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Time variation of fundamental constants. II. Quark masses as time-dependent parameters
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Consistent bounds for the simultaneous variations of fundamental constants in the standard model of
fundamental interactions are obtained from astronomical, astrophysical, geophysical, and laboratory
data. Improving the analysis made in our previous work, we treat quark masses as time-dependent vari-
ables. QCD chiral invariance breaks down and the general scaling of strong energies has to be
reanalyzed. We also discuss the existence of preferred reference systems in a world with time-varying
fundamental parameters. As in our previous work, the bounds obtained exclude the Dirac large-number
hypothesis and, in general, any theory demanding a large variation of the fundamental constants.

I. INTRODUCTION

The observation of any time or position dependence of
the fundamental constants has been considered as an im-
portant way of detecting the low-energy consequences of
the grand unified theory of all interactions [1—4]. Unify-
ing schemes such as Kaluza-Klein theories [1] or super-
string theories [4,5] provide a very general framework to
study the time variation of fundamental constants.
Indeed, it has been shown that Kaluza-Klein theories
have cosmological solutions where the fundamental con-
stants do vary [2], and the same occurs in superstring
theories [4-6].

Partially inspired by these theoretical results, many at-
tempts have been made to set observational or experi-
mental bounds on the time variation of fundamental con-
stants. In Ref. [7] (hereafter SV1) we mentioned some of
them. They all assume the given constant is the only one
which varies in time. However, any conspiration between
the variation of the constants that cancels the observa-
tional effects we consider makes the upper bound thus ob-
tained meaningless.

The standard model (SM) of fundamental interactions
together with general relativity (GR) provides a con-
sistent description of all known low-energy phenomena
[i.e., low compared with the grand unified (GU) energy
scale], in good agreement with experiment. The set of
fundamental "constants" on which these theories depend
are supposed to be universal parameters, i.e., time, posi-
tion, and reference-frame invariant. Indeed, the Einstein
equivalence principle, on which GR is based, implies
such an invariance.

However, the time variation of fundamental constants
can preserve consistency with the inner symmetries of
any fundamental theory. For instance, any time varia-
tion of Newton's gravitational constant 6& measured in
atomic units is consistent with the general covariance of
GR if G~ and the mass of any test body become constant
in gravitational units [8,9].

In SV1 we analyzed short-term local phenomena: as-

tronomical and geophysical data based on time intervals
much shorter than the age of the Universe, and so set
bounds on the variability of the fundamental constants
today in the solar system. We analyzed the time varia-
tion of fundamental constants without the assumption of
no conspiracy among the time variation of the QCD scale
parameter A, Fermi constant GF, fine-structure constant
a, electron mass m, and 6&. However, the u-, d-, and
s-quark masses m„, md, and m, were assumed to be zero,
and so we were able to derive a simple general scaling law
of all strong energies with A. In this paper we lift such
an assumption, and so derive a new approximate scaling
law.

Those phenomena analyzed in SV1 are considered
again in this work, together with Eotvos-type experi-
ments, spectra of medium-distance radio sources and
mass splitting of the K K system [10].

Our paper is organized as follows. In Sec. II we review
the phenomenological framework of SV1 together with
the modifications due to the new choice of fundamental
parameters. In Sec. III we discuss the observational evi-
dence available from astronomical, geophysical, and labo-
ratory phenomena, and in Sec. IV we state our con-
clusions. Appendix A discusses the quark-mass depen-
dence of the nucleon and meson masses, and Appendix 8
analyzes Eotvos experiments as a way of finding preferred
reference systems.

II. A PHENOMENOLOGICAL MODEL

In this section we briefly discuss the phenomenological
model presented in SV1 for the analysis of the conse-
quences of the time variation of fundamental constants,
together with the modifications introduced here. The
model is based on the adiabatic hypothesis: i.e., that the
main changes in observable quantities are due to the time
variation of the parameters, neglecting the necessary
modifications of the SM. With this assumption we are
neglecting any local coupling of the fundamental con-
stants with any other field. If we restrict our attention to
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A. Time-varying parameters

The choice of time-varying parameters is the same as
in SV1, with the inclusion of the u-, d-, and s-quark
masses as variables. Recent estimates of the quark con-
tent of the nucleons show that the hypothesis of a simple
scaling law for the nucleon masses with A is not correct.
In fact, it is presently believed that the chiral (zero-
quark-mass) limit for the masses of the nucleons hardly
exceeds 50% of the total nucleon mass [12-14]. Thus, we
need to include the quark masses (which belong to the
Higgs sector) as time-dependent parameters in order to
improve the scope of our analysis.

