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Gravitational field of a hedgehog and the evolution of vacuum bubbles
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The gravitational field produced by a spherically symmetric "hedgehog" configuration in scalar field

theories with global SO(3) symmetry (or higher) is studied in the limit in which these models become
nonlinear o. models. The same gravitational e8'ect can be generated by a set of cosmic strings intersect-
ing at a point, in the limit that one considers a continuous distribution of such intersecting strings in a
spherically symmetric configuration (to be referred to as the "string hedgehog"). When the energy densi-
ties associated with the hedgehog are sma11, we obtain a static geometry, but for higher values, the result-

ing geometry is that of an anisotropic cosmology. The evolution of bubbles joining two phases, one of
which contains a hedgehog (as defined above) is investigated. The role of such configurations in process-
es that lead to classical false-vacuum destabilization and in the evolution of inAationary bubbles is dis-

cussed. The generalization of our results to the gauged case, i.e., to magnetic-monopole hedgehogs, is

discussed.

I. INTRODUCTION AND SUMMARY

In this paper, we want to discuss some new, self-
consistent solutions of Einstein's equations of gravity
coupled to scalar fields or cosmic strings. The charac-
teristic feature of these solutions is that they contain a
hedgehog configuration, that is, a spherically symmetric
configuration with some feature pointing radially. For an
isovector scalar $=($„$2,$3), this means that P is paral-
lel to r, the unit vector in the radial direction, while in a
case of a configuration of cosmic strings, we mean a set of
strings joined at a central region.

As we will see, such configurations give rise to a static
geometry when the strength of the hedgehog is less than
some critical value. For higher strengths, a cosmological
solution is obtained. In the case of a hedgehog of isoscal-
ar fields P, exact solutions can be obtained in the limit for
which the nonlinear o. model is appropriate.

In the nonlinear o model the scalar-field part of the ac-
tion is given by 5 = JV gL d"x, with—

We study the limiting case A,~ Oo, so that (1) is
equivalent to

stabilization of a false vacuum. That is, a vacuum which
is only quantum-mechanically unstable, can, due to the
presence of a hedgehog, become unstable even at the clas-
sical level.

'We study the evolution of bubbles separating two
phases, one being the "false vacuum" and the other the
"true vacuum. " When the false vacuum is outside and
the true vacuum is inside [l],[2], we have a problem of
relevance to the vacuum stability mentioned above. A re-
lated problem is that of the evolution of inflationary bub-
bles where the false vacuum is inside and the true vacu-
um is in the outside region [3]—[8]. The presence of a
hedgehog can be incorporated into such solutions.

As mentioned previously, we will show that the
hedgehog solutions described above can be interpreted as
due to a spherically symmetric ensemble of cosmic
strings. A remarkable result that we will find is that the
trajectory of a given geodesic in such a geometry is iden-
tical to the trajectory in the gravitational field of a single
string (for references on the gravitational field of one
string see Ref. [9]).

Finally, at the end of Sec. IV, we discuss how some of
our results have applications to solutions with local gauge
symmetry, i.e., when the hedgehog becomes a magnetic
monopole.

L =
—,'B„P B,gg"

with P constrained to

(2a)

(2b)

II. THE GRAVITATIONAI. FIEI.D OF A HEDGEHOG

A. The scalar-field hedgehog

It turns out then, that for values of Smov &1, the
hedgehog configuration leads to a static solution, while
for values of 8~6v ) 1, a cosmological solution is the
relevant one.

The presence of this hedgehog —called a "defect"—
can, as we will see, be responsible for the classical de-

We begin by studying the energy-momentum tensor
produced by a scalar-field hedgehog, i.e., the T„pro-
duced by (2a) and (2b) in the case of a hedgehog
configuration:

P=+ur or P= —ur
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where

r& =sinO cosy, r2= sinO sing, r3 cosO (3b)

linear 0. model.
For a single cosmic string located along the z axis, we

have an energy-momentum of the form

Both forms of P in (3a) lead to the same stress-energy
tensor T„.

It is easy to see that (3a) and (3b) are a solution of the
scalar-field equations of motion when g„ is of a spheri-
cally symmetric form:

ds = —Adt +Bdr +r (d8 +sin Ody ) .

