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The Isham-Kuchaf representation theory of the spacetime diffeomorphism group in canonical
geometrodynamics is implemented in the context of harmonic coordinate conditions. The representa-
tion is carried by either an extended phase space, consisting of the cotangent bundle over the space of
three-metrics, spacelike embeddings, and Lagrange multipliers which serve to enforce the harmonic
gauge in the action, or by a reduced space in which the multipliers are eliminated. The approach used
here is applicable to any generally covariant theory and to any coordinate conditions. The physical in-
terpretation of the diffeomorphism Hamiltonians is discussed and compared with the analogous interpre-
tation given by us elsewhere in terms of Gaussian coordinate conditions.

I. INTRODUCTION

The role of the spacetime diffeomorphism group is usu-
ally suppressed in the canonical approach to the dynam-
ics of general relativity. As in gauge theories, the pres-
ence of this infinite-dimensional invariance group makes
itself felt by the appearance of the Hamiltonian and
momentum constraints, which serve both to limit the ac-
cessible portions of the gravitational phase space as well
as to provide the dynamics of the theory by generating
the appropriate canonical transformations. Unlike in
gauge theories, however, the Poisson-brackets algebra
provided by the constraints in a generally covariant
theory does not replicate the gauge group Diff(M), or
more precisely its Lie algebra diff(M), but rather takes
the form of an unwieldy open algebra of hypersurface de-
formations.

In [1] Isham and Kuchaf address this issue and find a
way of explicitly isolating functions on an extended phase
space for general relativity which provide a homomor-
phism from diff(M) to the Poisson algebra of functions on
the phase space. The extension of the phase space is
needed because in a generally covariant theory spacetime
events are not distinguished a priori as there are no back-
ground structures which could be used to identify events.
But an identification of spacetime events via canonical
data is precisely what is needed to represent diff(M) on
the phase space; after all, it is spacetime points which are
acted upon by diffeomorphisms. Given this state of
affairs, one can, and should, strive to isolate canonical
variables on the geometrodynamical phase space which
can serve as clocks and position markers, but no one has
ever gotten very far with this enterprise. The approach
of [1] is to adjoin embeddings, maps from the three-
manifold on which the canonical formalism lives into
spacetime, to the dynamical variables of geometrodynam-
ics. The embedding variables select an instant of time
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and identify points of space. Spacetime diffeomorphisms
act naturally on the embeddings and also on the gravita-
tional variables once the embeddings are given geometri-
cal content by linking them with the spacetime metric via
coordinate conditions, which are imposed on the theory
from the outset. The coordinate conditions chosen in [1]
were the simplest possible: Gaussian coordinate condi-
tions. The embedding variables did their job and led to
the “diffeomorphism Hamiltonians,” which generate
dynamical evolution in the extended phase space via
canonical transformations satisfying the Lie algebra of
the spacetime diffeomorphism group.

The Isham-Kuchaf construction of the diffeomorphism
Hamiltonians relied heavily on special features of the
Gaussian coordinates and it was not at all clear if the ap-
proach could be generalized to other coordinate condi-
tions, e.g., the harmonic (or de Donder) conditions,
which are technically superior to the Gaussian conditions
in many applications [2]. In this paper we will show how
to incorporate the harmonic gauge into the Isham-
Kuchaf representation theory of the Lie algebra of the
spacetime diffeomorphism group in canonical gravity.
The technique which will be used is quite general and is
applicable to any generally covariant theory and any
coordinate conditions whatsoever [3]. The key to the ap-
proach is to incorporate the coordinate conditions into
the variational principle by adding the coordinate condi-
tions to the Einstein-Hilbert action with Lagrange multi-
pliers. The “gauge-fixed” action is of course no longer
diffeomorphism invariant, but this is remedied by adjoin-
ing the preferred coordinates to the configuration space
of the system. This is the “parametrization process” dis-
cussed in [1]. In the canonical formalism, the preferred
coordinate functions become the embeddings, and their
presence leads directly to the successful extraction of the
diffeomorphism Hamiltonians. In [4] this approach was
used for the diff(M) representation theory based on
Gaussian coordinates and reproduced the results of [1]
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after the elimination of the nondynamical Lagrange mul-
tipliers. When applied to the harmonic coordinate condi-
tions the formalism naturally leads to a doubly extended
phase space because the Lagrange multipliers themselves
become dynamical. If desired, the Lagrange multipliers
can be eliminated and the phase space reduced to that of
[1], but not without some cost in the way of technical
complications.