As in SV1, we shall assume the validity of the funda-
mental relations between the parameters of the Salam-
Weinberg theory of electroweak interactions, as a conse-
quence of the adiabatic hypothesis and the experimental
support for it.

B. Thermodynamical considerations

The time variation of fundamental parameters will pro-
duce changes in the equation of state of macroscopic bo-
dies that can be computed using simple thermodynamic
considerations of a very general nature. In SV1 we ob-
tained the following expression for the time variation of
the free energy:

a(T& a(U&
ac,

+
ac, (2.1)

where both ( T ) and ( U ) can be written in terms of ob-
servable quantities using energy conservation and the
virial theorem.

C. Time units transformation

local phenomena (local with respect to any cosmological
scale such as the Hubble time or the particle horizon), we
do not need the knowledge of the dynamics of the funda-
mental constants on a cosmological scale. As was stated
in SV1, within such a procedure and without a deeper
analysis, one would not be able to relate the rate of
change to interesting quantities, such as the Hubble con-
stant or the contraction rate of extra dimensions.

In order to choose a definite system of units, one must
consider certain parameters as time independent. We
choose A' and c constants, since these quantities fix the
length-to-time and energy-to-frequency units ratio. At
this point one can use a finite, time-dependent
renormalization-group transformation to select any di-
mensional quantity as a time independent energy unit
[11]. In SV1 we introduced the Salam-Weinberg system
of units (SWU), where the mass of the intermediary vec-
tor meson W, M~, is taken as the time-independent en-
ergy unit. Our entire analysis will be carried out in SWU.

The rest of this section is devoted to presenting the set
of hypotheses that specifies our phenomenological model.

da dti da
(1+& )

da
dt dt dti dti

d2 d d2=8 +(1+28t)
dt& dtj

(2.2a)

(2.2b)

the last term being generally negligible. The quantity 0 is
some linear combination of the time derivatives of the
fundamental constants, which stands for the relation be-
tween the observation time (atomic, ephemeris, etc.) t,
and the SWU time t, which can be written as

I;] =t+ pet (2.3)

E. Nuclear binding energies

The strong nuclear binding energy plays an important
role in the observations to be analyzed. It depends on the
fundamental constants nontrivially. The potential that
describes reasonably the nucleon-nucleon interaction for
typical nuclear distances is the Yukawa potential. In the
case of pseudoscalar-meson exchange (e.g., m meson) be-
tween nucleons it reads [15]

3mpe r

m r
(2.4)

where mz and m are the pseudoscalar meson and nucleon
masses, respectively, g~ is the corresponding coupling
constant, and r =rm is a natural nondimensional dis-
tance parameter.

When the nucleons exchange scalar mesons expression
(2.4) becomes

e
~s =gsms (2.5)

where now gs and ms are the coupling constant and sca-
lar meson mass, respectively, and r**=rms is another
natural nondimensional distance parameter. The poten-
tial for the exchange of a vector meson has the same form
(2.5) with a different coupling constant gz. We define gz
as the sum gs+g~.

The processes that take place between nucleons include
interchanges of two, three, and more either scalar or
pseudoscalar mesons. At short distances the interchange
of more than one meson becomes more relevant.

If the masses or the coupling constants in Eqs. (2.4)
and (2.5) change, each potential will scale differently. If
we make the transformations

D. Renormalization-group equations

Following SV1, we shall limit ourselves to show how
any model-dependent parameter can be computed in a
grand unified theory (GUT) which can be a low energy
limit of a Kaluza-Klein or superstring model. We assume
that at the grand unification scale AU all the running
coupling constants have a common value 0, U. The
renormalization-group equations are the same as in SV1.