The T produced by (2) is

T„.=a„y a.y —g„,[,'(a,y) ~ (a,y)g" ]

which for P given by (3) gives

(4)

(6)

All other components of T" also vanish. When t in (4) is
a timelike coordinate, (5) and (6) imply that Too & 0.

The singularity of T" at the center of the geometry is
a consequence of the constraint (2b). If instead A, is big
but finite, this would allow /=0 at r =0, thus avoiding
the singularity, while still having P parallel to r every-
where. For very large A, (3a) will be very approximately
satisfied, except for a very small region near r =0.

We now look for the geometry generated by the
energy-momentum given by (6). Einstein's equations are

G" =—R"—
—,'5"8 =8~GT", .

For a metric of the form (4) with A =M and B =M
where M is a space-time constant, 8mGT" =G" givesp, M —1T p=T =

2
all other TP.=O.

8mGr

That is, M =1—8+Gv for the hedgehog that produces
the energy-momentum tensor (6). This agrees with the
solution found by Vilenkin and Barriola [10], authors
that have first studied the gravitational field of a global
hedgehog.

Notice that for 8+Gv (1, the metric

ds = —(1 8mGu )dt +(1—8r—rGu .
) 'dr +r dQ (8)

B. The gravitational field of a
hedgehog string configuration

We now show that the geometry discussed in Sec. II A
can be produced by an ensemble of strings in a
"hedgehog" configuration even though the cosmic strings
are quite different physically from the source in the non-

corresponds to a static geometry, but for 8m Gu ) 1, (8)
becomes an anisotropic cosmology. This is because t be-
comes a spacelike coordinate while r becomes a timelike
one, and the term r dQ in (8) represents an expanding
two-sphere with a big-bang singularity at r =0. The oth-
er dimension, associated with the coordinate t, does not
suffer any expansion or contraction whatsoever.

Notice that positivity of energy (Too for M &0 or T„„
for M & 0) is assured provided M & 1.

T 0= T;= —o.5(x)5(y),

with all other components vanishing. o. & 0 ensures posi-
tivity of energy, i.e., Tpp )0 when t is the timelike coordi-
nate.

Now, let us suppose that instead of a single string, we
have an ensemble of many strings, all of them intersect-
ing at a central point. In the limit that the strength of
each string is taken to be very small, but the number of
strings is taken to be very big, the resulting T" has ap-
proximate spherical symmetry (which can become exact
as we let the number of strings go to infinity, i.e., in a
continuum limit).

In such a case (which we call the "string hedgehog"),
we expect (9) to be replaced by

TP Tr
p r (10)

with M a space-time constant. From Einstein s equations
we find T O=T"„=(M—1)lr all other T" =0. The en-

ergy contained inside a sphere r =rp is defined by
E(ro)= fo'v —g T„og"d x, p being the unit timelike
Killing vector, g"=( I/+M )(1,0,00), in the case M )0,
i.e., if t is the timelike coordinate. Then,
E(ro)=(1—M)M4nD, where D =rol&M is the proper
distance from the sphere to the center of the geometry.
The energy inside the sphere goes linearly with D as we
expect for an ensemble of cosmic strings.

Again we find that as the energy density is increased
for a given fixed r, M becomes negative and, as in the dis-
cussion of the scalar hedgehog, we find a cosmological
rather than a static solution. The point r =0, where the
strings meet is now interpreted as a big-bang singularity.

It is interesting to study the motion of geodesics of the
metric with M positive. In fact, because of the spherical
symmetry of the problem, there is a conserved angular
momentum, and geodesics are therefore contained in a
plane. We can therefore set sing= 1 (i.e., restrict the
motion to the x -y plane). Then

ds = —Mdt +M 'dr +r dy

Defining t =v'Mt, r =+M 'r, and y =My&, we get

ds = dt +dr—+r dy (12a)

0~ y ~2aM, (12b)

so that the net effect of the ensemble of strings on the

with all other components vanishing.
In addition, we expect that for a sphere centered on the

intersection point of the ensemble of strings, the energy
content inside will be linear in the size of the sphere, with
the size of the sphere defined as the proper distance from
the center of the geometry to the surface of the sphere.

All these conditions are satisfied, assuming that
Einstein's equations hold, for the metric

ds = Mdt +M—'dr +v (d8 +sin Ody )
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motion of the particle is the same as that of a single string
[9] which is oriented perpendicularly to the plane in
which the motion takes place.

