in-
tegral over polygonal (skeletonized) paths specified by their
values on N slices of the time interval between 0 and ~. The
values of this integral are the same as the "probability" distribu-
tion of the outcomes in X"of an ¹tep random walk starting at
X' with a "probability" distribution for each step defined by the
classical Euclidean action. In the present case of a free particle,
the random walk is Gaussian with a distribution given by (6.9).
To calculate the matrix element of the class operator Co&, paths
which cross the origin are terminated and do not contribute to
the final distribution. The figure shows the final distribution of
1010000 random walks starting at X'=0.5 of N=3000 steps
each. The outcomes on the interval X"=[0,2] have been col-
lected in 101 bins of equal size. The smooth curve shows the an-
alytic result (6.8) binned in the same way. The calculated curve
and analytic one are close, within statistical errors and the error
caused by using a finite value of N to approximate the limit
N~ 00. Indeed, by using larger bins one can smooth the curve
further by reducing the statistical fluctuations in each bin. The
calculated curve is systematically higher than the exact result by
an amount which decreases with larger N. The matrix element
(X"

~ C&» ~X') could also be written as the composition of N ex-
act Euclidean propagators of a free particle with an infinite po-
tential barrier for X&0. These propagators have the form of
Eq. (6.8). The two terms in that equation may be thought of as
the contributions of the two possible classical paths between X'
at t=O and X" at t =~. These are a direct path and a path
which reQects off the origin. However, the integrals resulting
from the Gaussian random walk defined by the free-particle
propagator (6.9) contain no such rejected paths. The coin-
cidence of the two results in the limit N —+00 is essentially a
consequence of the central-limit theorem. What this calculation
shows explicitly is that path integrals can be defined as the lim-
its of integrals over polygonal paths whose action [Eq. (4.3)] is
computed using the free-particle kinetic energy even when there
are several classical paths in the limit of arbitrarily small time
steps. The action of the free-particle path increasingly dom-
inates the others as the time steps become small.

A. Finer grainings

The natural finer graining of a partition by spacetime
regions would be to specify not just whether a history
crosses a region at least once or never, but also to specify
exactly how many times it crosses. Considering this kind
of coarse graining, however, illustrates that it is possible
to define coarse grainings which are trivial in the sense
that the set of all histories is partitioned so finely that the
amplitudes for most classes are zero. This was discussed
at length in Refs. [7] and [6]. There, coarse grainings
were considered which partitioned paths according to
how many times and at what locations they crossed a sur-
face which was partially timelike. Such partitions could
be defined on a spacetime lattice, and the relevant ampli-
tudes [e.g. , the lattice analogues of (4.2)] were computed
using the stochastic methods of Sec. VI. In the continu-
um limit, however, the amplitudes for any finite number
of crossings vanished. The physical reason is that, be-
cause nondifferentiable paths dominate the sum, the ex-
pected number of crossings of a path which crosses a
timelike surface at least once is infinity. The amplitude
for any finite number of crossings, therefore, is zero.
There is nothing incorrect about this result; it only shows
that the partition was too fine to be useful.

Of course, if the surface is entirely spacelike (a surface
of constant time), then it is possible to specify the number
of crossings. The paths, being single valued in time, cross
a spacelike surface once and only once.

B. Coarser grainings defining momentum

As an example of a useful coarser graining of a parti-
tion defined by spacetime regions, we consider coarse
grainings defining momentum.

Momentum is not a fundamental variable on equal
footing with position in a sum-over-histories-formulation
quantum mechanics that posits paths in configuration
space as the unique set of completely fine-grained his-
tories. However, as demonstrated by Feynman and
Hibbs [29], momentum can be defined in terms of
configuration-space paths by analyzing idealized experi-
ments that determine it. For example, momentum may
be determined by time of Right. Such determinations cor-
respond to coarser grainings of coarse-grained sets of his-
tories defined by spacetime regions, as we shall now illus-
trate by following what is essentially the analysis of Feyn-
man and Hibbs.

Consider one spatial dimension and the particular
division of spacetime into the regions illustrated in Fig. 6.
Space at time t is divided into intervals of equal length 6
labeled by an integer k ranging from —~ to + ~. Simi-
larly, space at time t is divided into intervals of equal
length 6' labeled by an integer k' ranging from —~ to
+ ~. We shall be considering cases where 5'&&A. The
remaining part of spacetime outside these regions partici-
pates trivially in any coarse graining since all paths pass
through it. Each coarse-grained history in the partition
defined by these regions may be labeled by two integers
(k, k'). The coarse-grained history (k, k') consists of
paths which pass through the interval k at time t and the
interval k' at time t'. To define momentum by time of
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+(b./2+6, '), in their fiight from t to r'. If the particle is
free between t and t', this corresponds classically to paths
with momenta in the range

rn b, ' (b—, /2+ &')
t' —t

(7.2)

t=o

FICx. 6. Coarse graining defining momentum. Classically the

momentum of a free particle may be determined from the dis-

tance traveled in a known time interval. The figure shows a
one-dimensional configuration space divided into intervals of
equal length 6 at time t and of equal length 6' at time t'. A
coarse graining defining momentum partitions all paths from t'

to t into classes specified by the net distance traversed between

these times up to an accuracy specified by the sizes of the inter-

vals. This is a coarser graining than obtained by specifying the

particular intervals that the paths pass through at these times.

By making 6' small and 6 and t' —t both large in a way that
b /( t ' —t) becomes small, both classical and quantum-

mechanical uncertainties in the determination of momentum

may be made arbitrarily small.

The classical uncertainty in P may be made arbitrarily
small by choosing 6 and 6' small or by making t' —t
large. However, quantum mechanically, there is an addi-
tional uncertainty in the momentum of order fi/b. To
have a coarse graining which makes both classical and
quantum-mechanical uncertainties small, one must take
b, large and (t' r) large i—n such a way that 6/(t' t) is-
small.

To show that this coarse graining does indeed deter-
mine momentum in the familiar quantum-mechanical
way, let us assume that it decoheres, say, by coupling to a
larger decohering system, as in situations where the inter-
vals through which the particle passes at time t and t ' are
measured [9], and calculate the probabilities for the vari-
ous values of the momentum P. These are the diagonal
elements of the decoherence function (4.6).