Because the Isham-Kuchaf approach to the diff(M)
representation theory can be based on an action princi-
ple, it is possible to give a physical interpretation to the
extended phase space; this was in fact the main emphasis
of [4]. For the Gaussian coordinate conditions it was
shown that the embeddings represent velocity potentials
for a heat-conducting fluid. By using the fluid to identify
spacetime events in the quantum canonical formalism,
one can convert the hyperbolic “Wheeler-DeWitt equa-
tion” of vacuum geometrodynamics into a parabolic
functional Schrodinger equation describing the evolution
of geometry in the presence of the Gaussian fluid. The
functional Schriodinger equation arises by requiring that
the state vector of the system be annihilated by the opera-
tors corresponding to the diffeomorphism Hamiltonians,
which are constrained to vanish in the classical theory.
Thus the explicit incorporation of spacetime covariance
into the theory leads, in principle, to considerable techni-
cal and conceptual simplifications. The scheme does have
its disadvantages: the classical reference fluid, if it is to
be physical, has to satisfy energy conditions which re-
strict the allowable regions of the classical geometro-
dynamical phase space. Because of this, the use of the
fluid to define a privileged notion of space ultimately be-
comes physically untenable. In the quantum theory, a
functional Schrodinger equation in the privileged Gauss-
ian time can be retained, but the probability interpreta-
tion is hampered by the problem of constructing a suit-
able set of observables which would be compatible with
the energy conditions.

From the point of view of [4], different coordinate con-
ditions in the Isham-Kuchaf representation theory corre-
spond to the coupling of gravity to different types of
reference systems. In the case of the harmonic gauge
considered here, the reference system being used to define
privileged notions of space and time is provided by mass-
less scalar fields; thus the use of the harmonic gauge
represents a step toward making the references systems
more realistic and less phenomenological. As in [4], the
use of scalar fields as clocks and position markers is not
without its drawbacks, both mathematically and physi-
cally. We briefly discuss some of the advantages and
disadvantages of the use of harmonic reference systems to
interpret quantum gravity in the final section of the pa-
per.

Our notation and conventions are as follows. Greek
indices run from O to 3 and are used to label the harmon-
ic coordinate functions. In Sec. II latin indices are space-
time indices and are spatial indices in Secs. III-V. The
spacetime metric is denoted ¥, the spatial metric is g,
and the absolute values of their determinants are |y| and
lg|, respectively. The Lie derivative along the vector
field N is denoted L.
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II. LAGRANGIAN FORMULATION

We view the harmonic coordinate conditions as a set of
locally imposed relations between the spacetime metric
Y4 and four externally prescribed, functionally indepen-
dent scalar fields XM —R*, which are to serve as the
harmonic coordinates. The relations we impose are

v, V,X*=0 2.1)

where V, is the torsion-free derivative operator compati-
ble with y,,. Equation (2.1) is a coordinate-independent
expression; we can of course evaluate it in the harmonic
coordinates X* themselves. This yields an alternative
(possibly more familiar) condition:

1 JR—
L3 [\/|y| yaﬁ]zo . (2.2)
Vil ?

It is easy enough to find a variational principle that
leads to both the Einstein equations and the gauge-fixing
constraints (2.1). The action functional is given by

S[y,A1=SEy1+S8fly,A], (2.3)
where

E__ l/ZR + 1/2K , 2.4

st=[ IrI'""Rly1+ [ gl (2.4)

F____l 1/2,,ab a

st=——[ Ir|"7*v,a,9,x°, 2.5)

where K is the trace of the extrinsic curvature of the
boundary. The action S[y,A]is to be varied with respect
to its arguments: the four-metric y,, and the four scalar
fields A,, which are serving as Lagrange multipliers en-
forcing the harmonic conditions (2.1). For the moment
we hold the harmonic coordinate functions X¢ them-
selves fixed and do not vary them. When (2.3) is varied
with respect to y,, we obtain the Einstein equations with
sources

G*=1T1%, (2.6)

where

ab_ —12.88F _ Ctar ublpa_ 1. ab A vexe
T —2|7/| m—v )\.aV X —5Y Vc aVX .