C. Generalizations

It is very simple to consider the effects of a cosmologi-
cal constant or superpose to our solution a Schwarzschild
metric or a Reissner-Nordstrom one. This is because for
the form ds = —Adt + A 'dr + r d Q, the Einstein
tensor becomes

Go0 r r
(13a)

G =G~ =
0

A" A'2+r other G)" =0 (13b)

A =M — —y2r226m
r

(14)

where M=const&1, m =const~0, and y is given in
terms of po through the relation y = (8m.G/3)po. y in the
case U =m =0, i.e, when we have a pure de Sitter space,
corresponds to the Hubble expansion parameter of that
space.

This can be generalized even further to include the
presence of an electric charge for example, since the
Reissner-Nordstrom solution is also of the form (4) with
B=A

Notice that for M positive (14) is a space-time such
that A =0 at a certain value of r. For M (0 however, r
is always a timelike variable and (14) is to be interpreted
as an anisotropic cosmological solution.

III. CLASSICAL FALSE-VACUUM DESTABILIZATION

A. Matching a medium containing a hedgehog
con6guration to a vacuum region

It is interesting to match a vacuum region with a
space-time where there is a hedgehog configuration, pro-
ducing a metric of the form (14) (in particular, in this sec-
tion for the choice m =0). In this way we can study the
growth of a true-vacuum region, where the growth is
helped by the presence of a hedgehog.

If the false-vacuum region contains, for example, a
string hedgehog configuration, these strings can actually
pull the surface of a true-vacuum bubble outwards, fur-

so that Einstein s equations are linear [11]in A —1. Also
in the cases mentioned above, T" is a function of r alone
(not of 2).

This results from the fact that the metric in the pres-
ence of only a cosmological constant is of the form (4)
with B= A and similarly for the Schwarzschild solu-
tion, as well as for the pure hedgehog. The combination
of all these situations is a linear problem, as explained
above.

Thus, in particular, in the presence of a cosmological
constant or, what is the same, a false-vacuum state with
uniform energy density p0 and of a central mass, we have,
for a spherically symmetric scalar field or string
hedgehog, the metric

ther into the false-vacuum region, so that at some value
of the strength of this "pulling, " an arbitrarily small re-
gion of true vacuum can expand and overcome the whole
false-vacuum region.

This is an entirely classical process, since the origin of
the bubble can be interpreted as a very small classical
perturbation of the original system (in the presence of the
hedgehog). What results then is the phenomenon of clas-
sical destabilization of the false vacuum: that is we do
not have to rely on the quantum-mechanical bubble nu-
cleation processes to destabilize the false vacuum —it
occurs even at the classical level.

From a mathematical point of view, it does not matter
whether the hedgehog we consider is made of a scalar
field or of strings, the equations of motion of the false-
vacuum destabilization are the same for both cases.

Technically, the matching of the two regions can be
implemented using Israel's method [12]. Assume that the
interface of the two regions consists of a domain wall
with an energy-momentum tensor of the form [9]

T„= cr(g—„„—g„g )5(q), (15)

In terms of these variables, Einstein's equations take
the form (as usual G„=R„„——,'g„R )

where g„=normal to the surface of the wall and where
Gaussian normal coordinates have been used in (15).
Defining geodesics normal to the (2+ 1)-dimensional sur-
face of the wall, ~rt~ is defined as the length along one
such geodesic, starting from the surface to a given point
outside the surface. g is taken to be positive in the false-
vacuum region and negative in the true-vacuum region.
g=const represents surfaces normal to such geodesics
and g =0 is of course the position of the wall.

At least in a neighborhood of the wall, any point will
be intersected by one and only one such geodesic, at a
proper distance ~rt~ from the surface (the sign specifying
on which side of the wall the point is). The coordinates
in the (2+1)-dimensional surface where the geodesics
originates gives the rest of the coordinates needed. The
coordinates so defined are called Gaussian normal coordi-
nates.

A convenient choice for coordinates in the wall can be:
v =proper time as measured by an observer at rest with
respect to the wall; for a spherical wall it is convenient
also to choose standard angular variables (8,y). There-
fore we can define a Gaussian normal coordinates system
using the coordinates (r, 8,y, q).

