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An exact conformal field theory describing a black hole in two-dimensional space-time is found as an

SL(2,R)/U(1) gauged Wess-Zumino-Witten model. For k =9/4, the conformal field theory can be re-

garded as a classical solution of the same system that is probed in the c =1 matrix model. The confor-
mal field theory governing the space-time is regular at the Riemannian singularity, but it appears that
generic perturbations blow up there. It is argued that the end point of the Hawking black-hole evapora-
tion is the standard space-time of the c =1 matrix model, which should be regarded as an analog of the
extreme Reissner-Nordstrom black hole of four-dimensional general relativity. The c = 1 model is thus a
model of the quantum mechanics of rnatter interacting with a black hole.

Two-dimensional current algebra with a noncompact
symmetry group is nonunitary, but nonetheless it has
been known for some time that some cosets [1,2] of non-
compact groups are unitary at least in that one can find
unitary representations of the appropriate chiral algebras.
This was first found for SL(2,E)/U(1) cosets [3] which
have been studied considerably along with their generali-
zations [4—6]. (It was proposed in [4] that such a model
would have an interpretation in two-dimensional target
space-time. ) There has been, however, little success at
forming modular-invariant combinations of left- and
right-moving SL(2,E)/U(1) representations, nor has
there been much insight about what would be the content
of a such a hypothetical theory.

Gauged Wess-Zumino-Witten (WZW) models are a
natural framework [2,7—10] for giving a Lagrangian
(and hence manifestly modular-invariant) realization of
coset models. In this paper we will construct a modular-
invariant SL(2,E)/U(1) coset model as a gauged WZW
model. What we will get is a conformal field theory
describing a black hole in a two-dimensional target
space-time. Depending on which subgroup we gauge, we
obtain a Euclidean black hole or its Lorentzian continua-
tion. Although it is not necessarily easy, the conformal
field theory governing the black hole is presumably more
or less exactly soluble because of the extended chiral alge-
bra of SL(2, IR)/U(1).

Different forms of the solution we will be discussing
have been obtained (without the black-hole interpreta-
tion) by Bardakci et al. and by Rocek et al. (who found
another real form of the solution in studying SU(2)/U(1)
and SU(2) XU(1) WZW models, respectively [11,12]), and
by Mandal et al. [13] (who found the part of the space-
time exterior to the horizon by studying the O(a') /3-

function equations for string theory with a two-
dimensional target space). The black hole is also reminis-
cent of instanton and soliton solutions found by Callan,
Harvey, and Strominger [14]. Black-hole solutions of
limiting low-energy field theories derived from string
theory in four (or more) dimensions have been analyzed
in several papers [ 15—18 ].

Although we will consider in this paper only the bo-

sonic theory, there is also a superconformal version of the
black-hole solution. It can be found by gauging a super-
symmetric SL(2,E) WZW model. (One starts with an
iV=1 WZW model, but the resulting coset model turns
out to have N =2 supersymmetry, as in the construction
of Kazama and Suzuki [19].) The superconformal black
hole is a kind of analytical continuation of the N =2
discrete series, which can be described by an analogous
supersymmetric SU(2)/U(l) coset.

The central charge of the SL(2, E)/U(1) model is [3]

3k 6C= —1=2+
k —2 k —2

[This formula originates as follows. The central charge
of SU(2) current algebra at level k is 3k /(0+2). Analyt-
ically continuing from SU(2) to SL(2,E) would by itself
not change the value of c extracted from Feynman dia-
grams, since minus signs in vertices cancel against minus
signs in propagators. However, in passing from SU(2) to
SL(2, IR), one takes k —& —k since we want the SL(2, IR)
manifold to have signature (

—++) and not (+ ——).
This gives the 3k/(k —2). Finally, one subtracts 1 for
the gauged U(1).] There are two interesting regions. For
k~ ~, the o. model describing the black hole is weakly
coupled and can be understood semiclassically (in the
world-sheet sense). To obtain a bosonic string back-
ground, one must then adjoin additional matter of c near
24. Alternatively, for k =—', the black hole has c =26 and
can be considered as a bosonic string background in its
own right. As we will see, it is asymptotic at spatial
infinity to the two-dimensional space-time that appears in
the standard c= 1 matrix model [22—25]. (The latter
model superficially has a one-dimensional target space,
but in fact is naturally understood [20,21] in terms of a
two-dimensional target space-time, the second dimension
being the Liouville mode. ) We will suggest later that the
black hole plays a key role in the physics of the c =1
model. This may be related to the fact that Liouville
theory and some of its generalizations arise as other
SL(2,E) cosets [26—28].

The ungauged SL(2, IR) WZW action is
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L(g)= f v'h h'~Tr(g 'B,.gg 'i) g)+ikik
8m r

Here X is a Riemann surface with metric tensor
h, g:X~SL(2,E) is the field variable of the model, Tr is
the trace in the two-dimensional representation of
SL(2,E), k is a positive real number [as noted above, the
sign of the Lagrangian has been reversed compared to the
SU(2) case], and I is the Wess-Zumino term [29]. The
latter can be described as follows [30]. If B is a three-
manifold with boundary X, and we pick an extension of g
to a map from B to SL(2,E), which we also call g, then

symmetry corresponding to g ~agb ', with
a, bCSL(2, E). Usually it is possible to gauge an arbi-
trary subgroup of the global symmetry group of a theory,
but for WZW models, that is not possible, because of the
peculiar nature of the Wess-Zumino term. Only sub-
groups that obey a certain condition of anomaly cancella-
tion can be gauged. We first wish to consider the gauging
of an anomaly-free subgroup chosen to remove the nega-
tive signature mode of g so as to get a Euclidean signa-
ture conformal field theory. We consider the U(1) sub-

group generated infinitesimally by

I (g)= f Trg 'dg hg 'dg hg 'dg .1

12' B
(3)

0 1 0 1

0 8 +8 1 P (4)

As H (SL(2, IR), E)=0, I is independent of the choices
that have been made. Because of the indefinite signature
of the SL(2, IR) manifold, (2) does not lead to a unitary
conformal field theory. It is tempting to regard it as a
string solution in a three-dimensional Lorentzian world,
but the absence of an analog of the no-ghost theorem in
this situation [31,4] discourages this interpretation.