The class operators for the partition labeled by m are
evidently

Bight, we partition the paths, not by the specific position
intervals they pass through, but, more coarsely, by the
distance between the two intervals traversed in the Bight
between t and t'. Specifically, let kb be the center of in-
terval k at time t and O'6' the center of interval k' at
time t'. The union of all coarse-grained histories (k, k')
such that

(m —
—,
' )b.' ((k'b. ' —kb, ) ((m +—,

' )5' (7.1)

defines a coarser-grained set labeled by a single integer m.
The coarse-grained history m consists of all paths which
have been displaced by m 5' to an accuracy of

C = g ei, i, (m)e '
Pi, (t')Pi, (t),

k'A:

(7.3)

where Pi, (t) is the projection on interval k at time t, Pi, ,(t)
is similarly the projection on interval k' at time t', and
ei, i, (m) is unity if condition (7.2) is satisfied and zero oth-
erwise. For definiteness assume that the initial state is
pure, corresponding to a wave packet g(X, O) that under
Schrodinger evolution evolves to a wave packet f(X, t) at
time t which has a characteristic width 8'. Then the
probability for the coarse-grained history labeled m with
momenta in the range (7.2) is

p(m)=Tr(C ~g&&Q~Ct )

= &~i, i, (~)J &g'I I &g&k'&'+g'l~ ' Ik&+g&g(k&+g, r)l'.
k'k

(7.4)

Fix a value of P. In the limit b,~~, b, /(r' —t)~0, and m ~ ~ keeping P fixed through (7.2), p (m) becomes the prob-
ability that the momentum has the value P in the range 5P determined by (7.2):

Mm 6'
t' —t

(7.&)

To see this explicitly, evaluate (7.4) explicitly. The free-particle propagator is given by (4.9), specifically in this one-
dimensional case by

M
2~i(r' —r)

' 1/2

exp
™[(k'b. ' —kb )+g' —g']2(t' —t)

(7.6)
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In the limit, since the wave packet has a finite width, only
the term with k=O contributes to (7.4) and only that
value of k' connected to m by (7.1). In the limit, the in-
tegral over f receives a nonvanishing contribution only
from the finite width O'. Thus the only term in the ex-
ponent of (7.6) which is nonvanishing and does not con-
tribute a trivial phase is the cross term between O'6' and
g'. One finds, making use of (7.6), that the limit of (7.4) is

gP (2 )
—I/2 f dpi —iPgy(gi t) (7.7)

This is indeed the probability that the momentum at time
t is P in the range 5P.

VIII. UNSPECIFIED TIMES

In quantum cosmology, even in those epochs when
spacetime is approximately classical, we do not expect
the universe to exhibit clocks keeping accurate time from
the big bang to now. We expect to determine accurate
time intervals between events in the present epoch, but to
determine their temporal distance from the big bang only
crudely, say, plus or minus a fraction of 10 yr (or in the
absence of cosmological observations not at all). We are
therefore necessarily interested in coarse grainings of the
universe for which only time difFerences are specified. An
analogous class of coarse grainings in nonrelativistic
quantum mechanics would be those which specify the
time interval between spacetime regions but not their ab-
solute location in spacetime. We can illustrate the
definition of such partitions and the computation of their

associated class operators with a simple example.
Consider a free particle in one dimension and the fine-

grained histories that proceed from t=O to T. We can
partition these paths into the following exclusive classes:
c„allpaths which never cross X=0 between t=0 and
t = T; cb, all paths whose first crossing X=O is between
t=O and T —S; c„allpaths whose first crossing of X=O
is between t =T —S and T. We can then further parti-
tion the class cb into the subclasses: cb~, all paths that
are at a position X in a small interval dX a definite time S
after their first crossing of X=0 between t =0 and T —S.
Clearly, the classes (c„chal,c, ) are an exhaustive and ex-
clusive set of coarse-grained histories as X ranges over all
values. They are an example of the type of coarse grain-
ing discussed above. The time of first crossing of X=O is
not specified except that it lies somewhere in the interval
[O,T —S). However, the position X is determined at a
time S after that first crossing, whatever time that takes
place.

To calculate the decoher ence functional for this
coarse-grained set of histories, it is sufhcient according to
(4.6) to know the class operators C„C&z,C, . We calcu-
late their matrix elements in the position representation
using the Euclidean stochastic methods described in Sec.
VI and Ref. [7]. Since the problem is clearly symmetric
about X=O, we only evaluate matrix elements of the form
(Xf ~ C~XO ) for Xo )0. The rest are obtained by
rejecting all X's in X=O. The matrix elements for C,
have already been calculated in connection with the ex-
ample in Sec. VI. They are, from (6.1),

(xf ic. ix, & =e(xf)
' 1/2

exp (Xf—Xo )
—exp (Xf +Xo )

iM 2 iM 2

2T 2T
(8.1)

M
2&l T

exp
™

( Y —Xo) —exp
™

( Y+Xo)
2T 2T

The evaluation of C, is likewise already contained in the results of the example of Sec. VI. The sum over all the paths

whose first crossing of X=O is between t =T —S and T is
1/2 1/2

(Xf~C, ~xo) =f dY exp (Xf+ Y)
o 2miS 2S

(8.2)

where we have written T for T —S. The last two terms in
(8.2) are the sum over all paths from Xo at t=O to Y) 0
at t = T which never cross X=O [cf. (6.1)]. The first term
is the sum over all paths from F at t = T to Xf at t = T
which cross X=O at least once [cf. (6.4)]. The sum over
paths is completed by a sum over K

To calculate Cb~, however, we must do some work.
We introduce a spacetime lattice as shown in Fig. 7.
Points on the lattice are labeled by a discrete pair of la-
bels (x,y). The lattice spacing in the spatial, x direction
is g. That in the temporal, y direction is e. This is the
setup used in Ref. [7] except that the discrete time label r

used there has been called y here. Then, as described ear-
lier or in Ref. [7], Euclidean sums over the paths of a free
particle may be calculated as the "probabilities" of a

u,.= g (-,')~'~,
P Ecbx

(8.3)

single-step random walk in x with time steps e. The ma-
trix element (Xf ~ Cbx ~xo ) is the analytic continuation to
real time of the continuum limit of the "probability" for
the corresponding class of walks on the lattice. That
class is all walks that start at xo at y=O, first cross x=O
at some discrete time y, between y=0 and y, —y, arrive
at x a number of steps y later, and proceed on to xf in a
total of y, steps. The discrete times y and y corre-
spond to o and r (the analytic continuations of S and T),
respectively, in the continuum limit and the discrete posi-
tions xo and xf to Xo and Xf, respectively. The "proba-
bility" corresponding to this class of random walks is
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where the sum is over all paths P in the described class
and ~P~ is the number of steps in path P.