(2.7

Variation of the action (2.3) with respect to A, yields the
harmonic coordinate conditions (2.1). We cannot obtain
an equation of motion for A, directly from (2.3) because
we are currently holding the fields X ¢ fixed; however, the
contracted Bianchi identify used in conjunction with (2.6)
yields

YV, V,A,=0, (2.8)

so that the multipliers A, evolve as a set of free massless
scalar fields in the geometry defined by (2.6).

The content of (2.6), (2.8), and (2.1) is that of Einstein
gravity, in the harmonic gauge, coupled to an energy-
momentum tensor built from the Lagrange multipliers
and harmonic coordinate functions. To recover the vacu-
um field equations we can eliminate the ‘“‘sources” by sim-
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ply restricting attention to the subspace of solutions to
(2.1), (2.6), and (2.8) in which A,=0. Alternatively, we
can choose vanishing Cauchy data for A,. The field equa-
tions we have obtained form a hyperbolic set of partial
differential equations [S] and so will generate a vacuum
solution within the domain of dependence of this initial
data set which, assuming that the spacetime (M,y) is glo-
bally hyperbolic, is all of M.

While the action integral (2.3) is unchanged by (pas-
sive) coordinate transformations and hence is well-defined
geometrically, it is not an invariant functional with
respect to the (active) group of diffeomorphisms Diff(M).
This is because we have fixed the scalar functions X* and
are not free to redefine them via the usual pull-back ac-
tion of Diff(M). Following the strategy of [4] we can re-
cover general covariance by “parametrizing” the theory
associated with (2.3). This amounts to adjoining the har-
monic coordinate functions themselves to the dynamical
quantities to be varied. The consistency of this new vari-
ational principle is guaranteed by the fact that the equa-
tions coming from varying X ¢ are redundant:

58
5x¢

which is (2.8), so that the extrema of the action, now
viewed as a functional of (y ., A,, X ), are the same as be-
fore. Because the harmonic coordinate functions are no
longer externally prescribed we recover the general co-
variance of the theory. In fact the redundancy of Egs.
(2.8) and (2.9) is the hallmark of diffeomorphism invari-
ance. From the point of view of the parametrized theory,
the action S[g,X,A] yields equations of motion interpret-
able as that of Einstein gravity coupled to eight free
massless scalar fields. The action and energy-momentum
tensor describing the “matter fields” are, at first sight,
somewhat unconventional, and it will be useful in what
follows to have available an alternative form for them.
Consider replacing the variables X ¢, A, with

$%=L(X+1%),

=0-VV,A,=0, (2.9)

(2.10)
Pp4=LX*—1A%), (2.11)

where the greek indices are raised and lowered with the
Kronecker delta. The action (2.5) takes the form

1
ST 9)=—o [ 171" 7 Va8V, 6" = VarpoV, 0

(2.12)

which shows that (2.5) amounts to coupling gravity to
eight massless scalar fields, four of which have positive
energy, four of which have negative energy:

Tab = Va ¢avb ¢a - %'},ab Vc ¢avc¢a

-(Valpavb'/}a_%YachlpaVcd’a) . (213)

The negative-energy scalar fields can be eliminated by
observing that while the treatment of X* as dynamical
variables on the configuration space is vital for the estab-
lishment of diffeomorphism invariance, the multipliers
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are less crucial because they are, after all, true Lagrange
multipliers (not associated with any gauge invariance).
The multipliers can be eliminated by holding fixed the
fields ¢, and extremizing (2.12) with respect to ¥“, and
then evaluating the action at the extremum. Varying
(2.12) with respect to ¢* yields

VeV, =0 . (2.14)

Substituting the general solution to this equation into
(2.12) and integrating by parts amounts to dropping the
second term in (2.12) and the addition of a surface term
which we ignore. Substituting ¢*=X*—y* where y“
satisfies (2.14), into this action yields, after additional par-
tial integrations (again dropping surface terms), the re-
duced action

SF*y,x 1= —%foyWZ 8,57 PV XV, XP . (2.15)

Thus, for any solution to the ¥* equations of motion the
reduced action (2.15) is the same (modulo surface terms
[6]). While more elaborate choices are certainly possible,
the simplest solution to (2.14) is ¥*=0, which, from
(2.11), implies that the reduction can be accomplished by
setting
AF=X4 . (2.16)
The reduced formalism, because it derives from the mani-
festly invariant action (2.15), still retains its covariance
under Diff(M). In fact the reduced formalism is
equivalent to that of Einstein gravity minimally coupled
to four free massless scalar fields X * with positive energy.