Also, it is convenient to extend the definition of g„ to
all space: We define g'„ to be, in general, the normal to an
g=const surface. In the system defined above, it is easy
to see that (using i,j,k, e, m to denote r, 8,p)

g""=g»= 1, g"'=g„;=0

and P=g =(0,0, 0, 1), i.e., the normal is taken to point
from the inside towards the outside region.

We then define the extrinsic curvature
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g i = —' i g + ' [(K )'. —K '.KJ. ]=877GT&
7l 2 2 1 J 7

G~ Kfj Kjjl '8mGT'

gi (3)gi +K eK i 15 i[(K 2) e+KeKm]
J J & J 2 J e e m

(17)

=o (d/dr)(r ) [for a domain wall with T„, given by Eq.
(15)], that is, o =const.

B. Classical false-vacuum destabilizatlQQ

or

y'J = —4m. GO 5' (18)

+B„(K&
' .5j—K,') =8n GT'j,

where a vertical bar means covariant derivative in a
three-dimensional sense [in the (2+1)-dim.ensional space
of the coordinates ( r8, $) labeled variously by latin in-
dices i,j,k, e, m] Also quantities denoted with a super-
script three in parentheses, such as, for example,

R G J are to be evaluated as if they concerned a
purely three-dimensional metric g, , ignoring information
on the embedding in the higher (3+ 1)-dimensional space.

The discontinuity of K can be obtained by integrating
Eq. (17). Since three-dimensional quantities must be con-
tinuous and K . may have a discontinuity, but is other-
wise finite, we have [using (15) for T„„which implies
T'1= —o.5'j5(rl)], integrating from rj= —E to g=+s,
E)0, that y'J. =K' (ou—tside) —K'j (inside) is given by

y'J —O'J-y', = 8m Go 5'

We now turn our attention to processes relevant to the
decay of a false vacuum, that is, to the growth of a bubble
of true vacuum in the midst of a false-vacuum region. In
particular, we want to analyze the effect of introducing a
hedgehog in the false-vacuum region.

We will choose the true-vacuum region to have zero
energy density and therefore be just Aat space. There-
fore, we have A = 1 for the inside of the bubble.

For the outside of the bubble, we specify a region with
higher energy density. In the standard treatment of
false-vacuum decay [2], this outside region is taken to be
a de Sitter space, i.e., A+ =1—g r, but now we want to
consider the presence of the hedgehog in the false vacu-
um. According to our discussion in Sec. II C, this is sim-

ply achieved by replacing the one in 1 —y r by M, where
M is a constant. We further require M & 1, for positivity
of the energy density. Therefore, A+ =M —y r .

Introducing the above expressions for A and A+
into Eq. (20), then solving for P in terms of P+ and
squaring, and then, from the resulting equation solving
for P+ and squaring once again, we get that

In order to extract information from (18), we must evalu-
ate K' . We start by studying Kee. From (16), we have
that

(M —1) X+r MX+r2—
4~2p2 4~2 2~2

(21)

where by definition g&&=r, r being the proper circum-
ferential radius, which has an invariant meaning. Work-
ing in an arbitrary coordinate system, we have

Kee = ,'PB„r—
which can be easily evaluated in a coordinate system
where the metric is of the form ds = —Adt
+A 'dr +r dQ (dQ =d8 +sin 8dy ). There, the
(2+ 1)-dimensional membrane is characterized by a veloc-
ity u"=(t', r', ,0)0and a unit normal to this velocity
P=( A 'r', At, 0,0), so that

Kee= ,'B„r = ,'pB r =r—g"=rAt—=r3rA +r' = rp . —

(19)

We see therefore that taking the 0-0 component of Eq.
(18) gives us the discontinuity of K&ii, and using (19), we

get

P —P+ =4ngcr r, . (20)

where P+=(A++r )'~, with plus and minus referring
to the outside and inside, respectively.

We demand that the induced metric in the wall be well
defined. As a result the proper circumferential radius r of
the inside and outside metrics ds ~ = —A ~dt ~
+ A + 'dr + r d 0, must be continuous at the boundary.

Integration of other components of Einstein's equa-
tions are consistent with (20), i.e., (d/d~)(or).