The Lagrangian (2) has a global SL(2,E) XSL(2,E)
I

To gauge this symmetry we introduce an Abelian gauge
field 3 with

The gauge-invariant generalization of the WZW action is
in local complex coordinates z, z (here d z denotes the
measure ~dz dz~)

0 1 0 1
L'(gA)=L(g)+ fd z'ATr

1 0 g 'Bg+ATr
1 0 Bgg

0 1 0 1
+A, A —2+Tr

1 0 g —1 0 g

Because the gauge group has been chosen to act freely,
one can conveniently fix the gauge by gauging away one
component of g (such a gauge choice is often called a uni-
tary gauge). The gauge invariance can be precisely fixed
by setting

T

cosO sinO
g =coshr+sinhr

sinO —cos8

As the Lagrangian is quadratic in 2, and the quadratic
piece is invertible and nonderivative, A can be integrated
out, to give

I(r, O)= f d z(B,rB,r+tanh rB,OB, O)
k

I

tation as such a black hole. Before discussing this fur-
ther, let us note the following conundrum: the metric (9)
is certainly not fiat, and therefore it is not Ricci fiat (as
the two concepts coincide in two dimensions), so how can
the P function vanish even in the one-loop approxima-
tion, which is valid for large k? In problems of roughly
this type [32] (and in this precise problem for a different
real form of the metric [12]) it is known that a finite
correction coming from the measure in the integration
over A gives rise to a target space dilaton field, a more
accurate representation of the classical action for r and 0
being

I(r, O)= f d x&h h'(d;rB r+tanh rB, OB O)

k f d x&h h'~(d, rBJr+tanh rB, OB O) . f d2xV h q&(r, O)g'2'
8~

(10)

(The Wess-Zumino term is a total derivative in this gauge
and has been dropped. )

As tanhr ~1 for large r, it is easy to see that the target
space metric of this theory,

for some function 4& on the target space. (R ' ' is the cur-
vature of the world-sheet metric h. ) Without imitating

ds2= —do z, with do. = [(dr ) +tanh r(d O) ], (9)
2

has the form (Fig. 1) of a semi-infinite cigar, asymptotic
for r~ ~ to RXS' with a Rat metric. In general, a d-
dimensional Euclidean black hole is asymptotic to
R" 'XS', so this space-time is a candidate for interpre- FIG. 1. A semi-infinite cigar.
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%=2 ln coshr+const . (12)

The possibility of adding a constant to 4 amounts to the
freedom to change the string coupling constant. This ad-
ditive constant plays an important role, as we wi11 see
later. N grows linearly for large r, with a sign such that
the string coupling constant vanishes for r ~ oo.

If one assumes that (10) represents an exact conformal
field theory for all k, then the central charge can be com-
puted by going to the asymptotically Aat region of large r.
Including in the standard fashion [34] the shift in c due to
the correction in the stress tensor that comes from the
asymptotically linear dilaton field (12), one gets
c =2+6/k. This agrees with the exact answer (1) only to
within an error of order 1/k . This must mean that
there are further corrections to the Lagrangian (10),
presumably coming from additional contributions to the
result obtained in integrating out A. Our point of view is
that the exact black-hole quantum field theory is
represented by the gauged WZW Lagrangian (6). The
transformation to unitary gauge is difficult to carry out
exactly, but is very useful for getting a qualitative picture
of the physics. Unfortunately, the value k= —' at which
c=26 is in the strong-coupling region, and without a
better understanding, it is difficult to determine such
properties as the radius of the circle at infinity.

We will express some of the formulas in terms of not k
but k'=k —2. There is no loss in making this substitu-
tion, since perturbation theory in 1/k can be rearranged
as perturbation theory in 1/k'. One advantage in ex-
pressing the formulas in terms of k' rather than k is that
this gives the right results for things that are controlled
by the asymptotic behavior of the dilaton field (since this
is known in view of its relation to the central charge).
The simple substitution of k by k' in (10), is not, however,
guaranteed to give the right value of the asymptotic ra-
dius of the cigar.

Let us now compare to Liouville theory. Liouville
theory coupled to c =1 matter has a two-dimensional
space-time interpretation [20,21] with coordinates $, e
and a world-sheet action that reads, in part,

the analysis of [32], 4 can be determined by noting that it
must obey the one-loop equation [33]

R,b
—D,Dbc' .

(R,b is the Ricci tensor of the target space. ) This gives

r, = ' f d'x &h h'Ja, X'a,X'g., (X) . (15)

If one considers the naive conformal transformation law

5h,. =eh,-, 5X'=0, (16)

then one finds at the one-loop level that the effective ac-
tion is not invariant; rather,

Sr„= ' fd'x&—h h' a,jX'a X'R, (17)

Suppose, however, that there is a function 4 on the tar-
get space such that R,b =D,Db@. Then [33] one adds to
the action a counterterm

d'xv'h R~'~q,
8m

and one finds that, purely at the classical level,

5I) = f d x&h e(h'~B;X'B)X D,Db@

to the action to suppress the strongly coupled region at
P~ —oo. Comparing (10) and (13), we see that, for large
r, r can be identified with the Liouville field P. But a
cutofF to dynamically suppress the region of r~ —~ is
unnecessary, since this region is missing from the black
hole space-time. Because of this, the region k )—,', which
corresponds to what is usually regarded as the forbidden
region of c ) 1 in Liouville theory, makes perfect sense
for the Euclidean black hole. In a sense, replacing stan-
dard Liouville theory with the Euclidean black hole
could be regarded as a way of getting past the Liouville
theory barrier at c =1.