III. HAMILTONIAN FORMULATION —EXTENDED
PHASE SPACE

We will make the transition to the Hamiltonian for-
malism using the parametrized action (2.3) on the extend-
ed configuration space as the starting point. It is then
relatively straightforward to obtain the phase-space ver-
sion of the reduced formalism in which the multipliers
and their conjugate momenta are eliminated. In each
case we will explicitly isolate the “diffeomorphism Hamil-
tonians” which provide the homomorphism from the Lie
algebra diff(M) into the Poisson algebra of functions on
the appropriate phase space.

The Hamiltonian form of the action (2.3), viewed as a
functional of (y,,,A,, X %), follows the pattern of a collec-
tion of matter fields minimally coupled to gravity. Intro-
duce a foliation

Y:RXZ->M, (3.1)

and denote the derivatives in the R direction (time
derivatives) with an overdot. The spacetime metric,
when pulled back by Y, decomposes into the lapse func-
tion N, shift vector N° and induced three-metric g,,.
The momenta p®® conjugate to g, are defined exactly as
in vacuum geometrodynamics. The phase-space form of
S is also unchanged:

S"g.psNNI= [ (p“%0—NH"—N°H), (3.
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where
HE=|g|-1/2(pabpab‘%Pz)"|g|l/2R , (3.3)
HF=-2Dp!, 3.4

and D, is the derivative operator on = which is compati-
ble with g,,. On R XX the gauge-fixing portion of the
action takes the form

1 . .
sP=2 1 YI8lIN T (hg— LA (X~ LyX®)

—Ng®D A, D, X%] . 3.5
The momenta conjugate to the multipliers are given by
p*=1Llg|"2N U X*—LyX®), (3.6)

while the momenta conjugate to the harmonic coordinate
functions are given by
P,=1g|'"2N"YA,—LyA,) . (3.7

The definitions of the momenta can be inverted to give
the velocities (X% A,) as functions of the conjugate mo-
menta; the phase space action then takes the form

SH[X,P;A,pn;8,N,N]
= fR XE(PGX“+,LL“XQ—NHF*N“H5) , (3.8)

where
Hf=2|g|7'2P u*+L|g|'*¢**D, A, D, X*,  (3.9)
Hf=p*D A, +P, D X*. (3.10)

The dynamical evolution of the combined system of
gravitational field, harmonic coordinates, and Lagrange
multipliers is governed by the Hamiltonian

H(N,N)=H(N)+H(N)

:=f2[NH+N"Ha] , 3.11)

where
H:=HE+HF, (3.12)
H,:=HE+HF. (3.13)

Of course, as in any generally covariant theory, not all
points of phase space are accessible; there are constraints
which arise by variation of the lapse and shift:

H=0,
H,=0.

(3.14)
(3.15)

Based on rather general arguments, one knows that the
constraint functions satisfy the “Dirac algebra” of hyper-
surface deformations [7]:

[H(N),HM)]=H(J) ,
[H(N),HM)]=H(LyM) ,
[H(N),HM)]=H(—LyN),

(3.16)
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where
I=gI(N3,M —M3,N) .

Initial data satisfying (3.14) and (3.15), when evolved
via the Hamiltonian (3.11), satisfy the field equations
(2.1), (2.6), and (2.8), provided these equations are pulled
back to R XX by the foliation Y, which in particular
defines the lapse and shift. As discussed in Sec. II, we
can restrict attention to vacuum spacetimes by choosing
vanishing Cauchy data for the Lagrange multipliers A,.
In the Hamiltonian formalism this is done by imposing
the constraints

A ~0=P, . (3.17)

One can check that the constraints (3.17) are preserved in
time by the Hamiltonian (3.11) and that the constraints
(3.14), (3.15), and (3.17) are ““first class.” As desired, the
constraints (3.17) imply that the vacuum constraints are
satisfied:

HE=O0~HE . (3.18)
Similarly, the evolution equations for gravitational data
that satisfy (3.14), (3.15), when evaluated on the subspace
of phase space satisfying (3.17), are equivalent to the vac-
uum evolution equations.

