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Charged black holes with scalar hair
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We describe a family of static black-hole solutions arising in a theory with Einstein gravity coupled to
electromagnetism and an axionlike scalar field. These solutions carry both electric and magnetic charge.
In addition, the scalar field is spatially varying outside the horizon. Since this nontrivial scalar field is
not required by any conservation law, these solutions shed further light on the black-hole no-hair conjec-
ture.

In this article we describe a family of static black-hole
solutions in a theory with Einstein gravity coupled to
electromagnetism and an axionlike scalar field. The solu-
tions have nonzero electric and magnetic charges. In ad-
dition, there is a spatially varying scalar field outside the
horizon. Since this nontrivial scalar field is not required
by any conservation law, these solutions- shed further
light on the black-hole no-hair conjecture [1].

Black-hole solutions with scalar hair have been found
in a number of other theories. These include the case of
an axion coupled to gravity through an aRR coupling [2]
and that of a dilaton coupled to Einstein-Maxwell theory
[3]. A conformally coupled scalar field can have a static
[4], but unstable [5], solution. In addition, there have
been studies of black holes with quantum hair [6], which
carries a vanishing energy-momentum tensor and can be
detected only by, quantum interference measurements;
while very interesting in its own right, this is not directly
related to the classical hair we investigate here.

Our theory is described by the action
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The theory is characterized by a single dimensionless
quantity A, /G. If a(r ) is identified with the standard ax-
ion, this quantity is proportional to the square of the ra-
tio of the Planck mass to the Peccei-Quinn symmetry-
breaking scale, and hence is large. We will later consider
the effects of adding a potential for the axion field.

We concentrate on static spherically symmetric solu-
tions, for which the metric may be written in the form

ds = B(r)dt +C '(r—)dr +r d8 +r sin Hdg, (2)

with C( ~ )=B(00 ) =1. The only nonvanishing com-
ponents of the electromagnetic field strength are
F„,=E„(r) and F&&=r sin&B, (r). These are determined
by the Bianchi identity and Gauss's law (suitably
modified to take into account the presence of the aFF
term [7]),which imply that

and
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with the magnetic and electric charges QM and Qz being
constants. The rr and tt components of the gravitational
field equations can be combined to give

t't' BC tt

=8mGa' (5)

where primes denote differentiation with respect to r. (In
obtaining these equations, it is important to note that the
aFF term does not contribute to the energy-momentum
tensor. ) Integration of Eq. (5) gives

r

B(r)=C(r) exp —8mG J dr ra' (6)

Our problem is thus reduced to one involving two
functions C(r) and a(r). These satisfy the differential
equations

rC'+ C —1 = —4m.G r Ca' + [QM+(Qz+ «QM ) ]
1

and

~QM
(r Ca')'+4nGCr a' = . (Qz+«QM) .

r

[QM +(QE+ «QM )']
r

A solution of these equations is determined by fixing
three constants. These may be chosen to be a( oc ), to-

For later use, we note that these can be combined to give

~QMrC(ra')'= (QE+«QM )
r 2
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gether with a mass parameter M and an "axion charge"
P, defined by the large distance expansion

Reissner-Nordstrorn metric

2MG 4~G( M+ E)C(r)=B(r)=1— +
r r 2

This metric has horizons at

r+ =MG+[M2G2 4~—G(Q +Q )] ~

(12)

(13)

(It should be stressed that this axion charge is not related
to any conservation law. ) Since QE and a enter the field
equations only in the combination QE+AaQM, a may be
shifted by a constant, provided that QE is modified ap-
propriately. We will use this freedom to set a(~)=0.
This leaves a two-parameter family of solutions for each
choice of QE and QM.