As stated in SV1, the time derivatives in SWU will be
related to the reported ones through the equations

ms Asms

m ~A, m, r*~r*, (2.6)
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the potential and kinetic energies scale as follows:

Vs ~s Vs T ~ ~sT

Now, if we change the scalar-vector parameters

mp ~Xpmp

we have

(2.7)

(2.&)

s Am

E, E G+ —+0.83
Mz~& Mz, G

E+ 2 + +3
Mz~ Mz~ Mzg m

(2.15)

(2.9)

—2 —r/m2m e=g
m r/m

(2.10)

where g and m are the mean coupling constant and mean
meson mass, respectively. Now, under the transforma-
tions

m —+A, m,
m —+A, m, r~i, 'r,

the energies scale as follows:

(2.11)

(2.12)

so the total Hamiltonian scales in the same way. In par-
ticular, the strong-binding energy of any nucleus will

scale in the same way. This result sets us free from any
model dependence, even though we assume a very partic-
ular hypothesis for the effective potential (2.10).

We can then write

In neither case does the total Hamiltonian get multi-
plied by a constant, so there is no simple scaling law for a
set of transformations involving all the parameters.
However, the nuclear potential is a superposition of sca-
lar, pseudoscalar, and vector exchanges. We assume that
such a superposition introduces a new scaling law, a sort
of "mean scaling, " involving a "mean potential" with
"mean parameters, "which reads

F. Preferred reference systems

The existence of space- and time-dependent parameters
introduce preferred Minkowskian reference systems. For
instance, these can be defined to be reference systems
where a definite set of fundamental parameters are space
independent. One might say that it is not appropriate to
talk about time-dependent parameters, but rather time
dependent Pelds. In our model any of these fields have
no dynamics, or at least, if there is such a dynamics, its
coupling with local phenomena must be weak enough to
neglect it and consider its time evolution as predefined.
It is important to note that our model predicts the ex-
istence of local preferred reference systems, but nothing
is said about global preferred reference systems, as we are
not concerned about the cosmological dynamics of the
fundamental constants.

The simplest assumption, which will be made in this
work, considers these parameters as Lorentz scalars, as
most of Kaluza-Klein and superstring models predict. it
is natural to assume that there is a set of preferred refer-
ence systems where all fundamental constants are at most
time dependent. These reference systems are at rest with
respect to the background cosmic radiation (BCR), and
we call them "locally corno ving reference systems"
(LCRS).

G. CPT invariance and transformation
laws for time-varying parameters

+2m
m

(2.13)

R
R

(2.14)

where E is the total binding energy, m is the (isotopically
symmetric) nucleon mass, m is the mean meson mass
(which we still have to define in terms of the quark
masses and the scale parameter A), and R is the nuclear
radius. We will neglect any contribution to the variation
of the nuclear radius from Coulomb or weak interactions,
so (2.14) will be the expression for the total time variation
of R.

The time variation of the nuclear mass will be given by
Eqs. (2.13) and (2.14) together with the expressions found
in SV1 for the time variation of the Coulomb and weak-
binding energies. It will be valid in the approximation
Z=X, where Z and N are the number of protons and
neutrons, respectively. The final expression is

The CPT theorem is based on the very general assump-
tions [16] of Hermiticity, Lorentz invariance, and weak
locality of interactions. No matter how "physical" these
assumptions may seem, physicists would prefer to test
them through CPT invariance experimentally. On the
other hand, it can be easily shown that CPT invariance of
mass and minimal gauge coupling Lagrangian terms is
granted if masses and gauge coupling constants, con-
sidered as fields, are scalars under Lorentz transforma-
tions. These conditions hold in our model, so we will ex-
tend these results to every sector of it, and so assume that
CPTis an exact symmetry of nature.

III. ANALYSIS OF OBSERVATIONS

In this section we shall discuss the modifications intro-
duced in the analysis of geophysical, astronomical, and
geochemical phenomena made in SV1. The observational
data are listed in Table I. In this analysis we shall consid-
er as fundamental variable parameters the nucleon mass
m, the isotopic breaking parameter hm =M„—M, the
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mean meson mass m, 6&, G~, m„and (x. In fact, these
are our directly observable variable parameters. At this
level, the only differences between the analysis in SV1 and
the one made here are the nuclear radii and strong bind-
ing energies scaling laws.