Our goal is to extract diff(M), the Lie algebra of the
spacetime diffeomorphism group, from the open algebra
(3.16). As shown in [1,3,4], to do this we must rearrange
the constraint functions such that the resulting constraint
algebra is Abelian. This, in turn, is done by solving the
constraints for the momenta conjugate to variables which
represent embeddings of = into M. The embedding vari-
ables are identified with the harmonic coordinates them-
selves. To see this, note that the canonical variables
X%x), x €EX, are, geometrically speaking, the composi-
tion (pull-back) of the harmonic coordinate functions
with the embedding Y,(x), which is the foliation map
evaluated at a fixed value of t ER. Thus X%(x) can be in-
terpreted as the local (harmonic) coordinate expression of
an embedding of = into M, i.e., an instant of time, and
our task is to solve the constraints (3.14), (3.15) for the
conjugate momenta P,. These momenta enter linearly in
the constraints, so one can simply solve for them by
“brute force”; however, it is much more illuminating to
solve for the embedding momenta by first isolating a “hy-
persurface basis” as a functional of the canonical data.
The hypersurface basis is a quadruplet of four-vectors
which, in a solution to the evolution equations, has one
leg of the basis as the unit normal while the other three
legs are everywhere tangent to the hypersurface specified
by the embedding X% (x). This basis can then be used to
“unproject” the super-Hamiltonian and supermomenta
functions; these unprojected functions will satisfy an
Abelian Poisson-brackets algebra. We do this as follows.

Suppose we evolve the initial set of harmonic coordi-
nate functions X*(x) (the initial embedding) into a one-
parameter family X%*x,t)—a (local) foliation of M.
Then X *(x,t) satisfies

X =[X%H(N,N)]=2|g| "> Nu*+LyX*, (3.19)
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which is just a rearrangement of (3.6). This expression
should be compared with the definition of the lapse and
shift associated with a foliation X *(x,t):

X*=Nn®+LyX“, (3.20)
where n“ is the unit normal to the embedding X,:3— M.
Comparing (3.19) with (3.20) we see that the unit normal
to the hypersurface is fixed by the momenta conjugate to
the multipliers:

no=2|g| ?u>. (3.21)

The hypersurface basis can then be taken to be
(n*,X¢, ,), where the triplet of four-vectors tangent to
the hypersurface is given by X%, ,. In order to construct
the unprojected constraint functions we will need to find
the corresponding dual basis. To do this, introduce the
alternating symbols 7,4,5 and 1. Now define

1 _
—hg= —3_"] lnaﬁyﬁandXB,beyCXﬁyd ’ (3.22)
1 _ —_
a=57 NagyenXE , X7 (20g| 7%, (323)
where
1 _
_ ?(2|g| 1/2#0[)naBysandXB,be,CXS:d (3.24)

is nonvanishing provided the canonical data are such that
n®and X* , are four linearly independent vectors at each
point. This requirement is equivalent to our initial as-
sumption that the scalar fields are functionally indepen-
dent in some open region of spacetime; so we can and will
assume that the canonical data respect J70. It is easy to
verify that (3.22)-(3.24) give a basis (—n,,X§g) which is
dual to the basis (n*,X“ ;).

Because the hypersurface basis and its dual are known
functions on the phase space, the quantities

Ng=—nH+X.H,=0 (3.25)
are fixed, known functions on the phase space whose van-
ishing is equivalent to the vanishing of the original
super-Hamiltonian and supermomentum constraint func-
tions. The II, are the sought-after ‘“unprojected” con-
straint functions as can be seen by explicitly evaluating
(3.25):

M,=P,+h,, (3.26)
where
ho=—n (HE+1|g|'"?g**D,AsD,X?)
+X4(HE+uPD, M) . (3.27)