These solutions all develop singularities as the asymp-
totic form is integrated in toward smaller values of r. We
will concentrate here on those solutions for which this
singularity is hidden within a horizon (i.e., a zero of C) at
some value r = rH. As in other black-hole solutions, such
a horizon can exist only if M is greater than some critical
value M„. However, this is not a sufhcient condition.
To see this, suppose that as the asymptotic solution is ex-
tended inward, C begins to approach zero. If the right-
hand side of Eq. (9) does not simultaneously tend toward
zero, a' will start to grow. This will cause the first term
on the right-hand side of Eq. (7) to become large, thus
changing the sign of C' before a horizon can be reached.
This situation will be avoided only by special choices of
the asymptotic parameters; these may be viewed as
defining a critical value P„(M) for each M )M„.

Even with M and P tuned so that the right-hand side of
Eq. (9) vanishes at one zero of C, there is no reason to ex-
pect it to vanish at a second. We should therefore not ex-
pect to find an inner horizon, except possibly for excep-
tional values of M. This is consistent with the known in-
stability of the Reissner-Nordstrorn inner horizon.

We can obtain analytic results in the limits of very
small and very large A, . In the former case, the effects of
the axion field may be treated as perturbations about the

as long as

M )M„—= [4'(QM+ QE)/G]'~

To order A, , the axion field equation (8) reduces to

( 2C, ), QM E
2
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a(r)=
r+ —r

QM QE +P ln
r+ r —r+

~QM QE +P ln +O(A, ),
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with the axion charge P entering as an arbitrary constant
of integration. [A second integration constant has been
adjusted to set a(oo)=0.] The singularity at the outer
horizon is eliminated by setting P equal to

Pcr (17)

giving

( )
QMQE

1
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The O(A. ) corrections to the metric can be obtained by
substituting this lowest-order solution for a into Eq. (7).
With P =P„, the result is

with C given by Eq. (12). For M) M„, this can be in-
tegrated to give

C(r)=1 — +
r
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Since the correction term is negative at r =r+, the zero
of C must occur at some rH & r+, thus, the effect of the
axion field is to move the outer horizon outward. The
inner horizon disappears, as indicated by the fact that the
first-order corrections to C tend toward —~ as r ap-
proaches r

These results can be taken over to the case M (M„by
allowing r+ and r to be complex. For all values of P
the horizon is absent and there is a naked singularity at
the origin.

For the case M=M„, we find
T

~ QM(r a')'=
r 2

QE

~QM
(21)

I

where r~ =—r+ =r . This is singular at the horizon, no
rnatter what the value of the integration constant k.

The large-A, limit can be understood by considering the
analogous Oat-space problem. Thus, consider a static
spherically symmetric configuration of electric, magnetic,
and axion fields, with point electric and magnetic sources
at the origin. The vanishing of V B implies Eq. (3), while
the modified Gauss law leads to Eq. (4), with
B(r)=C(r)=1. With C(r) set equal to unity and the
term proportional to Newton's constant omitted, the ax-
ion field equation (8) becomes
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whose solution is

Qza= kexp
M

~QM +(1—k) exp

(22)

[As before, one integration constant has been chosen so
that a(oo )=0.] The rising exponential must be rejected
on energetic grounds. We therefore set k = 1 and have

Qza= exp
~QM

(23)

For r &)A,QM, this reduces to a= —Qz/r+ . , and
thus corresponds to an axion charge P= Qz—. For
r «A, QM, a is approximately constant, with precisely the
value needed to make the electric field vanish [see Eq.
(4)]

We now incorporate gravity. To do this, we first in-
tegrate Eq. (7) to obtain

C(r)=1 —2MG+ ™+ 4mG
dr

™~~E2+r Ca'
r 2 r r p 2 (24)

2A QM

For r much greater than both MG and QGQM, this will be close to unity, and a may be approximated by the fiat space
solution. Substitution of this into Eq. (24) gives

2MG 4n GQM 4nGQz 4mGgz C —1 2AQ
C(r)=1— +

~
+ 1 —exp + dr

2
exp— (25)r T AQMr r r r r2 r

The contribution from the last term is small; it may be approximated by successive iterations of this equation. By doing
so, we obtain the large-distance expansion