The scale parameter A does not appear until the nu-
cleon and pion masses are replaced by the u-, d-, s-quark
masses and A as fundamental parameters. The
modifications can be summarized as follows.

(i) P/anetary pa/eoradius and orbita/perturbations. In
S&1 the parameter (&/&)sv, stems from Mz „/Mz „.
We can use expression (2.15) in every case except for the
solar and pulsar masses. In this case neutron and proton
masses M„and M appear explicitly in a separate way, as
their relative abundances difFer considerably. The solar

composition is estimated [17] essentially to be 29% heli-
urn and 71% hydrogen. It is easy then to write for the
time variation of the solar mass the expression

=0.855 +0. 145 (3.1)

It is not clear whether pulsars are neutron stars [18] or
strange stars [19]. In either case the expressions for their
mass-time variation wiH differ considerably from the
Earth-type planetary case. In this work we shall conser-
vatively adhere to the neutron-star pulsar hypothesis. If
we neglect the binding energy between neutrons, the ex-
pression for the time variation of the mass MNs of any
neutron star will essentially be

TABLE I. Observational data. The columns show the data number (correlated with the conditional equation number in Table
III), a simple data description, the observed value and the corresponding standard deviations (in units of 10 "yr '), and the system
of units of the observation and the reference.

Eq. description

Planetary paleoradius R /R
(1) Mercury
(2) Moon
(3) Mars

Lunar secular acceleration: n/n
(4) Mercury transits
(5) Ancient eclipses
(6) Growth rhythms
(7) LLR
(8) Tidal models
(9) Satellite data

Earth's secular acceleration: 0/0
(10) Ancient solar eclipses
(11) Ancient lunar eclipses
(12) Ancient equinoxes
13) Growth rhythms

Viking ranging data
(14) G~/G~
(15) /3

Binary pulsar data
(16) n/n

Long-lived P decayers: A, /1,
(17) ' Re
(18) "K
(19) ' Rb

Oklo phenomenon: o./(7
(20) ' Sm
(21) ' Gd
(22) ' 'Eu
(23) '"Cd

Eotvos experiments
(24) q(A1-Pt)

Absorption lines of QSD
(25) Hyp. Hydr/Mg II dobl

(26) Mg+-Mg rr

Laboratory data:
(27) Clock rate difference
(28) a-factor difference
(29) K -K mass difference

Value (10 " yr ')

0.0+0.012
0.0+0.015
0.0+0.03

—15.0+1.2
—17.3+1.8
—14.2+2.4
—13.7+1.0
—15.2+3.0
—14.4+1.7

24.3+2.0
—20.6+2.6
—23.6+2.3
—22.5+ 1.0

0.0+1.2
0.0+2.4

1.0+ 1.2

0.0+0. 15
0.0+0.29
0.0+0.29

0.0+69.0
0.0+123
0.0+630
0.0+280

0.0+0.06

0.0+0.002
0.0+0.002

—0.2+1.2
0.0+0.06
0.0+3.30 X 10

Unit

SW
SW
SW

ET
ET
AT
AT
SW
SW

ET
ET
ET
AT

AT
AT

AT

aU
aU
aU

SW
SW
SW
SW

SW
SW
SW

Ref.

[451
[45]
[451

[46]
[47]
[48,49]
[50]
[51,48]
[51]

[47]
[52]
[47]
[48,49]

I'53]

I:53]

[54l

[55,56]
[57]
[57]

[21]
[21]
[21]
[23]

[29]

[30]

[58]
[33,34,59]
[38]
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0

MNS M„
MNS M„

(3.2)

m AE, AE, 4E
+ 2 '+ '+3

8'o 8'o 8'o
(3.3)

where hE; is the energy difference of type (i ) between
both nuclei.