We can prove that the functions II, satisfy an Abelian
Poisson-brackets algebra by bringing to bear the follow-
ing argument. The constraints I1,~O0 are certainly first
class because they arise via combinations (3.25) of the
original first-class constraints (the super-Hamiltonian and
supermomentum constraints). However, from the form
of II, given in (3.26) it is clear that the bracket
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[T, (x),Mzy)] is independent of the momenta P, be-
cause the embedding momenta only appear as shown in
the first term of (3.26). Thus this bracket cannot be a
combination of constraints—the constraints necessarily
depend on P,—and therefore the bracket must vanish
strongly:

[M,(x),T4(y)]=0 . (3.28)

Having found a rearrangement of the constraints of the
form (3.26) satisfying (3.28), the phase-space representa-
tives of diff(M) are constructed using the techniques of
[1]. Fix a set of coordinates X% on M, then (locally) an
infinitesimal diffeomorphism is represented by four func-
tions V*(X)—the components of a spacetime vector field
V in the X“ coordinate basis. Next we identify the
canonical variables X%(x) as an embedding expressed
parametrically in the coordinates X*. The components of
the vector field are pulled back by the embedding to be-
come functions on = and functionals of the embedding:
VHx,X]=V*X(x)). The dynamical variables

(V)= [ V4x,X M, (x) (3.29)
>
satisfy
[I(V),I(W)]=II(—[V,W]), (3.30)

where [V,W] is the commutator of vector fields. The
functions (3.29) thus provide a homomorphism from
diff(M) to the Poisson algebra of functions on the phase
space.

IV. HAMILTONIAN FORMULATION:
REDUCED PHASE SPACE

It is now possible to pass from the Hamiltonian formu-
lation on the phase space which is extended by the addi-
tion of the Lagrange multipliers and embedding variables
(along with conjugate momenta) to a reduced phase space
in which the embeddings and their momenta only are
present. The price to be paid, as we shall see, is a more
complicated functional form for the diffeomorphism
Hamiltonians, i.e., the reduced counterparts of (3.26), as
well as a restriction on the available regions of the gravi-
tational phase space.

The reduced Hamiltonian formulation can be obtained
from the Hamiltonian formulation associated with the ac-
tion (2.15), which is a standard computation. The reduc-
tion can also be performed in phase space by eliminating
the multipliers and their conjugate momenta in favor of
the embedding variables via the constraints

Ag—8,5XP=0,
,ua—SaﬁPBzO )

(4.1)
(4.2)

which are the phase-space counterparts of (2.16). These
constraints are preserved in time by the evolution gen-
erated by (3.11), and are second class, so they can be el-
iminated by using (4.1) and (4.2) everywhere A, and u“
appear, and then using the induced symplectic structure
on the submanifold of the phase space defined by (4.1),
(4.2) to construct the appropriate set of induced Poisson
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brackets (the “Dirac brackets”) for X* and P ,:

[X%(x),Pyly)]* =1898(x,p) . 4.3)

After a trivial rescaling
Pa——>%Pa ,

the Dirac brackets are canonical. Henceforth we will
drop the asterick on the brackets and use the rescaled
embedding momenta. This is equivalent to using the
symplectic structure associated with (2.15).

The reduced Hamiltonian and momentum constraints,
obtained either from the reduced action (2.15) or the con-
straints (4.1), (4.2), take the form

H*:HE+%(|g|_1/2PaP“+|g|1/2g“bDaX“DbXa)z0 ,
4.4)

HY=HE+P,D,X*~0, (4.5)

which are easily recognized to be the super-Hamiltonian
and supermomenta associated with four free massless sca-
lar fields coupled to gravity.

In contrast with (3.14), the constraint (4.4) is quadratic
in the momenta conjugate to the harmonic coordinates
(embeddings). Thus the simple “unprojection” used be-
fore will not be adequate to “Abelianize” the constraints.
Still, the constraints are no worse than quadratic in the
embedding momenta, so that it is possible to solve explic-
itly for these momenta. Let us briefly sketch this pro-
cedure.

By taking linear combinations of the X* we can assume
without loss of generality that they are in the form
X*=(T,X"), where X‘(x), i=1,2,3 are invertible func-
tions of x. Similarly we can set P,=(P,P;), and the
momentum constraints take the form

H)=HE+PD, T+P,D,X'=~0, (4.6)
which can be solved for P;:

P,=—XXHE+PD,T)=:—h}, 4.7
where

X'x/, =8l . (4.8)

Using (4.7), the Hamiltonian constraint becomes a quad-
ratic equation for the momentum P:
8°PT T gP?+8%PH , T yP +8°FH Ftg+2|g|' *H”
+1g18,8“°D, XD, XP=0, (4.9
where
T,=(—1,X{D,T),
(4.10)
Ho=(0,HEFX",) .