To understand the relation between the black hole at
k =—', and the c =1 matrix mode1, it is usefu1 to first un-

derstand the general relation between critical strings with
a D-dimensional target space and noncritica1 strings with
a (D —1)-dimensional target space. A noncritical string
in D —1 dimensions (i.e., two-dimensional gravity
without conformal invariance, coupled to a (D —1)-
dimensional cr model) can always be interpreted as a criti-
cal string in D dimensions with the Liouville field as the
Dth dimension. It is obvious though not always em-
phasized that the reverse mapping is possible only under
special circumstances. This is evident from any clear
statement of what the reverse map means when it exists.
Consider a D-dimensional target space model with

', f d'xv'h (h'Ja, ya, y+h'~a, ea,e).
+D, N h'JD;D&X') . (19)

d x&h 4a' ' PR' '

8m
(13)

P is the Liouville field; the string coupling constant is
weak for P~ oo and strong for P~ —~. (To compare to
Ref. [20], one should set a'=2, while in the rest of this
paper we will set a'= —,'.) It is convenient (and, according
to matrix model results, possibly necessary) to add a
tachyon potential

Combining (17) and (19) we see that if we start with the
action l=IO+I&, then up to this order the effective ac-
tion is conformally invariant modulo the equation of
motion h'~D, D X'=0. Instead of speaking of conformal
invariance modulo the equations of motion, it is much
better to modify the conformal transformation laws to
achieve invariance off shell. The modified transformation
laws, which are adequate up to this order, are

b,I=@f d x&h exp( —2P/V~') (14) 5h; =eh, -, 5X'= —g
'

Db N . (20)
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There are presumably further corrections in higher order.
From (20) one can determine the conditions under

which a D-dimensional critical string theory can be de-
duced from a (D —1 )-dimensional noncritical string
theory. If the gradient of the dilaton is everywhere time-
like, then one can use conformal transformations to
gauge away a time coordinate, by fixing a gauge in which,
say, X =0. In this way time is eliminated in favor of the
determinant of the two-dimensional metric. Similarly, if
the gradient of the dilaton is everywhere spacelike, then
one can use conformal transformations to fix a gauge
such as X'=0, eliminating one of the space coordinates
in favor of the determinant of the metric. However, this
identification of a D-dimensional critical string theory
with a (D —1)-noncritical string theory will fail in the
(typical) case in which the gradient of the dilaton is nei-
ther everywhere spacelike nor everywhere timelike.

For instance, in the case of the Euclidean black hole,
the transformation laws in this approximation are

5r =e, tanhr, 50=0 .
1

2k' (21)

For r ))0 this is approximately the Liouville transforma-
tion law 5r =e X const which would assert that a power
of e' can be identified with the determinant of the metric.
In that region, r can be gauged away, and the system can
be described as noncritical two-dimensional gravity cou-
pled to a single scalar field 0. Near r =0, however, the
attempt to gauge away r in favor of the determinant of
the metric is not valid, since V@=0 at r=0. Hence,
though for k =

—,
' the Euclidean black hole is a classical

solution of the same theory that is usually studied in the
c =1 matrix model, it cannot actually be regarded as a
theory of c =1 matter coupled to two-dimensional gravi-
ty. Later, when we construct the Lorentz signature black
hole, it will be apparent that the situation is much worse:
the gradient of the dilaton is spacelike outside the hor-
izon, and timelike inside, so if one tried to represent this
system as noncritical two-dimensional gravity coupled to
c = 1 matter, one would obtain a dreadful mess.

Now let us discuss the analytic continuation of the
black hole to a Lorentz signature. Naively, one simply
sets 0=it, whereupon

coordinate singularity can be found by imitating the simi-
lar procedure for the Schwarzschild solution [35]. After
setting

r'=r+ln(1 —e "), (24)

we get

do. =tanh r[(dr') —dt ] .

With

2v =e"'+' 2u = —e"'

(25)

(26)

so that

cosh r =1—uv, sinh r = —uv,2 — ' 2 (27)

we get

Qu Qv0'
1 —uv

(28)

Now we can easily see the essential features of the space-
time. The original r, t asymptotically Aat half-space cor-
responds to region I in Fig. 2. The coordinate singularity
at r =0 corresponds to the two lines u =0 and v =0. The
physical singularity is at uv= 1 [where the curvature
blows up according to (23)] and consists of a past and fu-
ture branch. The future branch is the black-hole singu-
larity, from which no signal can cross the horizon to an
observer in region I. The past branch is a naked singular-
ity. There is also a second asymptotically Aat half-space,
region III. No signal can propagate from region I to re-
gion III or vice versa. Regions I—IV, and the causal rela-
tions between them, have precise analogs in the (positive
mass) Schwarzschild solution in four dimensions. Final-
ly, if one considers the space-time (28) for uv ) 1, one
finds two additional asymptotically Rat half-spaces, re-
gions V and VI. Time Aows sideways in these spaces [be-
cause the factor 1/(I —uv) changes sign in crossing
uv= 1]. The singularity at uv =1, rather than being in
the past or future, as appears to be the case to an ob-

dg =dr tanh r (22)
V

Notice that in this continuation, it is 0, not r, that is ro-
tated, so we are committed to interpreting the "Liou-
ville" coordinate r as a spatial coordinate. (For the c =1
model considered in isolation, the Liouville mode can be
given a spatial interpretation favored in [20] or a time in-
terpretation assum. ed by some other authors. The black-
hole physics corresponds to the spatial interpretation.
The black hole does not have another analytic continua-
tion in which r would be rotated instead of P.) Equation
(22) appears to have a singularity at r =0, but this must
be purely a coordinate singularity, since the scalar curva-
ture

4R=
cosh r

(23)

is regular at r =0. The analytic continuation past the FIG. 2. The analytically continued black-hole space-time.
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server in one of regions I—IV, appears at the end of the
spatial world to an observer in region V or VI and is a
naked singularity. From the analog of the ADM
definition of mass that we will compute later, the reader
can verify that regions V and VI are space-times with
negative mass; indeed, they are analogs of the negative
mass Schwarzschild solution in four dimensions. As has
occasionally been noted [36], such regions with negative
mass naked singularities appear in the four-dimensional
Schwarzschild solution if one continues past the singular-
ity.