4~g G y2 y2++2 y2 y2 +2
It is very useful to notice that (21) is just like the equa-

tion of a particle (of "mass"=2) in a potential U, given
by

(22)

provided the energy of the "particle" is given by

Epart
MX+ —X'—

2K
(23)

For the case M=1, there is no hedgehog: in the
scalar-field case M = 1 —8~GU, so U =0. Likewise,
M = 1 corresponds to zero strength for the set of strings
in the string-hedgehog configuration. This case is the
usual Coleman —De Luccia bounce solution [2], where we
have a classical solution that contracts, reaches a
minimum radius r =2K/y+ and then reexpands. From
a semiclassical point of view, there is a Euclidean tunnel-
ing solution that interpolates r =0 with r =r, the
minimum radius of the classical solution, i.e., the radius
at which the bubbles of true vacuum nucleate in the
midst of the false vacuum.

In the absence of a hedgehog, i.e., for M =1, the for-
mation and initial growth of the true-vacuum bubbles in
the midst of a false-vacuum region necessitates quantum-
mechanical tunneling because in the classical regime, the
bubbles must be of radius r =r or bigger. We now
show, however, that in the presence of a hedgehog, the
formation of a true-vacuum bubble in the midst of a



3156 E. I. GUENDELMAN AND A. RABINOWITZ

false-vacuum environment can take place purely classi-
cally, i.e, the bubble can start from zero size and eventu-
ally "absorb" the whole false-vacuum region. In this way
we achieve destabilization of the false vacuum even at the
classical level.

To see this, notice that in order to have a solution in
which a bubble can start from r =0 and then go all the
way to r = ao, it is necessary that E „,as given by (23) is
always equal to or greater than U as given by (22). It is
clear that this can be achieved by making the hedgehog
sufficiently strong or M sufficiently small. (For example,
in the scalar-field case where M =1—8mGv, increasing
u, i.e., the strength of the hedgehog, reduces M. Like-
wise in the string-hedgehog case, making the hedgehog
stronger also reduces the value of M. )

The condition that Ep„t) U for all r is of course
equivalent to E „,& U „,where U,„ is the value of U
at its maximum, where the maximum is determined by
setting 8 U/Br =0. This gives us the condition
M &y /y+. For all these values of M (all of them physi-
cally allowed since y /y+ & 1), we have a situation where
by introducing a hedgehog, there is a bubble solution that
starts arbitrarily small (from r =0) and then expands to
infinity. The above condition is equivalent to demanding
that the scale of symmetry breaking is big enough:
u)(8m. G) '~ [1 y[y +—(4vrGo) ]

Notice that for the solutions (in the presence of a
hedgehog) which start from r =0 and then expand to
infinity, one has, due to the behavior of U near r =0, that
dr /dr = ao for r =0. This explosive-type behavior is
directly correlated to the singularity of T" for a
hedgehog at the point r =0. Replacing the physics of a
hedgehog in the nonlinear o model limit [i.e., taking
A, —+ao in (1)] by considering instead A, big but finite
should remove these singularities, since then we can have
/=0 at the center of the geometry. The problem is then
however, that simple analytic expressions are no longer
available.

Notice furthermore, that only in the case A, = (x) are we
allowed to consider an arbitrarily thin wall, as we have
done here. This is because the wall matches a point
where ~P~

= u and where in a neighborhood of this point
U(~P~)-k(~P —u ) +const (the constant is introduced
in order to have a positive energy density for the false
vacuum), to a point where ~P~ =0 and where
U'(0) = U(0) =0 (in order to obtain at this point the true
vacuum with zero cosmological constant). A, = ~ implies
that the local minimum of U is infinitely steep in the
false-vacuum region, so that (3a) is an exact result there.
An arbitrarily steep potential (both near ~P~ =0 and near

~ P ~

=u) is also needed in order to ensure that the transi-
tion from ~P~ =0 to ~P~ =u takes place in an arbitrarily
thin domain wall. If A, is big but not infinite, that wall
will have a nonzero thickness and this in turn puts a
lower bound on the minimum size of the bubbles we are
considering. What happens at very small distances can-
not be described by the thin-wall approximation, and it is
possible that a small amount of quantum tunneling (arbi-
trarily small as we let A, become bigger and bigger) may
be required to form the initial bubble. This point merits
further research.