Finally, the equation for the time variation of the de-
cay constant for e decay is obtained by making in the
corresponding equation of SV1 the replacement

+svl MHe

A MH,
(3.4)

(iii) The Oklo equation Using. Eqs. (2.3)—(2.15) the
analysis of the modifications is similar to that made
above. We improve the analysis by considering the effect
of the time variation of AM, due to the difference be-
tween the number of protons and neutrons in the ab-
sorver and compound nuclei. This manifests in the kinet-
ic energy of the nucleus, which can be written as

E~ = (ZEF +NEF ), —=3 (3.5)

The treatment of the time variation of Mars' radius is
very similar to Mercury's SV1 analysis, as the best ac-
cepted models propose a two-layer composition for it
[2o].

(ii) Long live-d P decayers T.he difference with SV1
arises only when we express the time variation of the en-
ergy released in the transition in terms of the variation of
fundamental constants. The mass difference between
neutron and proton will appear as a new directly observ-
able variable parameter. The analysis for the time varia-
tion of the nuclear binding energies is the same as in Sec.
II. The equation for the time variation of the released en-
ergy 8'o is then

~Es m AM hM+
o m Wo~M

hE, G AE+— + 0.83
o G Wo

where

2/3
1v(z) 1 9~ N(Z)

2 4 2 7

M („)ro
(3.6)

and ro =1.25 X 10 '3 cm (we refer the reader to the Fer-
mi gas model of the nucleus used in SV1).

The main contribution to the time variation of Ez is
provided by the general scaling law [Eqs. (2.13) and
(2.14)]. However, there is an additional contribution due
to the difference between the number of protons and neu-
trons in the nucleus, which is proportional to the time
variation of b,M. We take the time derivative of Eq. (3.6)
and obtain the expression

EK =0.029(N —Z) MeV . (3.7)

235OF Y113 —(@~()3t)
113 1 —e t

113
(3.&)

where 1V»3 is the number of atoms of "Cd, N235 is the
amount of U235 present at the beginning of the fission
process, y»3 is the yield of the mass 113 fission chain, 4
is the thermal neutron Aux, o.F is the fission cross section

This last expression will provide the contributions of
b,M /b, M to the time variation of the resonance and bind-
ing energies Eo and 8'o, and finally to the equation for
the time variation of the neutron absorption cross sec-
tions of strong absorvers. In SV1 we only consider ' Sm.
Here we extend the analysis to ' Gd, ' 'Eu, and "Cd,
which are also strong thermal neutron absorvers. The
neutron capture cross sections of these nuclei during the
Oklo working period have not been previously calculated
explicitly. However, we can estimate them from the iso-
topic abundances of these strong absorvers in the Oklo
mines, and then compare them with the abundances pre-
dicted by the modern values of the capture cross sections.
We use the values for the predicted and observed isotopic
abundances that are shown in Ref. [21]. Their ratios pro-
vide a good estimate of the Oklo TACS (thermal average
cross section) to present TACS ratios.

In the case of" Cd it is convenient to use Bateman's
formula [22]

TABLE II. (a) Nuclear parameters used to evaluate Oklo equations. (b) Measurements of g factors.
ET and AT stand for ephemeris and atomic time, respectively. LLR denotes lunar laser ranging.

(a)
(meV)

I
I„
Q33 (barns)

'4'Sm

98
63
0.5
0.06

30
100

0.030
2

151E

327
70
0.065
1.2

113Cd

178
113

0.650
0

t
1984
1987

g( ) (10 ")
1 159 652 193 (4)
1 159 652 188.4(4.3)

(b)
g(e+) (10 ")

1 159 652 222(50)
1 159 652 187.9(4.3)

Reference
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for U and o., is the neutron capture cross section for"Cd. Reference [23] provides us with the abundances of"Cd for three samples, together with the parameters
necessary to use Eq. (3.8). Table II(a) shows the nuclear
parameters used to evaluate the entries of the equations
for the time variation of the cross sections of

Sm, ' Cxd, ' 'Eu, and "Cd. There we see that the
quadrupole moment of" Cd is zero, so we evaluate its
magnetic dipole energy in order to find the Coulomb con-
tribution to the resonance energy. For more details, see
Ref. [27].

The last two subsections account for three additional
observations with respect to SV1 which are considered in
this work.