Evaluating (8.3) is a purely combinatoric problem. The
sum may be broken down into partial sums and com-
posed. In the notation of Ref. [7], it is convenient to in-
troduce some partial sums which can be evaluated explic-
itly. We denote by u (x',y';x, y) the "probability" for the
unrestricted random walk between (x,y) and (x',y'). We
denote by u (x',y', x,y) the "probability" for a random
walk between (x &O,y) and (x'&O, y') with an absorbing
barrier at x = —1. The "probability" ub„ is then

X)

uz = g u(xf, y, ;x,y +y, )u(x,y +y, ;O,y, )

&c =1

X u (O,y, ;x0,0) . (8.4)

yc

yah

M
2m.(t' t)—

1/2
M(X' —X)

(8.5)

and

(2g) 'u (O,y„'xo,O)
' 1/2

~2eXo exp
2 7Tt

MXo

2tc
(8.6)

The factor of 2e in (8.6) turns the sum in (8.4) into a time
integral in the continuum limit. The result for
(Xf I c» Ix, &,„,1S

The sums corresponding to u and u are easily evaluated
by standard dift'erence-equation methods [28] and the re-
sults are exhibited in Ref. [7] [Eqs. (4.7) and (4.22)]. Here
we display only their continuum limits when e—+0 and
g —rO, keeping fixed M=e'/1) and appropriate X's and
times as X =calx and t =ay. They are (Eqs. (4.8) and
(4.23) of Ref. [7])

(21' ) 'u (x',y', x,y)

y=, O X
zr

X=Q XO

FIG. 7. Euclidean lattice calculation of the class operators
for a coarse graining in which an elapsed time interval is
specified, but the times of the end points of the interval are
unspecified. The figure shows a lattice spacetime. Points on the
lattice are labeled by a pair of discrete labels (x,y). The lattice
spacing in the spatial direction is g, that in the temporal direc-
tion e. Lattice paths, one of which is illustrated, proceed from
the initial time y=O to the final time y . Euclidean sums over
paths may be calculated as the "probabilities" for random walks
on such a lattice. A typical path in the coarse-grained history
labeled chal in the text is illustrated. This consists of paths
which start at xo) 0 at y=O, cross x=O at some unspecified
time y, later, arrive at position x a specified time y later, and
end at xf at the final time y . (The crossing must clearly be be-
fore time y —y . ) The sum over such paths defining the matrix
elements of the associated class operator therefore includes a
sum over y, . Such coarse grainings with unspecified times are
analogous to those expected to be of interest in quantum
cosmology.

(Xf~c, ~x, & „,=dX I dt,
2~(r —t, )

' 1/2

exp
M (Xf—X)

2(r—t, )

M
2 ITo

1/2

exp
MX' M

Xo
2 t

MXo
exp

2t
(8.7)

where we have abbreviated r —o as r. The integral in (8.7) may be carried out analytically and the result continued
back to real time. The answer is

(xf ~c»~x, & =dx
2~iS

1/2 r

e tMX /2S

27ll T

1/2

e
—M(~X —Xj+X ) /2T

(8.8)

As an exercise, one can verify that the sum rule (4.7) is
satisfied.

This example serves not only to crudely illustrate the
kind of coarse grainings with unspecified times that we
expect in quantum cosmology, but also to show that
reasonably complicated partitions can be calculated ex-
plicitly.

IX. DECOHERENCE, CAUSALITY,
MKASUREMKNT, UTILITY

A. Decoherence

Probabilities can be assigned to those sets of alternative
coarse-grained histories that decohere. A set of coarse-
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grained histories decoheres when the initial p is such that
the real part of the "off-diagonal" terms in the decoher-
ence functional are sufficiently small according to (2.6).
In the preceding sections we have shown how a decoher-
ence functional for spacetime coarse grainings may be
defined and calculated in nonrelativistic quantum
mechanics. We illustrated these calculations in simple
single-particle models. However, even for alternatives
defined at one moment of time, such models have far too
few degrees of freedom to exhibit realistic mechanisms of
decoherence [30,9]. The situa, tions in which spacetime
coarse grainings (not consisting solely of alternatives
defined at discrete moments of time) decohere have not
been explored in any quantitative detail [31]. In this sec-
tion we shall offer some rudimentary qualitative remarks
on the decoherence of spacetime coarse grainings.

Alternatives defined at one single moment of time
decohere automatically. This follows from the cyclic
property of the trace and orthogonality of chains C con-
sisting of a single projection operator. Decoherence is an
issue only for coarse grainings defined at several moments
of time. The initial conditions p that lead to the decoher-
ence of alternatives defined over a continuous range of
time can be expected to be more restricted than those
leading to the decoherence of similar alternatives defined
only at a few discrete moments of time. This expectation
may be illustrated qualitatively by considering the coarse
graining discussed in Sec. VI A.

Let us consider decoherence in the model described in
Sec. VIA assuming, for simplicity, a pure initial state
specified by an initial wave function g(XO), viz. ,

p(XO, XO)=f(XO)g*(XO) . (9.1)

The last term vanishes as already discussed. Denote by
$0,(X) the evolution of the initial wave function g(X)
over a time T with the region X&0 excluded. This is the
solution of the free Schrodinger equation with initial con-
dition g(XO) and the boundary condition $0&(0)=0.
Similarly, denote by g„(X)the unrestricted evolution of
the same initial condition. Then from (4.1), (9.1), and
(9.2),

(9.3)

and in a similar manner and notation,

(9.4)

As an illustration, consider an initial wave function

There are three nonempty, coarse-grained histories: co„
c,o, and c». The off-diagonal element D(co„c,o) van-
ishes identically because there are no paths in coi and c,o
with common end points as required by the final condi-
tion in (3.8). The only off-diagonal elements of the
decoherence functional that might be nonvanishing are
therefore D(co„c»)and D(c,o, c»). Consider the first
of these. It may be expressed in terms of path integrals
over all paths u or path integrals which exclude certain
regions:

D (cp& c&& ) =D (co& ll) D (co~ cp~ ) D (cp& c~o) . (9.2)

g(X) that is a wave packet with an initial position Xo )0
and momentum Po defined to accuracies consistent with
the uncertainty principle. If the time T is short com-
pared with the time the packet takes to spread, position,
and momentum will continue to be defined, and their ex-
pectation values will obey classical equations of motion.
The expectation values for f„will evolve as a free parti-
cle; those for go, will evolve as a free particle with a
reAecting wall at X=O.

