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New exact solution for the exterior gravitational field of a charged spinning mass
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An exact asymptotically Hat solution of the Einstein-Maxwell equations describing the exterior gravi-
tational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments
is presented explicitly.

I. INTRODUCTION quadrupole moment and exhibits a singular event hor-
izon.

In a recent paper by one of the authors [1] an exact
solution of Einstein s equations describing the gravita-
tional field of a spinning axisymmetric mass and possess-
ing an arbitrary set of multipole moments has been con-
structed by application of the nonlinear superposition
technique [2—4] to the stationary solution considered in
Ref. [5]. The aim of the present article is to give an elec-
trovacuum generalization of this solution which would
already describe the field of a charged rotating arbitrary
axisymmetric mass. To obtain such generalization, we
first improve the solution of Ref. [1],avoiding the double
summation in the expression for the function a, and then
apply to the resulting formulas the Kramer-Neugebauer
transformation [6], which allows us to derive the required
electrovacuum solution and the corresponding metric
functions in explicit form. Our solution has an event hor-
izon with only a singularity at the pole (y = —1), and can
be compared to the metric recently found by Quevedo
and Mashhoon [7], which generalizes the Kerr-Newman
spacetime [8] to the case of a mass with an arbitrary

II. STATIONARY VACUUM SOLUTION

As is well known [9], any stationary axisymmetric
gravitational field is determined by the Papapetrou line
element

ds=kf ' er(x —y) +dx
x —1 1 —y

+(x —1)(1—y )dP

f (dt —cod/—)

where k is a real constant, and the three unknown metric
functions f, y, and co, depending only on the prolate
spheroidal coordinates (x,y), are defined through the
complex Ernst potential e, which satisfies the equation

(e+ e*)b @=2( Ve)

with

e=f+iN, e*=f—i@,
e„=k '(x' —1) 'f2co„4&y =k '(y' —1) 'f 'co„,

1 —2

y = [x(x —l)e„e„"—x(1 y)e e ——y(x —l)(e„e +eye„")],+»)2 x x y y x y y

x 1
y = [y(x —1 )e„e„*—y(1 y)eyey*+x(1 ——y )(&„&y+&y&')],

y
(

2 2)(~+~» )2

6=k '(x —y ) '[B„[(x'—l)t)„]+&y[(1—y')&y]]

V =k '(x' —y2) '~'[xo(x' —1)'~'8„+yo(1—y')' '~y]
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(xo and yo are unit vectors, while a subscript denotes a partial derivative with respect to x or y).
We shall use in the present work generating formulas that differ from those that were used to derive the metric ob-

tained in Ref. [1]by the coordinate change y ~—y. Thus we will write now

e= A /A+, f=2p(x 1)—e A /B,
e2r=e ~ A/(x+y), co=2kq+kqp '(4y+P —C/A),
A + =(p + 1)(x + 1)[(x +y) + iq(x + 1)(1+y)(x —1)e ']e-

+iq(x+1)[(x +y) +iq(x+1)(1+y)(x —1)e ']e

A =(x +y) —
q (1—y )(x —1) e ',

B=(p+1)(x+1) [(x+y) +q (x+1) (1+y) (x —1) e ']
+(p —1)(x —1) [(x +y) +q (x —1) (1—y)2(x —1) e ']e +4q (x —1) (x +y) e

C=(x+y) [(p+1)(1+y)(x+1)e +(p —l)(1 —y)(x —1) e ]e '
+2[q x(l —y )(x —1) e '+y(x+y) ),

(4)

where 4' is any solution of the static vacuum Weyl class
satisfying I.aplace's equation

y' is the y function of the static Weyl solution corre-
sponding to q!'=—' ln[(x —1)/(» +1)]+ql (equations for
y can be found, e.g., in Ref. [10]); the functions a and P
are, respectively, defined by the first-order differential
equations

If one now chooses + of the form

n X++1
(X +y)n+1 " X +y

where the a„'s are real constants, and the P„are the
Legendre polynomials of argument (xy + 1)/(x +y),
then one obtains, by integrating Eqs. (6), the following ex-
pression for the function a:

(x +y)a„=(xy +1)ql„+(1—y )ql

(x +y)a = —(x —1)%„+(xy+1)1P

QO a
P(+)n+1n+1 (10)

while p and q are real constants subjected to the con-
straint

which turns out to be much simpler than the correspond-
ing a in Ref. [1] because of the new generating formulas
(4) that we are now using. On the other hand, the expres-
sion for y' remains the same as in that solution [1],while