Finally we end this section by giving the explicit solu-
tions of the equations of motion in the cases discussed
above. For M (y /y +, the trajectory is described by

r = F' sinh
1 X+

X+ IC

2K
part

X+
(24)

where

4' E„„,F=(M —1)—
2x+

(25)

For M &g /g+, I' )0. Since sinh(g+r/K) takes all pos-
sible real values, there is a i 'Tp such that r =0, for
z) ~p r & 0, and as ~~ ~ r ~ ao.2 2

At the point M =g /g+, F =0 and E „,= —
—,', then r

is given by

K X++
r =

2 +exp
x+ x+

(26)

of course r~ —r gives us solutions also. (26) and its
time-reversed versions are solutions that start at either
r =0 or r = (x) and take an infinite time to get to
r =K /y+, but never cross that point.

For M)y /y+, F &0, F = —~F~, E „,&0 in this re-
gion and r is given by

r 2 1
2

X+

2K E 2
part++ + ~F~ cosh

X+

X+ K (27)

Again, in this case we have solutions that start and
finish at r =0 or r = (x) but never cross the point
r =(I/g+)[ —(2X E~„,/y+)]. The solutions (27)
bounce back at this point, producing therefore time-
reversal-invariant solutions.

C. Hedgehogs and inflationary bubbles

It is of interest to study the problem of a bubble of false
vacuum in the midst of a true vacuum of zero energy
density. Such a false vacuum will have an associated con-
stant positive energy density and constant negative pres-
sure, which therefore leads to an exponentially expanding
(or infiationary) phase. In this way, a local version of the
infiationary scenario [13] can be studied. In such a local
scenario, inflation takes place not over all space, but in a
bubble that could expand to become a very big region.

When a false-vacuum region and a true-vacuum region
are matched through a domain wall, such that the false
vacuum is inside, Eq. (20) holds, with the negative sub-
script now denoting the true vacuum. One finds [3]—[8]
that when inflation takes place the false-vacuum region
does not displace the true-vacuum region (which has a
higher pressure), but it expands forming a space that
disconnects from the exterior and builds a wormhole.
One therefore matches a false vacuum with

=1—y r to a true vacuum with 2+ =1—(2Gm/r)
Equation (20) holds with P+ =++A+ + r' and
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P =++A + r' . The signs of P are determined by
carefully demanding [7], in a legitimate (i.e., one-to-one)
set of coordinates (Kruskal for the Schwarzschild region
and Cxibbons-Hawking coordinates for the de Sitter re-
gion), that the normal which points from inside to outside
always points from the de Sitter region towards the
Schwarzschild region.

The analysis of that matching reveals however that
inflation can take place, but in some cases it does not. In
fact, some bubbles that start from arbitrarily small size
(i.e., from r =0), recollapse instead of becoming arbitrari-
ly large ones. We now show that introducing a hedgehog
of sufficient strength in the false-vacuum region makes
sure that an arbitrarily small bubble of false vacuum will
always expand to an arbitrarily large size.

In the case of a false vacuum with a hedgehog, we have
to replace A =1—y r by A =M —y r, M &1. For
a suKciently strong hedgehog, M &0 (for example, if
Sm Gu ) 1 in the scalar case). In such case A & 0 for all
possible r. From the identity r' + 2 = ( 2 dt ld r ),
which tell us that r' + A ~0, we have that r' can never
be zero (since —A is bounded from below by —M )0
in the case at hand). As a result, recollapse (which re-
quires a point with i =0) cannot take place. Therefore a
bubble of false vacuum with a su anciently strong
hedgehog is guaranteed to expand from r =0 to r = oo,
and this only because the bubble has to have a kinemati-
cally allowed motion from the point of view of the inter-
nal region (the region denoted with a negative subscript).

IV. DISCUSSION OF THE RESULTS

In this paper, we have solved and analyzed the gravita-
tional field of a hedgehog. In the case of a scalar field
with a global SO(3) symmetry, this can be achieved in the
limit A,~~ in (1), which gives rise to a nonlinear o mod-
el. Of course the global symmetry can be bigger than
SO(3): for any model that contains SO(3) as a subgroup
of the global symmetry, the hedgehog solutions discussed
here holds. In the case of strings, the solution holds for a
set of radially pointing strings joined at r =0.