With respect to the values of D (c o&, c» ) and
D ( c ~o c ~, ) and decoherence, two situations may be dis-
tinguished. If Xo and Po are such that the center packet
remains well away from X=O during the time T, then

fo,(X)=g„(X)and g,o(X)=0. Both (9.3) and (9.4) ap-
proximately vanish, and the coarse-grained set of his-
tories decoheres. By contrast, if the initial position and
momenta are such that the center of the wave packet
crosses X=O during the time T, then at time T the center
of P„will be located at a position Xr &0, while that of
go„which has refiected off the wall, will be located at
—Xz-) 0. The wave functions g„and $0, will be nearly
orthogonal, and D(c &o, c» ) = —1. With such an initial
condition the spacetime coarse-grained set of histories
will not decohere. The decoherence of the coarse grain-
ing defined by the behavior of particle paths with respect
to spacetime regions (X)0, 0&t &T) and (X&0,
0 & t & T) for an initial wave packet state thus depends
crucially on whether that wave packet can or cannot
cross the origin in the time T.

Contrast this coarse graining by whether the particle is
to the left or right of the origin or both over an extended
range of time T with a coarse graining by whether the
particle is to the left (L) or right (R) of the origin at a se-
quence of definite time 0&t, « . t„&T. To each
possible history (e.g. , RRLR. . .LR) there corresponds a
wave function at T that is the initial P evolved unitarily
between the times t; and by projections onto X&0 or
X& 0 at the times t, Unless these projections happen at a
time when the wave packet is crossing the origin, they
will not much disturb its unitary evolution. In this case
only the wave function corresponding to the unique his-
tory specified by the classical evolution will be
significantly different from zero. The overlap of any pair
of differing histories will be negligible. The set of his-
tories therefore decoheres even in the situation that the
wave packet crosses the origin in the time period
0 & t & T—in contrast with the coarse graining by space-
time regions discussed above. Of course, as the number
of definite times t; in the interval 0&t & T becomes
larger, it becomes increasingly difficult to meet the condi-
tion that the wave packet be clear of the origin at these
times. That fact, however, only supports this conclusion
that there is a more restricted class of initial conditions
that lead to decoherence for alternatives defined over a
continuous range of times than for alternatives defined at
a few definite moments of time.

As instructive as the above example is, it does not con-
tain enough degrees of freedom to discuss the decoher-
ence of spacetime coarse grainings by the familiar mecha-
nisms that the effect of decoherence of alternatives at
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definite moments of time —e.g., the carrying away of
phases by variables ignored in the coarse grainings [30,9].
A model in which these effects can be considered is that
studied by Feynman and Vernon [32] and by Caldeira
and Leggett [33]. The model consists of single oscillator
interacting linearly with a large number of others.
Coarse grainings are considered which follow the coordi-
nates of the distinguished oscillator and ignore the oth-
ers. Initial conditions are considered in which the densi-
ty matrix p factors into a product of a density matrix of
the distinguished oscillator, p, and another for the rest.
Under these conditions the integrals over the rest of the
oscillators in (3.8) may be carried out, giving rise to an
inAuence functional describing the interactions of the dis-

tinguished oscillator with the rest. The resulting decoher-
ence function can be explicitly exhibited in the special
case when there is a uniform cutoff continuum of other
oscillators initially in a thermal state with a temperature
T~. The result is especially simple in the limit when kT~
is much higher than the cutoff energy, itse1f much higher
than the characteristic energy quantum of the dis-
tinguished oscillator (the Fokker-Planck limit). Let x be
the coordinate of the distinguished oscillator, M its mass,

S~„,its free action with frequency co~ renormalized by
the interactions with the others, and P(x,y) its initial den-

sity matrix. The decoherence functiona1 for coarse grain-
ings which partition only the paths of the distinguished
oscillator into classes c then takes the form

D(c.,c.')= f Sx f Sy fi(x/ y/)exp—(i [St„,[x(t)] St„,[y—(t)]+W[x(t),y(t)]j/R)p( ox, y )o. (9.5)

This is (3.8) when the sum over the rest of the oscillators has been carried out. Their effect is summarized by the
Feynman-Vernon influence functional [32], exp(iW[x (t),y (t)]/fi). In the Fokker-Planck limit, Caldira and Leggett
find

2My kT~
W[x (t),y (t)]= —My f dt(xx —yy+xy xy)+i- f dt [x (t) —y (t)]

0 0
(9.6)

where y summarizes the interaction strengths of the distinguished oscillator with the rest.
The path integrals in (9.5) may be calculated for coarse grainings based on spacetime regions as described in Sec. V.

While the full range of techniques described in Secs. V and VI for calculating such path integrals is available on the full
Hilbert space describing all oscillators, they are not all necessarily available on the reduced Hilbert space describing the
distinguished oscillator. In particular, because the influence functional in (9.5) couples paths on both sides of the
decoherence functional, it is no longer possible to calculate separate path integrals (4.2) for each class c and combine
them to give the decoherence functional as in (4.1). For the same reason, it is no longer possible to use Schrodinger evo-
lution (5.13) on the reduced Hilbert space to define class operators. We can, however, use master equations which
evolve the reduced density matrices on the distinguished oscillator Hilbert space in a similar way. The matrix elements
of the reduced density matrix at time T associated with the coarse-grained histories c and c ~ is defined by

(x&~p(c,c,T) ~y&) = f 5x f 5yexp(i [St„,[x (t)]—St„,[y (t)]+W[x (t),y (t)]]/fi)p(xo, yo) . (9.7)

The path integrals defining p(c,c,T) are the same as
those defining the decoherence functional (9.5) except for
the trace over final end points of the paths. Thus

D(c,c )=tr[p(c, c,T)], (9.8)

where tr denotes a final sum over x&=y&. When the
classes c,c ~ are of paths which are excluded from a re-
gion of spacetime, it is possible to write a master equation
[33—35] for the evolution of p(c, c ., t) involving the ap-

propriate excluding potential and by solving this equation
with boundary conditions appropriate for the classes to
calculate D (c,c ) through (9.8). Furthermore, the bil-
inearity of the decoherence functional allows all of its ele-
ments for a coarse graining based on spacetime regions to
be expressed as a linear combination of such integrals
over excluded regions as in (9.2).