As in the case of the four-dimensional Schwarzschild
solution, this space-time (or more exactly regions I—IV)
can be considered to develop from smooth initial data on
a nonsingular Cauchy hypersurface such as u = —v. In
contrast with the four-dimensional case in which such a
hypersurface necessarily has an exotic topology, here the
initial value surface is just a copy of R and so is not dis-
tinct topologically from a possible initial value surface in
the standard two-dimensional space-time of the c =1
model. What is exotic about the initial data is the follow-
ing. The dilaton field @=in cosh r =ln(1 —uu ) grows at
each end of the spatial world. If, therefore, we
parametrize the initial value surface u = —v by an arc-
length coordinate r" [so that its metric is (dr") ], then
for r" &)0, r" looks like the Liouville field, while for
r" «0, it looks like —r" is the Liouville field. Obvious-

ly, there is no simple way to straighten out the disagree-
ment between observers at the two ends about whether r"
or —r" is the approximate Liouville field. Collapse to a
black hole is the result. It seems plausible that any initial
conditions with the dilaton growing at each end will lead
to a black-hole collapse.

Now that we have exhibited the two asymptotically Bat
regions of the system, perhaps it is worth mentioning that
if one wishes to have a conformal field theory describing
a world with only one such region, one can do this by
taking an orbifold of this space-time, dividing by the Z2
group u+-+v.

Instead of obtaining the Lorentz signature black hole
by a purely formal analytic continuation from Euclidean
space, one can obtain it directly as a conformal field
theory by gauging a different subgroup of SL(2,E). We
consider the noncompact one parameter symmetry group
generated by

1 0 1 0
5g =E'

0 1 g+g P

and we parametrize the group manifold by

a u

b, with ab+uv =1 .—v b

The gauged WZW action turns out to be

f d z(B,uB, V+8 uB, u+B, aB b+8 aB,b)

+ f d z[A (bd, a —aB,b+uB, v —UB, u)+ A, (bd a aB,b —uB —U+UB, u)+ A, A (4 4uu)—

+lna(B, u 8 U
—B,u B,U ) ] (31)

with gauge invariance

5a =2@a, 6b = —2eb,

nu =Sv ——0, S~, = —a, ~ .
(32) h "B,u B,U

d'x h4' 1 —uu
(34)

In that gauge, after eliminating that auxiliary field 3, one
gets

= f d z Inu(B, aB b —0 aB,b) (33)

after discarding a total derivative.
Further development requires fixing a gauge. In the re-

gion with 1 —uv )0, it is natural to fix the gauge a =b.
[If 1 —uu )0, then ab + uv = 1 implies a, b )0 or a, b (0.
Both possibilities occur on the SL(2,E) manifold, so if we
take the SL(2,E) picture literally, the full space-time con-
tains two copies of each of regions I—IV, and, for a simi-
lar reason, two copies of regions V, VI. If one considers
the universal cover of the SL(2,E) manifold, one would
get infinitely many copies. It is not clear if these facts
have any real relevance to the physics of the black hole. ]

The peculiar term involving lna comes from the Wess-
Zumino term and can be rewritten in various ways using
ab + uv = 1. For example,

f d z 1na(B, uB U
—8 uB, U)

f d x &h h 'JD; aDb.
4m J

ik 2+ d x+h we'JF, +2' LJ (35)

where the ellipsis denotes higher-order terms in an expan-

thus exhibiting regions I—IV of the Lorentzian black hole
directly from a gauged WZW model. We will call this
gauge choice (i). In the region 1 —uu (0, we pick gauge
(ii) with a = b Upon el—imi.nating A we get back the
same formula (34), but now in regions V and VI. The
question now arises of what happens near uv=1. The
Lagrangian (33) has absolutely no pathology there. The
problem comes entirely from the gauge choices a =b and
a = —b which are both invalid at uv = 1. Near uv = 1 one
has v =u '+ . If we write u =e, v =e, then the
Lagrangian near what in general relativity appears to be
the singularity at uv = 1 takes the form
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sion near uu = 1, and FJ
=8; A —8 A, . This Lagrangian

is perfectly well behaved. The Lagrangian for the w-3
system by itself is a topological field theory which can be
regarded as the dimensional reduction of three-
dimensional Abelian Chem-Simons theory (with w as the
third component of A). If the Lagrangian were precisely
as written, the integration over w (as explained, for in-
stance, in [37]) would give a 5-function setting F =0,
after which A could be gauged away locally and (except
for global effects) the a bsys-tern would be free. The
higher-order terms not written in (35) make such a pro-
cedure awkward. Instead, one can study the theory in a
gauge such as gauge (iii), c); A

'=0, and easily verify that
there is nothing singular or pathological about the propa-
gators or vertices near uu = 1. Gauge (iii) makes the fact
that the conformal field theory is nonsingular perfectly
manifest. It can also be used elsewhere in the space-time.
Its only drawback is that it fails to exhibit the fact that
away from the singularity the theory has an interpreta-
tion with a two-dimensional target space [as opposed to
the three independent scalars and one gauge field present
in (34)].