The constraint (4.9), being a quadratic equation for P, is

easily solved:

_ —b+V'b®—4ac _
2a

P —h*, (4.11)

where
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a=8%%T, Ty, 4.12)
b=58%%,T, , (4.13)
c=8H Hp+2|g|'"?"HE+|g18,,¢°°D, XD, X P ,
4.14)

although the explicit expression for P is unwieldy to say
the least.

The difficulties with this way of solving the Hamiltoni-
an constraint are associated with the question of ex-
istence and uniqueness of solutions. Existence of real
solutions is not guaranteed because, given a set of gravi-
tational data (g, ,p"b ), the discriminant b2—4ac may be
negative. And solutions will not be unique unless the
discriminant is zero. Therefore, in order to treat the
Hamiltonian constraint as a restriction on the momenta
conjugate to the scalar field 7 we will have to restrict the
gravitational phase space somewhat. A necessary and
sufficient condition on the gravitational phase space
which guarantees existence and uniqueness of real positive
solutions for P is that

¢c=0. (4.15)

To see this, note that a is manifestly positive and there-
fore (4.15) is sufficient to guarantee that the roots (4.11)
cannot be complex. Furthermore, ¢ <0 is a necessary
condition ensuring that the roots of (4.9) cannot be both
positive or both negative. So, given (4.15), the only possi-
ble result of solving (4.9) for P is a pair of distinct roots,
one positive and one negative. We can consistently throw
out the negative roots by requiring that the harmonic
time coordinate T increase as we move from past to fu-
ture; thus if we make a normal deformation of the hyper-
surface T=T(x),

0<T=g V2NP, (4.16)

which implies P >0. Another way of looking at this is
that the non-negativity of P ensures that the lapse func-
tion is always positive. This requirement, along with
(4.15), selects the plus sign in (4.11), and we see that the
existence and uniqueness of solutions for P is guaranteed
once we have agreed to accept only non-negative values
for P and restrict the gravitational phase space by (4.15).
Of course, given gravitational data satisfying (4.15), there
is no reason why such data will continue to satisfy this re-
striction after a finite amount of time evolution. So one
must conclude that the reduced phase-space approach we
have discussed in this section is valid only locally in
phase space and in spacetime; this latter locality being
above and beyond that imposed by the fact that the har-
monic coordinates themselves are locally defined.

Having emphasized the limitations of the present ap-
proach, the diff(M ) representatives can now be construct-

ed. Define
h:=(h*,h*), 4.17)

where it is understood that in 4;* we substitute for P the
solution of (4.9). We can now rewrite the constraints as

M*:=P,+h*=~0, (4.18)
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and we can argue as before that

[IT%(x),TI4(y)]=0 . 4.19)

Therefore, when the functions IT};(x) are smeared with

spacetime vector fields V and W we recover the algebra
diff(M ):

[IT*(V),IT*(W)]=IT*(—[V,W]) . (4.20)

V. PHYSICAL INTERPRETATION

We have presented two versions of the Isham-Kuchaf
approach to phase-space representations of spacetime
diffeomorphisms in the context of the harmonic gauge.
The first version, while technically quite clean, needed a
rather large phase space: in contrast with [1], we need not
only the embeddings, but also the Lagrange multipliers
A, and their conjugate momenta. The second approach,
while managing to eliminate the multiplier part of the
phase space, works locally at best in the gravitational
phase space. For each of these two versions there is a
corresponding physical interpretation, which is especially
relevant for the quantum theory, analogous to that ob-
tained for the diffeomorphism representations using
Gaussian coordinate conditions [4].

Classically, in the extended phase-space approach we
can physically interpret the resulting formalism as that of
gravity coupled to eight massless scalar fields, four of
which are being used to identify instants of time and
points of space. The main defect in this interpretation is
that it is hard to imagine setting up a physical system
(even of the most idealized type) in which the fields A,
and X (or ¢* and ¥ are coupled as in (2.5) [or (2.12)].
Indeed, the classical energy-momentum tensor (2.7) [or
(2.13)] satisfies none of the usual energy conditions and is
rather unconventional. It could only arise in a theory in
which one postulates some sort of internal SO(4,4) sym-
metry for the matter fields, and such a symmetry is not
present in any current physical models of matter.