The differential equation for p may be solved analyti-
cally for the spacetime coarse graining of the model de-
scribed in Sec. VI A and discussed above by the method

1 A 1

y 2MkT
(9.9)

When M is of order of grams, d of order of centimeters,

of images. The elements of the decoherence functional
can be reduced to quadratures of these solutions and the
initial wave function g(Xo). However, it is not especially
instructive to exhibit these analytic expressions. The im-

portant point is the effect of the interaction of the dis-
tinguished oscillator with the rest on its classical equation
of motion. That interaction leads to eff'ective dissipative
terms in the equation of motion [36] characterized by a
dissipative time scale I/y read off of the real part of (9.6).
This may be compared with the time scale t&eQQh for the
decoherence of position a1ternatives at one moment of
time that differ by a characteristic distance d on opposite
sides of the decoherence functional. This time scale may
be read of the imaginary part of (9.6) and is [37]
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and T~ of order of K, td„,h is enormously smaller than
1/y. There is thus a regime

(9.10)

where the interactions with the rest of the oscillators
effect rapid decoherence of alternatives at definite mo-
ments of time spaced by time intervals greater than t„„h,
but the effect of these interactions on the classical equa-
tions of motion is negligible. The arguments given above
for the decoherence or lack of it of the model spacetime
coarse grainings with a single wave packet state are
therefore essentially unchanged in this regime by the in-
teractions of the distinguished oscillator with the rest.

While this discussion of decoherence has concerned
only special model spacetime coarse grainings and special
initial states, these examples, serve to emphasize a famil-
iar lesson: Sufhcient and particular coarse graining are
required for a quantum-mechanical system to decohere
and exhibit classical behavior. Even though a coarse
graining partitions the classical paths, it may be too fine
to decohere quantum mechanically. Consider, for exam-
ple, the Earth's orbit around the Sun and the alternatives
that in an elapsed time of 1 month its center of mass (1)
has never moved more than 10 km from its present posi-
tion or (2) has at least once had an excursion more than
10 km from. its starting position. Classically, the earth
moves about 10 km in 1 month, and so the classical
probability would be zero for alternative (1) and unity for
alternative (2). Yet, extrapolating from the simple exam-
ple discussed in this section, we do not expect these alter-
natives to even decohere quantum mechanically despite
the very large, "macroscopic" scales of both space and
time that are involved. The point is that the requirement
of alternative (1) that the center of mass of the Earth neU-

er quantum-mechanically suffer an excursion of more
than 10 km from its present position is too strong for
decoherence. The classical motion of the Earth is more
than adequately described by a coarse graining that dis-
tinguishes alternative positions of the Earth's center of
mass, say, once every millisecond to a macroscopic accu-
racy. Such coarse grainings will decohere, and their
probabilities will exhibit the expected classical correla-
tions in time.

In quantum mechanics a system can be said to behave
quasiclassically when histories exhibiting patterns of clas-
sical correlation in time have a high probability in a

decohering set of alternative coarse-grained histories.
The present discussion shows that the coarse grainings
used to define classical behavior must be chosen with
care.

B. Causality

We are working with a formulation of quantum
mechanics which is not time neutral. At one end of the
histories in the decoherence functional (3.2) or (3.8), there
is the initial density matrix p. At the other end there is
the 5 function enforcing the coincidence of the end points
of the histories at the time T. The same asymmetry may
be seen in the operator form of the decoherence function-
al. Consider, for example, the decoherence functional for
a set of histories defined by the alternatives
a=(a„.. . , a„)at a sequence of times t„.. . , t„whose
class operators are given by (4.15). Then

D(c, c )=Tr(C pC )

(9.11)

At one end of the sequence of projections, there is the
density matrix p,' at the other end is the trace, and the
projection operators are time ordered in between. In ei-
ther the sum-over-histories or operator versions, an ar-
row of time has been built into this formulation of quan-
turn mechanics. An absolute direction of time is not sin-
gled out; the expressions for the decoherence functional
would be rewritten in the opposite time order by making
use of the CPT invariance of field theory. It is by conven-
tion that we call the direction with the density matrix
"the past. " This convention, however, should not ob-
scure the fact that the formalism treats the ends of his-
tories in two different ways [38].

The arrow of time built into quantum mechanics is an
expression of causality. We know something of the past;
we are ignorant of the future. This connection to causali-
ty is most easily seen by using a generalized quantum
mechanics employing both initial and final conditions
represented by density matrices po and p&, respectively
[40). In this generalization the decoherence functional
would be written

D (c,c ) =N f 5Xf 5X'p&(X&,X&)exp(i [S[X(t)]—S [X'(t)]]/R)po(Xo, XO)

=XTr{p~C poC ~ ), {9.12)

where % '=Tr(p~&). Interchanging po and p& merely
Hermitian conjugates the decoherence functional, leaving
decoherence conditions and probabilities unchanged.
There is thus no built-in arrow of time in this formulation
of quantum mechanics —the future and the past are

treated in the same way. A physical time asymmetry will
emerge if po and p& are different. The condition of future
indifference, p& ~I, will reproduce the usual formulation
of quantum mechanics and its arrow of time. The asym-
metry produced, however, is best viewed as the asym-
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metry between specific initial and final conditions in a
framework of quantum mechanics that itself treats future
and past on an equal footing.

As has been stressed by Sorkin [5], just using a final
condition on the histories representing indifference is not
a complete expression of causality. That condition is im-
posed at a fixed future time T, and one must also check
that the predicted probabilities do not depend on the
value of T, provided it is chosen sufficiently late. In-
dependence of T is manifest in the operator form of the
decoherence functional for sequences of alternatives at
definite moments of time [Eq. (9.11)],because that expres-
sion nowhere depends on T. Independence of T is also
easy to check for the more general spacetime coarse
grainings [29,5]. Consider a coarse graining by spacetime
regions of M = [0,T] XE . This can be considered a
coarse graining on M=[0, T]XE built from a longer
time interval T& T. The one added spacetime region
[T,T]XE results in a trivial coarse graining because all
paths pass through it. It is therefore easily verified that
the class operators C for the coarse-grained histories on
the extended time interval are related to the correspond-
ing ones on the old interval by

—iH(T —T)ca a (9.13)

and so decoherence and probabilities are independent of
any T that is chosen sufficiently late.