P will differ from the respective expression in Ref. [1]
only by its sign; i.e., we have

q

x 1 ~ +1 1 ~ y l
2 oo P n 2(x —)P
2y2(»+y)!!+12!!+1(»+y)!+1

a a„(m +1)(n +1)
)m+n+2 m+1 n+1 m n

7

~n xy+1
(» +y)" x +y

Then Eqs. (4) and (9)—(11) will determine a stationary
asymptotically Hat metric that exhibits the same physical
properties as the solution considered in Ref. [1]; i.e., it
describes the exterior gravitational field of a stationary
arbitrary axisymmetric mass; it possesses an event hor-
izon (the hypersurface x = 1) which, however, contains
now only one singular point (the pole y = —1), while the M=p, J=q(p +2)/p, (12)

area of the horizon again is given by Eq. (10) of Ref. [1];
in addition, it is defined by even more concise expressions
than the mentioned solution [1]. The total mass M and
angular momentum J of the metric (4), (9)—(11) are given
by the relations
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while the higher relativistic mass-multipole moments
[11,12] M„ i ~ 1 contain the parameters a„which de-
scribe the deformations of a mass and allow M; to assume
arbitrary values.

Now we shall proceed to derive a charged generaliza-
tion of the above stationary vacuum solution, for which
purpose we should consider the combined system of the
Einstein-Maxwell equations.

III. STATIONARY KLECTROVACUUM SOLUTION

co„=k(y —1)f [@~+21m(%"Vr)],

co =k(x —1)f [N„+21m(%"qi„)] .
(15)

Note, that the coefficient y can be calculated once e
and 4 are known [14].

As was shown by Kramer and Neugebauer [15], if one
knows any solution eo of the Ernst equation (2) one can
construct potentials e and %' satisfying the system (13)
with the aid of the symmetric transformation

In this general case an axisymmetric Einstein-Maxwell
field is determined, like in the previous case, by the Papa-
petrou line element, whereas the Geld equations assume
Ernst's elegant form [13]

eo —P P(eo —1)e=
1 —peo 1 —peo

(16)

( Ree+ %%' )be = ( Ve+ 2+*Vql )Ve,

( Ree+ %%*)b% = ( Ve+ 2%*V4 )V4, (13)

with

e=f 4%*+—iC&, 4= A4+iA3,

A,' =k '(x —1) 'f A
'

A', =k '(y —1) 'fA,' „,
(14)

where A3 and A4, respectively, are the magnetic and
electric components of the electromagnetic four-
potential. The metric function ~ is related to the poten-
tials N and 4 according to

A —P A+ P(A —A+)
A+ —PA A+ —PA

(17)

which determine the following expression for the metric
function f:

where P is a real constant subjected to the constraint
~P~%1 to avoid singularities in the metric (1) [see Eqs.
(18)—(20) below]. Transformation (16) leads to an asymp-
totically fiat solution of Eqs. (13) if the solution eo is
asymptotically fiat; moreover, under (16), the function y
of the electrovacuum solution is equal to yo of the seed
vacuum metric.

Let us choose as eo in (16) the solution from the previ-
ous section; then one arrives at e and 4 of the form

f=2p(l —P ) (x —1)e A/D,
D=(p+1)[(x+y) [x+1—P (x —1)e ]+(p —1)(x —1)[(x—1) (1—y)e +P (x+1) (1+y)]e 'J

+(p —1)[(x+y) [(x —1)e —P (x+1)]+(p+1)(x —1)[(x+1)(1+y)+P (x —1) (1—y)e ]e 'I

(18)

Since the potential y of solution (17) is given by (4) and (11), it only remains to find the metric function co to deter-
mine the new metric completely. Fortunately, it turns out possible to integrate Eqs. (15) for arbitrary f, the result being
given by

co= [coo(x,y, g)+P coo( —x, —y, —f)]/(1 —P )

where coo is the function co of the vacuum solution (4). By using (4) one finally has

(19)

co= [2(1+P )+p '[(1—g')(4y +P ) E/A ]];—
( 1 P2)2

E=(x+y) [[1—g'+p(1+P )](1+y)(x+1) e ~+[p(1+P ) —1+f3 ](1—y)(x —1) e ~]e '
+2(1—P )[q x(1 —y )(x —1) e '+y(x+y) ] .