4~6( +2 )

r r
(26)

At somewhat smaller values of r, where a' and a+(Qz/A, QM ) are both small (this region extends to within the hor-
izon), we have

2MG 4n GQM 4m GQzC(r)=1— + + +O(A, ), rH&r «Ag~ .
r r M

(27)

In the large-i, limit, this reduces to the Reissner-
Nordstrom metric corresponding to a purely magnetic
charge QM. This has an outer horizon at rH =a+, where

a =MG+(M 6 —4176Q )' (28)

This result for the metric can now be used to extend
the approximate axion solution inward. Substituting the
Reissner-Nordstrom metric into Eq. (8) and dropping the
term containing a' gives a linear equation, valid when a
is small, which can be recast in the form of a Legendre
equation with singular points at r =a+. Requiring that
the solution be regular at a+ leads to a singularity at the
would-be inner horizon.

For intermediate values of A, , we must resort to numer-
ical integration of the field equations to obtain solutions;
typical results are shown in Fig. 1, where we show a(r)
and C(r) for A, =10.06'~, QM=gz=(4m. ) '~, and
M=2. 0G ' . For comparison, we have also plotted
C(r ) for the corresponding Reissner-Nordstrom solution.
The behavior of a and C as r ~0 can be found by consid-
ering the large-C behavior of Eqs. (7) and (8). These im-

CR = = —8m.Ga 'a,
pc

(29)

one can show that the fiuctuations 5C(r, t) and 5a(r, t)
are related by

ply that a -aG ' lnr and C — Pr ~G—~, where a and
P are constants.

In Fig. 2, we plot the critical axion charge as a func-
tion of mass for various values of A, ; analogous plots of rH
are given in Fig. 3.

We close with some brief remarks.
(1) The stability of these solutions can be studied by

considering the effect of spherically symmetric perturba-
tions; this requires that we take into account the time-
derivative terms which were omitted in our original field
equations. Doing so, we find that the magnetic and elec-
tric fields must still be of the form of Eqs. (3) and (4),
while B( r ) is given by Eq. (6), provided that
B(r= ~, t)=1; this condition can be maintained by im-

posing an appropriate coordinate condition. Using Eq.
(7) (which receives no corrections to first order in the per-
turbation), together with
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FIG. 3. The horizon distance as a function of mass for
QM =QE =(4n)' ' . and A, = 00 (leftmost solid line),
A, =10.06' (dashed line), A, =1.0G' (dotted line), and A, =O.O

(rightmost solid line).

5C = —8m.GrCoao5a

265M
exp 4nG I dr rao2

I T
(30)
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(b)

FICs. 1. Plots of (a) C(r) and (b) a(r) for A, =10.0G'
QM

= QE = (4m. ) ', and M =2.OG ' . The corresponding
Reissner-Nordstrom solution is indicated by the dashed Hne in
(a).

d2 + v(x) d P
dx dt

(31)

where subscript zeros denote the unperturbed static solu-
tion. The second term simply corresponds to a shift in
the mass parameter by a constant 5M, and may be omit-
ted when looking for instabilities. With the aid of Eq.
(30) the equation obeyed by 5a can then be cast into the
form

where P=r5a,
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FIT&. 2. The critical axion charge as a function of mass for
QM=QE=(4~) ' and A, = 1.0G' (solid line), A, =10.0G'
(dashed line), and A, = ~ (dotted line). For the first of these, the
discrepancy between the small I, prediction of Eq. (17) and the
results of numerical integration of the field equations is less than
the width of the line.
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FIG. 4. The critical mass as a function of A, for
QM=Qs=(4m) ' . The dashed line indicates the predictions
which follow from Eq. (27) ~
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Co, , (~Q~)'
V(r)=BO(r) +4nGCc(ao) +

r 0 0 4
1+16m.Gra Ii ao+

QE

M
+8mG(ao) [Co+rCO+4mGr Co(aii) ] .