Sorkin [5] has discussed a sort of causality violation
that could occur if one were attempt to assign probabili-
ties to coarse-grained sets of histories that do not
decohere. That violation results from the inconsistency
of the probability sum rules which characterize the ab-
sence of decoherence. Consider partitioning the paths by
two sets of spacetime regions %z and %„where every re-
gion which is a member of Jkz lies to the future of each
region of %,. Denote by [a, } the set of alternatives aris-
ing from the partition by %, and by [az } the set of alter-
natives arising from %z. Let probabilities be assigned to
histories by the diagonal elements of the decoherence
functional, irrespective of whether the histories decohere.
The probability sum rules

Xp(a„a,) =p(a, )

cx2

(9.15)

would not in general be satisfied, and Sorkin [5] provides
a specific example when they are not. Such examples
cannot be constructed from cases where [az} refers to al-
ternatives at single latest moment alone, for then (9.15) is
satisfied, as a glance at (9.11) will show, because of the cy-
clic property of the trace and the orthogonality of the
projection operators corresponding to different alterna-
tives. However, the class operators for spacetime coarse
grainings are not projections and they are not orthogonal
[cf. the discussion following Eq. (4.15)]. Thus, were the

[cf. (5.15)]. But then, from the cyclic property of the
trace,

D(c,c )=Tr(C pC )=Tr(C pC )=D(c,c ),
(9.14)

diagonal elements of the decoherence functional inter-
preted as the probabilities of individual histories when
the set of alternative histories does not decohere, viola-
tions of (9.15) could be constructed using the kind of
spacetime coarse graining that we have been discussing.

Sorkin would assign the probability g p(az, a, ) to
2

the alternatives [a, } when both sets of alternatives [az}
and [a, } have been "measured" and p (a, ) to the same
set of alternatives when only the set [ai} had been "mea-
sured. " He, therefore, interprets a violation of (9.15) as
posing a dilemma: either there is a violation of
causality —later "measurements" have influenced the
probabilities of the outcomes of earlier ones —or ideal
measurements of the [az} are not physically realizable.

However, in the formulation of quantum mechanics
used in this paper, probabilities can only be assigned to
sets of histories that decohere, that is, to exactly those
sets of histories for which the probability sum rules such
as (9.15) are satisfied. A violation of causality by the
failure of the probability sum rules thus cannot occur.
The failure of a sum rule such as (9.15) signals the ab-
sence of decoherence, an inconsistent set of probabilities,
and a violation of the theory s rule for assigning probabil-
ities, not a violation of causality [41]. Further, in this
formulation of quantum mechanics, probabilities can be
assigned to the alternatives [az} if they decohere whether
or not they describe a measurement situation. There is
thus no issue of whether they are "physically realizable"
either.

Decoherence is a property of coarse-grained sets of his-
tories, and future fine grainings can result in the loss of
decoherence as in experiments in which interference be-
tween two previously decohering alternatives is
recovered. In this sense actions taken today can inAuence
which alternatives in the past can be assigned probabili-
ties by the theory, but one would not interpret this as a
violation of causality [42].

C. Measurement

Measurement is not a fundamental notion in the post-
Everett formulation of the quantum mechanics of closed
systems. Probabilities can be assigned to sets of alterna-
tive coarse-grained histories that decohere whether or not
these histories describe measurement situations. Howev-
er, measurement situations can certainly be described
within the post-Everett framework as special types of sets
of decoherent histories and idealized models of measure-
ment situations can be constructed.

A decoherent set of histories exhibits a measurement
situation when there exists a nearly full correlation be-
tween range of values of some quantity and another quan-
tity that is part of quasiclassical domain of familiar ex-
perience [9,11]. Then, from a knowledge of the value of
the quasiclassical quantity, the value of the other may be
inferred. We use the term "measurement situation" rath-
er than "measurement" for such correlations to stress
that nothing as sophisticated as an "observer" need be
present for them to exist.

Idealized models of measurement situations in quan-
tum mechanics have been widely discussed [43]. Typical-
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p=p, p, . (9.16)

An interaction is assumed which couples the subsystem
and the rest only at a discrete sequence of times
t i, . . . , t„.The result of the interaction is assumed to be

ly, these consider an idealized closed system which con-
sists of two parts: a subsystem to be studied and the rest
which may be organized into various types of "measuring
apparatus" or "observers. " Corresponding to this
division, the Hilbert space is assumed to be a tensor prod-
uct &,43&„ofa Hilbert space &, for the system and a
Hilbert space &„for the rest. The "initial condition" for
the closed system is likewise assumed to be a tensor prod-
uct

an exact correlation between each alternative S" (tk) of
a set k of "measured" alternatives for the subsystem at
time tk and the values of "records" of these measure-

(k, tk )
ments R &

' " (t) defined on the rest. These records are as-
k

sumed to persist. That is, an exact correlation is assumed
to hold between a particular ak at time tk and the ap-
propriate Pk for all times t subsequent to the "time of
measurement tk."

The set of histories of "measured" alternatives of the
subsystem can be seen to decohere as a consequence of
the existence of persistent records of their outcomes. To
see this denote by [S ] the individual coarse-grained his-
tory corresponding to a particular sequence of measure-
ment outcomes a=(ai, . . . , a„).The decoherence func-
tional for the set is

D([S ],[S ])=Tr(S" (t„) . S' (t, )pS', (r, ) . S", (r„)) (9.17)

[cf. (4.6) and (4.15)]. This decoherence functional is unaffected by the insertion under the trace of partitions of unity of
the form

Pk

(9.18)

at a time T such that T )t„). . ) t, )0. However, only one term in each of these sums survives because the R's are
exactly correlated with the S's. The R's are commuting projection operators at a final time. They, therefore, decohere
because of the cyclic property of the trace in the decoherence functional. This decoherence of the correlated records
thus accomplishes the decoherence of the measured alternatives. The "off-diagonal" terms in (9.17) vanish as a conse-
quence of the assumptions of the model.