It is amusing to compare this situation with the
motivation for studying topological field theories that
was proposed some time ago [38]. It was felt that space-
time and world-sheet topological field theories might de-
scribe an "unbroken phase" of space-time and world-
sheet general relativity, with a breakdown of the Rieman-
nian concepts, and that such a phase might be the key to
understanding quantum gravity and string theory. The
singularity of a black hole is one place where one might
expect Riemannian notions to fail, and we have indeed
found a conformal field theory in which the "physics" at
the singularity cannot be understood in two-dimensional
Riemannian geometry, and in which a certain trivial-
looking topological gauge theory is an essential piece.

At this point, one might be tempted to think that the
"singularity" of the black hole is completely spurious and
purely a result of a bad gauge choice. I will, however, ar-
gue that this is not the right interpretation. First of all,
let us make an analogy with black holes in four dimen-
sions. The Schwarzschild solution in four dimensions has
all of the six regions in Fig. 2. For a more realistic astro-
physical black hole which forms from a spherically sym-
metric collapsing star, some of the regions are missing,
but one still has parts of regions I, II, and V. In particu-
lar, one still has the question of whether signals incident
on the singularity in region II should somehow be contin-
ued beyond the singularity into region V. What makes
this seem implausible is that (as in our two-dimensional
model), time is fiowing sideways in region V, and conse-
quently region V cannot be considered to be in the future
of region II. As a result, regardless of which way one
considers to be the Aow of time in region V, if signals can
Bow back and forth across the border between regions II
and V, a future-going signal in region II could cross into
region V and return as a past-going signal in region II, as
shown in Fig. 3. This is somewhat analogous to having a
closed timelike loop. As is usual with closed timelike
loops, consideration of such phenomena will lead to
pathologies unless one assumes the absence of life (and of

FIG. 3. The region of initia1 (or Anal) data in region V is indi-
cated, along with a hypothetical signal from region II to region
V and back.

macroscopic structures of all kinds). [In a space-time
with closed timelike curves, solving physical equations re-
quires putting restrictions on the initial data that are
analogous to eigenvalue equations (a wave propagating
about a closed timelike loop must be single valued) and
are likely to be incompatible with the existence of com-
plex structures. This is why, in the presence of closed
timelike loops, if one assumed the existence of life one
reaches contradictions like the possibility of killing one' s
own remote ancestors. ] Indeed, given the initial data in
region I (far in the past before a trapped surface forms),
one cannot without solving the problem of free will pre-
dict whether a black hole will form; this could be
prevented by a determined human effort to disperse the
infalling matter to infinity. Thus a possible complex civil-
ization in region V would have its very existence depend
on a decision made in the "future" in region I.

The contradiction cannot be stated so sharply in two
dimensions, since, for instance, the formation of the black
hole in region II is probably determined by the "topolo-
gy" of the initial conditions (the clash as to whether r" or

r" is the Liou—ville mode). Nevertheless, and despite
the fact that the conformal field theory is nonsingular at
uv = 1, I believe that trying to use the continuation to re-
gions V and VI as a way to resolve the physical questions
associated with black holes is unattractive, for the
reasons indicated above.

To try to give a technical justification for not taking
the continuation across uv =1 too seriously, let us consid-
er the propagation of a small "tachyon" (the expression is
a misnomer in D =2) disturbance in the black-hole back-
ground. Because of the underlying SL(2,R)/U(1) chiral
algebra, it may be possible to solve exactly for the
tachyon vertex operators, but we will simply consider
perturbation theory in 1/k. This approximation is not
necessarily reliable, as it might break down in the region
of high curvature near uv =1. We will comment on that
later. The tachyon field T(u, u), to lowest order, is
governed by an effective action in space-time:
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L(T)= f d XV'g e (g'JB;TB T 8T—) .

In the black-hole space-time, this is

L(T)=f du du (1—uu)B„TB,T ,
—T'16

(36)

(37)

Before proposing another, speculative, interpretation,
we should address the following question. What is the
mass of the black hole? To answer this we recall that to
lowest order in world-sheet perturbation theory, the
graviton-dilaton system can be described by a space-time
effective action

The tachyon field equations are therefore

B„((I—uv)B„T)+B,((1—uu)B„T)+,T=O .16
(38)

Using the symmetry of the space-time under
u ~e'u, v —+e 'v, one can look for solutions in the form
T( u, U ) = ( u /U )rf ( u U ). Inserting this ansatz in (38), one
finds that f obeys

(40)

(The overall normalization could be changed by adding a
constant to N, and it may be that a different choice would
be more convenient. ) The additive constant 8/k origi-
nates from the familiar D —26 of the bosonic string. The
gravitational and dilaton field equations derived from this
action are, respectively,

x + + . . f(x)=0,
dx

(39)
0= DiD14+gil DkD 4 + Dk4 D1 k 4

where x =1—uv and the ellipsis denotes terms that are
softer (more powers of x or less powers of d/dx) near
x=0. This second-order equation has two linearly in-
dependent solutions. One is regular near x =0 and can
be expanded as a power series, f(x)=1++„,a„x",
and the other has a logarithmic singularity,
f (x) =lnx+O(x lnx).

If this result is not an artifact of the 1/k expansion, it
means that generic initial data posed on a smooth initial
value surface will propagate forward to a singularity at
uv =1. In this case, the region uv =1, though nonsingu-
lar in the original black-hole solution, will be unstable
and will become a physical singularity under a generic
perturbation. Such phenomena are known in general re-
lativity; for instance, the "inner horizon" of the
Reissner-Nordstrom solution is a nonsingular locus
where it is believed that a singularity would form under a
generic perturbation.

Naively, the dilaton formula @=In(1—uu) appears to
suggest that the string coupling constant, which is weak
at spatial infinity, blows up at uv=1. For the exact
black-hole solution, this is certainly false; in gauge (iii) it
is obvious that the string coupling constant is not anoma-
lously strong at uu =1. It must be that in gauge (i) or (ii)
the determinant of Auctuations in u and v blows up for
uv —+1 in such a way as to cancel the effects of the dila-
ton. It may be that under a generic perturbation of the
black hole, this cancellation is ruined and the string cou-
pling constant becomes strong near the singularity.