(32)

r~ =4m.GQM, M =M„, A, WO .

On the other hand, when A, =O Eq. (13) gives

r~=4nG(QM+Q~), M=M„, A, =O .

(34)

(35)

and x is defined by dx /dr = (BOCo )
'~ (so that the re-

gion outside the horizon is mapped onto the range—oo &x & ao). The unperturbed static solution will be
stable if the operator on the left-hand side of Eq. (31) is a
positive operator on all functions which are finite at
x=+ao. A sufFicient condition for this is that C and
(Qz+A, aQM) be increasing functions of r outside the
horizon. This is in fact the case for all of the analytical
and numerical solutions we have found.

(2) Equation (30) shows that 5C, when evaluated at the
horizon of the unperturbed solution, is always of the op-
posite sign than 5M. It follows that rH is an increasing
function of M. The critical mass M„should therefore
correspond to the smallest possible value for rH. Now
note that at the horizon Eq. (7) reduces to

rH = re C'(rH ) +4m G t QM + [Qz +A, (ar& )Q~ ] ] . (33)

Since C'(rH) can never be negative, rH will certainly be
minimized if C'(rH) and [Qz+A, a(rH)QM] both vanish;
indeed, Eq. (8) shows that the vanishing of one of these
implies the vanishing of the other, provided that A,XO.
Hence [8],

I

This discontinuity at A, =O is possible because drH/dM„
diverges as M —+M„, as can be seen from the results
shown in Fig. 3. Our numerical results for M„as a func-
tion of A, are shown in Fig. 4. As A, ~O, these approach
the Reissner —Nordstrom value (14). For large A., Eq. (27)
leads to

M„=
' 1/2

4m QM

G

2rrQE
(36)
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This approximation is indicated by the dashed line in Fig.
4.

(3) We have considered the case of a scalar field en-
dowed only with the axionic aFF coupling. However, it
is evident that static solutions with nontrivial scalar fields
will continue to exist even if a potential V(a) is intro-
duced. (This may change the large distance behavior of
the scalar field; a massive scalar will fall as 1/r as
r ~ ac.) The persistence of solutions in the presence of a
potential makes clear that the special properties of the
axion, in particular the possibility of reformulating its dy-
namics in terms of an antisymmetric three-form field with
an associated gauge symmetry, are not essential to the ex-
istence of the scalar hair.

[1]J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972).
[2] B. A. Campbell, M. J. Duncan, N. Kaloper, and K. A.

Olive, Phys. Lett. 8 251, 34 (1990).
[3] D. Cxarfinkle, Cr. T. Horowitz, and A. Strominger, Phys.

Rev. D 43, 3140 (1991).
[4] N. M. Bocharova, K. A. Bronnikov, and V. N. Melnikov,

Vestn. Mosk. Univ. Fiz. Astronomiya, No. 6, 706 (1970);
J. D. Bekenstein, Ann. Phys. (N.Y.) 91, 75 (1975).

[5] K. A. Bronnikov and Yu. N. Kiraev, Phys. Lett. 67A, 95
(1978).

[6] M. J. Bowick, S. B. Cxiddings, J. A. Harvey, G. T.

Horowitz, and A. Strominger, Phys. Rev. Lett. 61, 2823
(1988); L. Krauss and F. Wilczek, ibid. 62, 1221 (1989);J.
Preskill, Caltech Report No. CALT-68-1671, 1990 (un-
published); M. G. Alford, S. Coleman, and J. March-
Russell, Nucl. Phys. B351,735 (1991).

[7] E. Witten, Phys. Lett. 86B, 283 (1979).
[8] Continuity arguments and detailed examination of the

field equations both indicate that the behavior of C(r) at
the horizon cannot be simply a double zero. The precise
nature of the solutions at the critical mass awaits further
investigation.