A further assumption usually made is that the interaction does not disturb the values of the "measured" quantities.
In the present language this is the assumption that for the diagonal elements of the decoherence functional the projec-
tions S" (t&) may be replaced by projections s (tk) acting only on %, and evolved by the Hamiltonian of the system

k k

alone. Then

p([S ])=D([S ],[S —])=tr[s" (&„) s' (&, )p,s' (&, ) s" (&„)], (9.19)

where tr denotes the trace on &, . With this special as-
sumption on the nature of the measurement interactions,
the probabilities for the outcomes of a sequence of mea-
sured alternatives is expressed entirely in terms of quanti-
ties referring only to the subsystem. There is unitary evo-
lution in between measurements expressed by the Heisen-
berg equations of motion of the s (t) and "reduction" at
a measurement expressed by the action of the appropriate
projection.

This is how the usual ideal measurement model would
be discussed in post-Everett quantum mechanics. We do
not expect the idealizations of the model to hold exactly
in realistic measurement situations. We cannot expect
exact correlation of measured values and their records,
and certain1y records often persist only imperfectly.
Especially, we do not expect typical interactions of sub-
systems producing measurement situations to occur over
arbitrarily short time scales or to leave the values of
"measured" quantities undisturbed. Indeed, it is known

[44,45] that only for very special quantities S" that com-
k

mute with all additive, conserved quantities could the as-
sumptions of the model be exactly satisfied even given ar-
bitrary lattitude in the form of interaction Hamiltonian
and the initial p„.For such reasons ideal measurements
cannot have a fundamental status in the formulation of
quantum mechanics. The value of the ideal measurement
model lies rather in its role as a schema for the approxi-
mations that represent realistic measurement situations.

The question naturally arises as to whether the alterna-
tives in a coarse graining defined by spacetime regions
can be "measured" in a way similar to alternatives
defined at single moments of time. More specifically,
there is the question of whether the alternatives in a
spacetime coarse graining of an isolated subsystem, not
themselves decohering, can be made to decohere by cou-
pling the subsystem to a larger system in such a way that
the values of the "measured" quantities are not disturbed.
We shall now show that this cannot be done in the sense
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C =c gI, . (9.21)

Since g& R &( T)= 1, Eqs. (9.16), (9.20), and (9.21) imply

D (c,c )=T~ r(C pC" ) =5 .tr(c p, c ) . (9.22)

However, this equation is inconsistent in general cases.
The numbers tr(c p, c ) are not probabilities. They do
not sum to unity unless either (1) the coarse-grained his-
tories of the subsystem already decohere or (2) the class
operators satisfy g c c = 1 as they do for sequences of
alternatives at definite moments of time [cf. (4.17)] or for
the coarse grainings defining momentum discussed in Sec.
VII B. Thus, except for special cases such as (1) and (2),
spacetime coarse grainings do not give rise to a natural
notion of the probability of an individual history in a set
of nondeeohering histories of a subsystem. There is no
natural analogue of the right-hand side of (9.19). There
is, therefore, no natural notion of a measurement of
spacetime coarse-grained alternatives for a nondecoher-
ing subsystem that leaves the values of measured quanti-
ties undisturbed because there is no probability distribu-
tion of "values" in the subsystem to be left undisturbed.

The physical reason for this situation lies in the fact
that the conditions determining a coarse graining based
on spacetime regions are extended over time. An interac-
tion with a larger system that is to detect such classes of
paths must necessarily act over the corresponding ex-
tended period of time. It is difficult to imagine interac-
tions which could do this and, at the same time, leave the
evolution of the subsystem undisturbed in all respects.
Thus, for example, it is quite possible to imagine a detec-
tor located at the origin of the axis of motion of a particle
in one dimension which detects whether a particle crosses
the origin or does not during an extended interval of
time. Such a detector would register the kind of space-
time coarse graining discussed in Sec. VIA. However,
we can expect the interaction by which the particle is
detected to play a non-negligible role in the quantum dy-
namics in that interval and in the calculation of the
decoherence functional. In general, the dynamics of the
entire experimental situation must be taken into account
when calculating the probabilities of sets of alternative

that the corresponding ideal measurement model is in-
consistent for general spacetime coarse grainings.

Consider a closed system divided into a subsystem to
be measured corresponding to a Hilbert space &, and the
rest as described earlier in this section. Consider initial
conditions of the tensor product form (9.16). Consider a
coarse graining of the histories of the subsystem between
t=0 and T that divides them into exhaustive and ex-
clusive classes c, which have corresponding class opera-
tors c acting on &,. We assume that these become
correlated with records in the larger system at the latest
time T in the coarse graining. (Elementary considera-
tions of causality show that it could not be earlier. )

Denoting the projections corresponding to alternative
values of the records by R&( T), this means

Tr[R&(T)C pC R&(T)]~5~+ .&, (9.20)

where

histories coarse-grained by spacetime regions.
The absence of an ideal measurement model for general

spacetime coarse grainings does not mean that the proba-
bilities for such coarse grainings are somehow inaccessi-
ble or not useful. Indeed, we shall argue below that
spacetime coarse grainings may supply more realistic
models of typical measurement situations. The absence
of an ideal measurement model merely means that one of
its idealizations, probabilities of individual histories in a
set of nondecohering histories of a subsystem, is too
strong in the most general cases.

The possibility of probing the quantum dynamics of
isolated subsystems by "measuring" alternatives defined
at one moment of time may be one reason for the focus
on such alternatives in laboratory science. However, as
the analysis of the preceding sections shows, a general-
ized nonrelativistic quantum mechanics in which "mea-
surement" is not a fundamental notion makes predictions
about a more general type of spacetime coarse-grained al-
ternatives even when these are not participants in any
sort of "measurement" situation. Coarse grainings of
closed systems which distinguish alternatives at one mo-
ment of time presume the existence within the system of a
clock to measure that time. When spacetime is itself a
quantum variable, there may not exist, especially in the
early universe, variables of any kind which would be in-
terpreted as clocks [46]. Then, as argued in Sec. VIII,
coarse grainings analogous to the more general spacetime
coarse grainings discussed in this paper may be of more
use and interest than those defined by alternatives at par-
ticular moments of time.

D. Utility: measurements and clocks

Is the generalization of quantum mechanics that is
concerned with spacetime alternatives necessary? Do
these alternatives enable us to describe more accurately
the realistic alternatives with which we dea1, or are those
adequately described by alternatives at definite moments
of time? We have mentioned several times the expected
utility of the analogues of spacetime coarse grainings in
quantum theories of spacetime where there is no well-
defined notion of time. However, we shall now argue
that, even in the nonrelativistic quantum mechanics of a
closed system, spacetime coarse grainings may give a
more accurate description of realistic measurement situa-
tions than is provided by alternatives at a precise moment
of time.