The claim that a generic perturbation blows up at
uu= I can be checked in gauge (iii), where there is no
reason for the 1/k expansion to be breaking down at
uu = 1. In gauge (iii), the equation for the tachyon would
be B,Bb T+ =0, which permits in addition to a regu-
lar solution the singular solution T=ln(ab ) =In(1 —uu )

that we found earlier. This, together with the potential
pathologies cited earlier, is fairly convincing evidence
that the physical problems of black holes should not be
solved by trying to exploit the fact that the conformal
field theory is nonsingular at uv = 1.

0=2DI D 4+Dk+D N —8—8

These equations have a Oat solution in a world with space
and time coordinates p and ~ with

ds =dp —dr, @=p&8/k' . (42)

C&=p+8/k'+y, g; =il;, +h,", (43)

where y, h vanish for p~&n. (Here rt is the fIat-space
metric, corresponding to the line element dp —dr . It is
used to raise and lower indices in the linearized expres-
sions. ) Let q; be the linearization of Q;, so

Q,"=q,"+terms of higher order. The gravitational Bian-
chi identities imply that if the vector field v' generates an
asymptotic symmetry of the space-time, then S, =q,"v is
a conserved current asymptotically. The corresponding
conserved charge density S is always a total divergence,
so its integral, the conserved charge, can be measured as
a surface term at p= oo. (This in turn implies that the
linearized approximation to the equations is good enough

This is the standard Liouville solution. Of course, the
black hole is asymptotic to this solution with r -p&2/k
and t —rv'2/k' As the .Liouville solution is invariant
under time translations, there is a conserved energy in the
fluctuations about it. Actually, in general relativity a
conserved energy can be defined in each asymptotically
Bat end of space; the idealized Aat solution has two ends.
We are only interested in the p~+~ end, since only
this one appears in the black-hole space-time. (The other
end of the black hole is a second copy of p~+ oo. ) We
need to find the analog of the Arnowitt-Deser-Misner
(ADM) formula for energy in general relativity at the
p~+ ~ end.

There is a standard computational procedure for
finding the ADM formula. Denote the right-hand side of
the gravitational field equation [the first equation in (41)]
as Q; . Consider a solution that is asymptotic to the fiat-
space solution, with
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to use in proving that the charge is conserved. ) The con-
served momenta and angular rnomenta of general rela-
tivity can be obtained in this way.

In the case at hand, the only asymptotic symmetry is
I

the time translation generator, v'=5', so the only con-
served quantity will be the total energy or mass. Carry-
ing out this procedure, the conserved current of the
linearized theory is

S, =q„=eP~'ik —' B,a,q
—5„(akakq+V'8/k a,q)+, 5„h„

+&2/k [8 hoi +Boh i Bih 0+5 0(2B hk i Bihkt '77 ) ] (44)

(Indices 0 and 1 refer to r and p, respectively. ) The ener-
gy density is

1/2

S = —— ep~8/k a +a 2

Bp
1V I i 11 (45)

The total mass measured at the p= ~ end is therefore
1/2

p+8/k'
a ~
p p= Qo

(46)

Now we can calculate the mass of the black hole. For
a black hole with ds =(k'/2)(dr —tanh r dt ) and
0&=21ncoshr+a, to ensure that @=&8/k'p+p, where
y vanishes at infinity, we take r =p&2/k' —(a/2)+ln2,
and then one finds

a —p+8/k'
(47)

The mass then comes out to be

M =&2/k' exp(a) . (48)

Thus, we see the significance of the trivial-looking possi-
bility of adding a constant to the dilaton field: this pa-
rameter determines the mass of the black hole.

It is important to stress that adding a constant to 4
does not change the physical state at p-~ ~ (since asymp-
totically a constant added to N can be absorbed in a
translation of p). This is why the black hole with
4=21ncoshr+a, and variable a, can be regarded as a
family of objects of variable mass inserted in a fixed
space-time background.

We also see that for a black hole of mass M the value
of the dilaton field on the horizon is

N(r =0)=a =in(M&k'/2) . (49)

Now, let us think in a speculative way about the fate of
the black hole, taking into account the effects of Hawking
radiation [39]. The black hole has a nonzero tempera-
ture, given by the inverse radius of the circle at infinity in
the Euclidean black-hole solution. [Unfortunately, since
the world-sheet action of the Euclidean black hole in
r —8 coordinates is given correctly by (10) only to within
an error of order j. /k, we cannot easily compute this tem-
perature at k= —', .] As a result it will radiate, and lose
mass. This mass loss means according to (49) that the
value of the dilaton field on the horizon will diminish

(and the string coupling constant will get stronger there).
Now, consider the physics as seen by an observer at a

great distance, who ensures that he or she is at a fixed
physical location by ensuring that the dilaton field that he
or she observes remains fixed while the black hole evapo-
rates. Suppose that the observer sits at a position where
the dilaton field (which the observer measures by measur-
ing the string coupling constant) is fixed at a value @0.
From (49) we see that when the black hole has mass M,
its distance from the observer is approximately

1/2k'
[No —ln(M&k'/2) ] . (50)

Thus, the distance from the observer to the horizon
diverges logarithmically as the hole evaporates.

This is analogous to the case of an electrically or mag-
netically charged black hole in four dimensions. The
mass M of such a hole in general relativity is always at
least as great as the charge Q, and as one approaches the
limiting value M=Q, the distance from an outside ob-
server to the horizon diverges.