Despite the last comment, let us briefly outline the
quantized version of the extended phase-space approach
for the sake of comparison with the results of [4]. The
structure of the difffomorphism Hamiltonians (3.26) sug-
gests a quantum representation in which states ¥ depend
on the three-metric g,;,, the multiplier momenta u“, and
the embedding X * ( which represents time):

V=W[X,ug]. (5.1)

Na A

The quantum dynamical variables (X% f1%g,,) act on
such wave functions via multiplication while the remain-
ing variables (P, ,,p°) act by functional differentiation

in the usual way. Then the physical state condition

fi,¥=o0, -2
i.e.,
PULLE] _p (xR 0.801W X, pg],  (5.3)

8X%x)

is a functional Schrodinger equation, the solutions of
which can be interpreted as probability amplitudes for lo-
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calizing the values of the observables (g,,,u%) on the
embedding specified by X% The formal structure of the
quantum theory would be thus quite satisfying if not for
the fact that the matter fields are not entirely realistic.

From the physical (as opposed to mathematical) point
of view the reduced formalism is much more palatable as
it is equivalent to gravity coupled to four positive-energy
scalar fields which are being used to identify spacetime
events. The formal quantization proceeds by using states
which are functionals of the three-metric and the scalar
fields (again playing the role of time):

VY=V[X.,], (5.4)

with g, and X“ represented as multiplication operators
and their conjugate momenta represented via functional
differentiation. We again obtain a functional Schrodinger
equation for the physical states:

fi*w=o0, (5.5)

ie.,

SV[X.g]l _poix 55

) hE(x:X,8,p1¥[X,g].
Such states represent the probability amplitude for local-
izing the value of the three-metric on the embedding
X*=X%x). The difficulty here is to make sense of the
classical restriction (4.15) in the quantum theory as well
as to find a sensible operator representation of the square
roots which appear in k). These difficulties are analo-
gous to those found in [4] associated with energy condi-
tions for the Gaussian reference fluid. As in [4], the
present difficulties are mitigated somewhat if one is wil-
ling to decline the use of the scalar fields to define a
privileged notion of space. This amounts to dropping the
canonical pairs (X',P;) from the classical phase space;
thus we use a single scalar field to provide a (many-
fingered) time. In this approach the Hamiltonian and
momentum constraints are of the form

(5.6)

HE+1(lg|~'2P*+|g|"%g*D,TD, T)~0, (5.7
HE+PD,T=0. (5.8)
The Hamiltonian constraint can be rewritten as
P+h'=0, (5.9)
where
h'=—v"—2|g|'"?’HE—|g|g**D,TD,T . (5.10)

On the constraint surface (5.7) the argument of the
square root is non-negative, and will remain non-negative
throughout the dynamical evolution.

In the quantum theory associated with (5.7) and (5.8)
we have the states

v=vy[T,g], (5.11)
which satisfy the functional Schrodinger equation

. 6‘1’[ T,g] ’ AN

e 5 T} ’ ’ 1

ST h'(x;T,8,p1¥[T.g] (5.12)
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as well as a subsidiary constraint

5
8T (x)

AEx)—iD, T Y[T,g]=0, (5.13)
which means that the state functional is invariant under
the action of diff(2) on its arguments. As in [4], howev-
er, the metric is no longer an observable and neither is
the three-geometry, so the probability interpretation of
the state functional is not directly available. What are
needed to interpret the states are observables, which are
built from the three-geometry, that preserve the subspace

of physical states satisfying
(2|g1'*A%+|g|g*°D, TD, T)¥ <0 , (5.14)

so that a meaningful square root can be extracted in
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(5.10).

So, as in [4], we see that the use of matter fields as a
means of solving the old problems of time, observables,
and interpretation in canonical quantum gravity is not
without problems of its own. Whether these difficulties
are preferable to those which arise in vacuum quantum
gravity, where one is expected to find a purely geometri-
cal solution to these persistent problems, remains to be
seen.
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