Conventional Copenhagen formulations of quantum
mechanics employ the fiction that "measurements" occur
at definite, precise moments of time. Realistic measuring
apparatus, of course, interacts with a measured subsys-
tem over a finite interval of time. However, since
Copenhagen formulations are concerned with the proba-
bilities of alternatives of measured subsystems, it is always
possible to describe the action of measurement apparatus
more realistically by imagining it and the system mea-
sured are together a subsystem of an even larger system.
The combined system is assumed to be probed by mea-
surements in the larger system which do occur at precise
moments of time. By this device it can be verified in suit-
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able cases that outcomes registered by the realistic ap-
paratus are distributed with probabilities that approxi-
mately coincide with those obtained by assuming that the
measurement took place at a definite moment of time.
Put more physically, in a theory of subsystems it is possi-
ble to posit the existence of an arbitrarily precise, exter-
nal clock that times measurements at definite moments of
time. It is somewhat unsettling that in many situations of
interest no such clocks exist. Further, many typical mea-
surement situations do not involve very precise deter-
minations of time. Certainly, human cognition occurs on
time scales which are long compared to the atomic time
scales historically of interest in quantum-mechanical pre-
diction. However, except for precision in the basic for-
mulation, nothing seems lost by these types of idealiza-
tions in familiar cases of laboratory measurement situa-
tions.

In quantum-mechanical theories of closed systems,
however, there is no room to posit external clocks or
larger systems which perform measurements at precise
moments of time. Measurement situations must be de-
scribed realistically including, in particular, the finite
time over which they take place, and this leads us natu-
rally to consider spacetime coarse grainings. A measure-
ment that localizes a particle to a position interval 6 over
a time 6t may be more accurately described by alterna-
tives defined by the associated spacetime region than any
one precise moment of time. Measurement situations in-
volving the use of a mechanical clock inside the closed
system to determine time may be more accurately de-
scribed by alternative correlations between the clock vari-
ables and measured variables at unspecified moments of
time than by alternatives at some particular moment of
time.

X. CONCLUSION: HAMILTONIAN AND
SUM-OVER-HISTORIES QUANTUM MECHANICS

Conventional, nonrelativistic Hamiltonian quantum
mechanics is concerned with the probabilities of se-
quences of "measured" alternatives of a subsystem
defined at precise moments of a preferred time. These
probabilities may be calculated making use of the concept
of the "state of the subsystem at a moment of time. " The
state evolves unitarily between "measurements" and by
the reduction of the wave packet at them. In the quan-
tum mechanics of closed nonrelativistic systems, it is also
possible to introduce a notion of state of the system at a
moment of time [9] provided attention is restricted to
decoherent histories defined by sequences of alternatives
at definite moments of time This state. summarizes
present data for the calculation of future probabilities.
For example, in a decoherent set of histories defined by
sets of alternatives (a], . . . , a„)at times t, , . . . , t„the
conditional probability that uk+„.. . , n„happen in the
future given that a„.. . , ak have already happened may
be written

P(a t ak+] t+k]l aktk a]t] )

=Tr[C . . . p,]](tk )C . . . ], (10.1)

where

p, ]](t„)—
C . . . a pCa k 1

Tr(C . . . pC „.. . , )
(10.2)

and C . . . denotes the chain of projections at the indi-
k 1

vidual times, as in Eq. (4.15).
As observers of the universe, we are interested in the

conditional probabilities for events in the future given
data that we know. As we acquire new data, new condi-
tional probabilities become relevant. Suppose we make
predictions of the future at a sequence of times
tk, tI, + „tk+2,. . . . Different p,z summarize the available
data at each of these times. It might be loosely said that
there is one p,g tk ) that evolves "unitarily" between these
times (constant in this Heisenberg picture) and is "re-
duced" as projections are added to the ends of the chains
(10.2). That "reduction, " however, does not correspond
to a physical process. It just means that, as new data are
acquired, we choose to focus on a new set of conditional
probabilities and a new p,& is needed to summarize the
new data on which they are conditioned.

However, when, as in this paper, spacetime coarse
grainings are considered in which histories are parti-
tioned by their behavior over extended time intervals, it
is no longer possible to introduce a notion of "state at a
moment of time" that evolves either by unitary evolution
or reduction for times in these intervals. Sum-over-
histories quantum mechanics, however, predicts probabil-
ities for these spacetime coarse grainings even though the
process of prediction cannot be organized in terms of
states, their unitary evolution, and reduction.

As mentioned in the Introduction, the sum-over-
histories quantum mechanics of nonrelativistic systems
described in this paper is both more and less general than
usual formulations. It is less general because it is a sum-
over-histories formulation that starts from a unique set of
fine-grained histories —paths in configuration space. The
only alternatives at one moment of time are those defined
in terms of the coordinates of that configuration space.
The alternatives corresponding to other Hermitian opera-
tors can only be represented approximately by devices
such as described for momentum in Sec. VII B. It is an
open question whether such a sum-over-histories formu-
lation is adequate for physics. However, it is likely that
the present discussion of spacetime coarse grainings
based on configuration space can be generalized in three
ways. First, phase-space path integrals can be used to
define partitions of phase space paths as in [47] for alter-
natives not just restricted to one moment of time. Second,
partitions by the values of functionals of paths can be
used to define more general classes of coarse grainings
[47,48]. Third, it is possible that the Trotter product for-
mula (5.21) can be used with time-dependent families of
projections to define even yet more general sets of alter-
natives. We shall not, however, explore these generaliza-
tions here.

In another respect the nonrelativistic sum-over-
histories quantum mechanics considered in this paper is
more general than the usual Hamiltonian quantum
mechanics. It assigns probabilities to more general
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classes of alternatives —alternatives defined by the behav-
ior of histories with respect to spacetime regions and not
just by their behavior at distinct moments of time. With
this generalization the sum-over-histories formulation of
nonrelativistic quantum mechanics may be said to be ful-
ly in spacetime form. Spacetime sums over histories are
used to compute the amplitudes for spacetime partitions
of those histories. A preferred time is thus no longer
prerequisite for defining the alternatives to which the
theory attaches probabilities. Such generalizations may
be useful in considering realistic descriptions of measure-
ments situations. Their analogues may be essential in
constructing a generally covariant quantum mechanics of
spacetime which does not single out a preferred set of
spacelike surfaces.
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