What is the end point of the black-hole evaporation?
For M~O, the physics as measured at a fixed R ap-
proaches more and more the idealized Oat-space solution
(42). [For instance, one can see this in (49). M ~0 means
a~ —Oo, and for a —+ —~, one has y —+0 at any fixed
R.] Thus, this fiat space solution, which is studied in the
c =1 matrix model (except that we have not yet incor-
porated the cosmological constant) would appear to be
the end point of the black-hole evaporation. Evaporation
will be occurring at both ends of the hole, so the end
point of the evaporation would appear to produce two
copies of the standard space-time.

The space-time action (40) does not have a Poincare-
invariant solution. The fiat-space solution (42) seems to
be its most symmetric solution. Hitherto this solution
has been regarded as a somewhat mangled, anisotropic
version of Minkowski space. My point is that the solu-
tion (42) is better regarded as an analog of the extreme
Reissner-Nordstrom solution than as an analog of Min-
kowski space. This of course would make the anisotropy
natural. The fact that (42) describes a space-time with
M=O is no obstruction to this interpretation since the
two-dimensional theory under consideration does not
have a Poincare-invariant solution to which the mass of
the spacetime described by (42) could be compared.

The basis for regarding the idealized Oat space-time as
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an analog of the extreme Reissner-Nordstrom solution
rather than as an analog of Minkowski space is not limit-
ed to the fact that this space-time is, naively, the end
point of the Hawking process. More importantly, this
space-time is on the edge of being a real black hole, with
a singularity shielded by a horizon, in the following sense.
Consider perturbing the fiat space-time (42) by sending in
a particle of energy e from R =+ ~ (Fig. 4). To the
right of the particle trajectory, we must describe the re-
sult by a conformal field theory describing a space-time of
mass e; presumably, this will be the black-hole solution.

To really see black-hole physics, it is necessary for the
particle to reach the analog of the Schwarzschild radius.
What plays that role in this situation? If we do form a
black hole of mass e, the value of the dilaton field on the
horizon will be, according to (49),

4=in(e&8/k') . (51)

The dilaton field as a function of p is @=p&8/k', so the
Schwarzschild "radius, " or more exactly the
Schwarzschild value of p, for a particle of energy e, is

1/2k'
8

ln(eP8/k') . (52)p(e) =

BLACK-HOLE
METRIC

FIG. 4. Tossing in a particle to the "extreme black hole. " To
the right of the particle trajectory, we will be left with a black-
hole space-time.

If a particle (or collection of particles) of total energy e
propag ates into a position given approximately by
p=p(e), then, according to the classical equations, a hor-
izon will form and the incoming particle or particles will
be unable to escape.

The issues that arise are just those that one might con-
template for an extreme Reissner-Nordstrom black hole
in four dimensions. Either the particle tossed in from the
right will be rejected before reaching its Schwarzschild
radius or, if it reaches the Schwarzschild radius, a hor-
izon will appear to form but presumably the energy in-
volved will ultimately be reemitted as some form of
Hawking radiation. Either way, what we expect to see is
a quantum-mechanical S matrix, with particles coming in
from the right and ultimately being ejected, in one form
or another. Precisely such an S matrix has been comput-
ed recently by several groups in the c =1 matrix model
I40—45]. To determine whether what is being seen in
that S matrix is a reAection outside the Schwarzschild ra-
dius or Hawking radiation of particles that have fallen in-
side the Schwarzschild radius, we must incorporate a key

feature of the c =1 model which has not so far appeared
in our discussion. This is what in the context of Liouville
theory is usually called the cosmological constant. The
cosmological constant is a tachyon field with
T(p, r)=pe ~ that can be added to the fiat solution
(42) and has the effect of suppressing string propagation
into the region p —+ —~ where the string coupling con-
stant would otherwise become strong. Many matrix
model formulas are singular for p —+0, suggesting that
there may be an instability that requires the inclusion of
the cosmological constant (and perhaps will cause it to
turn on spontaneously during black-hole evaporation, if
not initially present). Whether or not this is so, p plays
an important role in the c=1 matrix model, and one
would like to know how it appears in the black-hole
physics.

We will now argue that the "cosmological constant"
enters the black-hole physics even prior to the Hawking
process as a failure of the analog of the "no-hair
theorem. " In addition to the mass, there is at least one
more parameter in the most general static black-hole
solution. In fact, we can find this parameter in the equa-
tions for a Euclidean black hole. The parameter in ques-
tion involves the tachyon field, that is, the possibility of
adding to the world-sheet action a term fd x&h T(x).
The tachyon field is governed in lowest order by the fol-
lowing space-time effective action (which we discussed
before in analyzing propagation of signals near uu = 1):

L(T)= Jd XV'g e (g'JB;TB T 8T ) . . —(53)

In the field of a Euclidean black hole, with
ds =dp +tanh (pV'2/k')dH, @=In cosh (p/&2/k')
+a, the equation for a static (r-independent) mode comes
out to be

sinh(p 8/k') +8 T(p) =0 .
1 d . ~, d

sinh(p 8/k') dp dp

(54)

The two linearly independent solutions behave for
p —++ (x) as

A, +pT e (55)

with
1/2 1/2

2 2
8

The important point is that both A, + and A, have a nega-
tive real part, so both solutions decay as p~+ ~. On
the other hand, at p =0 one of the two solutions blows up
(as lnp) and one is regular. If one starts at p=0 with the
regular solution and integrates outward, one will au-
tomatically get a solution that decays exponentially for
p~ ~, since all solutions have this property. Therefore,
we have found a marginal deformation of the Euclidean
black hole.