Therefore we have derived all the necessary equations
representing a charged generalization of the superposi-
tion formulas (4)—(8). With the choice of g, a, and p
given by (9)—(11) the expressions obtained above for f, y,
and co will describe the asymptotically Aat gravitational
field of a charged rotating arbitrary axisymmetric mass,
whose deformations are characterized by the parameters
a„. The expressions for the total mass M, angular

momentum J, total electric charge Q, and magnetic di-
pole moment p, of our solution can be found from (14),
(17), and (18) with the aid of the coordinate transforma-
tion

x =(r —M)/k, y =cos8, (21)

and taking into account that the asymptotic behavior of
the functions f, y, co, A ~, and A z, as r ~ ~, is
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f=1—2Mr '+O(r ), e r= 1+O(r ),
co=2Jr 'sin 9+O(r ), A~=Qr '+O(r ),
A ~

=pr cos8+ O(r ),
then one gets

kp(1+P ) k q(1+P )(3+q )

P2 p ( 1 Pz)

2Pkp 2Pk q(p +1)
p

1 —P p(l —P )

(22)

(23)

(A) a„=O, q&0 . (24)

In this case one gets the three-parameter stationary elec-
trovacuurn solution which generalizes the solution of Ref.
[5] and has the Schwarzschild metric as its static vacuum
limit. Since it is the first solution of this kind different
from the Kerr-Newman metric, we write explicitly its
metric functions f, y, and co:

Let us consider two particular cases of the solution ob-
tained:

f=2p(1 —P ) (x —1)A'/8', e ~= z, ~= —
z

2kq(1 —y )C'
x~ —y' (x+y)' p(1 —P')&'

A'=(x+y) —
q (x —1) (1—y ),

B'=(p +1)[(x +y)~[(1—p')x + 1+p']+(p —1)(x'—l)[(x —1)'(1—y)+p'(x +1)'(1+y)]]'
+(p —1)I(x +y)4[(l —p~)x —1 —p ]+(p +1)(x —1)[(x+1) (1+y)+p (x 1) (1 y)]]

C'=(x+y)5[(1 —p')(3x +3xy+y +1)+(1+p )(3px+py)]+q (x —1) [(1 p )(x+2y)+p(1+p )] .

(25)

Note that in the absence of rotation (q =0) the above
solution reduces, like the Kerr-Newman solution, to the
Reissner-Nordstrom metric [16] describing the field of a
spherically symmetric charged mass.

(B) q =0, a„+0 . (26)

%'ith this choice of the parameters one comes to the
electrostatic solution which represents the exterior gravi-
tational field of an arbitrary static axisymmetric mass
possessing an electric charge. The metric function f and
electric potential A4 of this solution have the form

(1 —P ) (x —1)e ~

[x+1—P (x —1)e ~]a„~y +1
)n+1

P[x+1—(x —l)e &]34=-
x+1—P (x —1)e &

(27)

while y is given by the right-hand side of the expression
for y' in Eq. (11). In the absence of electric charge
(p=O) the metric (27) reduces to the static vacuum
metric of Ref. [1]; the Reissner-Nordstrom solution is
contained in (27) as the simplest electrostatic case corre-
sponding to cx„=0.

In the general case one gets the electrovacuurn solution
which has the Schwarzschild metric as its static pure vac-

uurn limit and possesses an arbitrary set of multipole rno-
ments determined by the parameters e„and q.

The investigation of the invariants of the Weyl tensor
[17] shows that our solution degenerates to the Petrov
type D only in the cases a„=q =p=O (the Schwarzschild
solution) and a„=q=0,p&0 (the Reissner-Nordstrom
solution), being algebraically general for all other values
of the parameters. The solution has an event horizon
defined by the hypersurface x = 1, which can possess no
more than a singular point located at the pole y = —1.

IV. CONCLUSION

An electrovacuum solution has been derived that cor-
responds to the exterior gravitational field of a charged
rotating arbitrary axisymmetric mass, and, as such, its
relevance to astrophysics is evident. A peculiar feature of
our solution is that the whole metric is determined by
very concise expressions which leads us to believe that a
future more detailed analysis of its physical properties
should be feasible.
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