For the strength of the hedgehog bigger than some
critical value (Sm.Gu ) 1 in the scalar field case), M &0
and r becomes a timelike variable. In this way we go
from a static solution to an anisotropic cosmological
solution. This transformation of r into a timelike variable
is similar to that which occurs when crossing the
Schwarzschild horizon of a black hole —crossing from
outside to inside. In fact the phenomenon of making
M &0 in the case of the hedgehog can be interpreted as
making the energy density so large that the entire mani-
fold is inside the Schwarzschild horizon.

We also studied what happens when we match the
hedgehog to another vacuum solution: a false-vacuum
region containing a hedgehog becomes unstable with re-
gard to the formation of a true-vacuum bubble in its
midst, even at the classical level, provided the hedgehog
is strong enough. Such a hedgehog in the false vacuum
can be interpreted as the introduction of some impurity
or "defect" into the vacuum.

Notice also that, in the theory we consider, the intro-
duction of a single hedgehog requires the expenditure of
infinite energy, because of the long-distance behavior of
the hedgehog. This is however not a problem, because
the same effect can be achieved by the introduction of a
hedgehog-antihedgehog pair, a configuration which has a
finite total energy, where the hedgehog can be separated
from the antihedgehog by a large distance (the an-
tihedgehog to be defined in the scalar field theory as
P= —vr rather than P=+ vr in the case of the
hedgehog).

If the hedgehog-antihedgehog separation is large, when
considering the field configuration very close to that of
the center of the hedgehog, the field configuration is al-
most the same as that produced by a pure single
hedgehog. Therefore the evolution of bubbles originating
from this point is almost the same, when the bubble is
quite small, as is the case with the evolution in the pres-
ence of just one hedgehog. Once the bubble gets to a
rather bigger size, it will continue to expand regardless of
the existence or nonexistence of the hedgehog. The effect
of the vacuum destabilization relies only on the short-
distance behavior near one hedgehog and that is not very
much affected by the existence of an antihedgehog very
far away.

We also discussed the effect of a hedgehog on the evo-
lution of false-vacuum bubbles. We find that introducing
a strong enough hedgehog in a false-vacuum bubble
guarantees that this bubble will expand to arbitrarily
large sizes.

Concerning the origin of these hedgehogs, in a cosmo-
logical context it appears quite natural to consider them,
since there is no reason to have the order parameter (t

perfectly aligned all over space: for regions separated by
more than one horizon length, we expect no correlations
concerning the orientations of P, so a rough estimate
gives us a hedgehog in a volume of (one horizon), at the
time of the creation of the phase of the vacuum support-
ing the hedgehog.

Finally, it is interesting to investigate what happens
in the gauged case. In such a situation, the SO(3)
hedgehog becomes a finite-energy solution, i.e., the
't Hooft —Polyakov magnetic monopole [14].

Naively, one could expect to get back the global solu-
tion in the limit when the gauge coupling constant e goes
to zero. This is actually true if we do not look to asymp-
totically large distances, since it is easy to see that the
limits e~0 and r~ ~ do not commute. For the region
near the core of the monopole, the limit e —+0 gives
configurations physically equivalent to those of the global
case. Likewise, for small values of the coupling constant,
the local and global case do not differ very much as long
as we choose to look at the field configurations near the
core of the monopole.

In this regime of small gauge field coupling constant,
looking also at the core of the monopole and also taking
P, the Higgs-field self-coupling [as in Eq. (1)], very large,
we have that the solutions found in Sec. II of this paper
hold.

For the hedgehogs discussed here, where the strength
of the hedgehog is large enough, r becomes a timelike
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variable; i.e., we are inside the Schwarzschild radius.
This implies the following: for the case of a magnetic
monopole, for sufticiently strong A, and suKciently small
gauge field coupling constant, near the center of the
monopole, we are inside the Schwarzschild radius; i.e.,
there is no static solution.

In such a case we can have gravitational collapse of the
monopole, after which magnetic charge survives as
"hair, " but where all the scalar field structure of the 't
Hooft —Polyakov monopole collapses.

It is quite likely that systems of gravity coupled to sca-
lar fields in the context of cosmology, as the ones studied

here, will continue to provide an interesting framework
for developing theoretical ideas in relation to many
diverse problems. (For example, aspects of nonlinear sca-
lar fields with global gauge symmetry coupled to gravity,
different from those studied here, have recently been
studied in Ref. [15]).
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