Although I will not attempt to work out all of the de-
tails, one could expect to prove along the following lines
that this marginal deformation is tangent to an actual de-
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formation. The basic point is that the existence of a
black-hole solution of the graviton-dilaton field equations
(41) is stable in the sense that if one adds to the equations
any perturbation of rapid decay at infinity, a solution still
exists, perhaps after changing the value of the asymptotic
constants in the solution —the radius of the circle and
the coefficient of the linear term in @. [If one did not
have the exact SL(2,R)/U(1) theory, one would use an
argument along precisely these lines to show that the ex-
istence of the Euclidean black hole, though not the de-
tails of the metric, is stable against corrections to the
large-k' equations. The possible need to change the ra-
dius of the circle means that the Hawking temperature
may depend on the cosmological constant. ] Similarly,
the argument by which we predicted the existence of a
regular solution of (54) with exponential decay at infinity
showed that the existence of this solution is stable against
small nonlinearities or changes in the dilaton-graviton
background that vanish at infinity. This stability of the
equations means that adding of terms quadratic and
higher order in T will not affect the existence of a family
of solutions labeled at least in an open set by the parame-
ters seen in the linear analysis, so that the marginal defor-
mation we have found will be tangent to an actual defor-
mation.

For the value k'= —,
' that corresponds to the c = 1 mod-

el, A, + =A, = —&8. [These values are reliable as they de-
pend only on the known asymptotic behavior of the dila-
ton field and not the unknown details of the black-hole
metric. The fact that A, + =A, at k'= —' is related to the
fact that in Liouville theory k'= —,

' is regarded as the larg-
est allowed value. For k') —,', A, + have imaginary parts
which mean that the regular solution of (54) has an oscil-
latory sign. This is perfectly sensible in the black-hole
physics, but is considered pathological in Liouville theory
since one wants a positive exponential that could
represent the determinant of the metric, ] The two solu-
tions of (54) at large p behave as e i' and pe i', as
noted in [20]. The latter will dominate for large p, so the
marginal deformation of the black hole looks like
T-pe 1' for large p. This marginal deformation can
be analytically continued to Minkowski space where, out-
side the horizon, it looks much like the usual tachyon
background of the c =1 model. Our earlier analysis of
(38) suggests that the tachyon background corresponding
to the marginal deformation probably diverges at uv =1.
It would be interesting to verify this, even to lowest or-
der, by a more extensive study of (38) and (54). If it is
true that the tachyon background diverges at uv =1, this
would mean that in the presence of a cosmological con-
stant, the "singularity" really is a singularity in the con-
formal field theory.

Let us now consider a weak tachyon signal of frequen-
cy co propagating inward from p=+ ~ on the limiting
black hole with a linear dilaton field of a strength corre-
sponding to the c=1 model, that is, k'= —,'. (Or, what
would be much the same thing, consider propagation to-
ward an M )0 black hole in the region outside the hor-
izon where the dilaton is approximately linear. ) Follow-
ing [20] we assume a T term in (53) with a coefficient

If we set T(p, r)=e i' e ' 'w(p) we get
+8 l CO'7

d2
+co —gee i' w(p)=0 .

dp
The classically forbidden region is the region with

~' —gpe-~'~ &0, (59)

and w(p) vanishes exponentially at smaller p. We may
very crudely say, therefore, that the distance to which the
wave reaches is given by

p=ln(gp/co )/&8 . (60)

If our wave of frequency m has an amplitude corre-
sponding to N elementary quanta, then the energy in this
wave is e =Neo. Let us now recall that the Schwarzschild
distance for a system of energy e was [according to (52)]

1/2k'
p(e) =

8
1n(@&8/k') . (61)

The wave will fall into the black hole if the value of p
that it reaches is less than the critical value p(e). At
k'= —,', the criterion is

—,'In(Neo%'32) ))In(gp/co )

or (dropping an untrustworthy constant)

)) 2/5N —1/5 (63)
This criterion is not obeyed in perturbative computations
in the c =1 model, where one considers co fixed, N-l,
and p~~. Therefore, the usual perturbative approxi-
mation to the c =1 model apparently corresponds to a
situation in which the incident particles are repelled by
the tachyon potential, without really probing the black-
hole physics. If the matrix model framework can be tak-
en literally, it is certainly possible to perform nonpertur-
bative computations (some of which in fact have been
done in [40]) in the region where (63) is obeyed. The re-
sult (63) is, however, puzzling, since it is not obvious that
anything interesting happens in the matrix model when co

reaches a crucial value proportional to p
Altogether, the existence of the black-hole solution

seems to mean that the dynamics of the target space
geometry must be taken seriously in the c = 1, D =2 ma-
trix model. Once one does this, it is evident that there
must be a relation between two of the strangest features
of the model. The first strange feature, manifest in the
matrix model description by free fermions, is the ex-
istence of infinitely many conserved quantities, associated
with conserved currents of higher spin such as g+i3+g+.
The second strange feature is the existence of discrete
states of the string with definite energy and momentum;
these states showed up in the computations of [43] and
were interpreted in [44] as quasitopological modes of
fields of higher spin. Despite their exponential fall-off

that we will call —2g/3. The linearized tachyon equa-
tion for small disturbances is

d2—2Pv8 2Pv8 +8 —i 8P Z( ) 0
P P



324 EDWARD WI l I'EN

(which rellects the role of the dilaton and the fact that the
string coupling constant vanishes exponentially at
infinity), the topological nature of these fields means that
they are analogous to long-range fields in more conven-
tional theories. The reason that there must be a relation
between the two strange facts we have cited is that in the
presence of space-time gravity, conserved currents of
high spin do not give rise to conserved charges unless
they couple to long-range fields. For a high spin current,
say a stress tensor T" or a higher spin current Q"', a
covariant conservation law DzT"'=0 or D„Q"'=0 in
curved space-time will not lead to the existence of a con-
served quantity, unless the current couples to a long-
range field (in which case, as in our above computation of
the ADM mass of the black hole, the conserved quantity
is determined by the asymptotic behavior of the long-
range field and is then exactly conserved even by the

Hawking process). In the c = 1, D =2 model, the candi-
date long-range fields are the discrete topological modes,
and (apart perhaps from the fermion number, which is as-
sociated with a spin-1 current f+g+) whatever quantum
numbers of the fermions are exactly conserved in the
model must couple to them.
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