(iv) Eotuos experiments. These experiments are
designed to study violations of the weak equivalence prin-
ciple (WEP) [28]. In modern versions the parameter to
be measured is the difference in the gravitational ac-
celeration gs induced by the Sun on two laboratory ob-
jects of different chemical composition. If a non-null re-
sult is obtained, then the violation of the WEP is inferred.

As we stated in Sec. I, the time dependence of the fun-
damental constants will provide preferred inertial refer-
ence systems. In any nonlocal comoving reference sys-
tem (LCRS) the fundamental constants will be spatial as
well as time dependent.

In Appendix B we obtain the equation

1 co mc

gs 2 gs mj.
(3.9)

where a; and m; are the acceleration and mass of body i,
and co is the velocity of the laboratory reference system
relative to the comoving system. The results obtained by
Braginsky and Panov [29] for aluminum and platinum al-
lows us to evaluate the left-hand side of Eq (3.9). .

(u) Redshifts of absorption lines of quasistellar objects
(QSO's) Nearly all QSO's show a redshift in both their
continuum and line radiation. We can obtain informa-
tion on local atomic transition processes, and hence the
values of various fundamental parameters which govern
these transitions, over a time interval corresponding to a
significant fraction of the age of the Universe such as
35%. This may be in conflict with the linear approxima-
tion used both here and in SV1 for the time dependence
of the fundamental constants. However, any look-back
time less than 50% of the age of the Universe will be ac-
ceptable in such approximation.

The detection of MgII fine-structure and hydrogen
hyperfine absorption lines toward the radio source AD
0.235+164 allowed Wolfe, Brown, and Roberts [30] to
place upper limits on three products of the fine-structure
constant, the nuclear g factor of the proton and the
electron and proton masses m, and M, viz.
~ g~m /M~, gpm /M, and a. The upper bounds to the
redshift differences of those lines for the same object pro-
vide upper bounds for the time variation of the products
mentioned above. As the analysis of Ref. [30] applies ex-
actly in our case, we just write the two relevant equations
for our work.

(vi) Time variation of IC~K masses. In Ref. [10] we

obtained an equation for the time variation of the mass
difference between E and E mesons, making use of
CPT invariance. We obtain, using the mass values for
u, d, and s quarks given in Appendix A, the equation

AM~

AT M~
A md m,=—+0.047 +0.953
A md m,

(3.10)

A modern value for hM is [31]

hM~
M

=(0.0+6.0) X 10 (3.11)

while a 10-yr-old value is [32]

hM~ + (0.0+3.3 ) X 10
M~

We estimate the time derivative AM as

AM(t') bM(t) (0
—
0+3 30) X 10 i9 i

t' —t

and the final equation reads

(3.12)

(3.13)

md m—+0.047 +0.953 =(0.0+3.30) X 10 ' yr
A md m,

(3.14)

(uii) Time uariation of electron and positron g factors.
One of the most exacting tests of charged particle-
antiparticle symmetry to date is the modern high-
precision measurements of the magnetic moment or g
factor (which equals twice the magnetic moment in units
of Bohr magnetons) of a single electron and a single pro-
ton.

In general, the charged particle is introduced in a Pen-
ning trap, ~here electric and magnetic fields generate a
rapid cyclotron rotation. The parameters that are mea-
sured are the cyclotron frequency, which depends on the
charge and mass of the particle, and the spin-precession
frequency, which depends on the magnetic moment of it.

However, in our model the fundamental constants
change with time and their transformation properties are
such that CJ'T symmetry is preserved. Then, a C viola-
tion is to be expected.

The magnetic interaction term of an electron with an
external magnetic field B is

H~ = —p-B, (3.15)

where p(e )=(g,elm, 2)tr/2, o denotes the Pauli ma-
trices and g, =2 is the electron g factor. EX~ is CPT in-
variant if the following condition holds:

g ( —xe ) =g( —xe )
cpz — e( x) — e(x)

m, ( —x) '
m, (x )

(3.16)

where g ( —x, e ) is the CPT-transformed "g field" of
the electron, and we have used the transformation prop-
erties of the fundamental constants discussed in Sec.
III G. If g is a scalar field, like the rest of the fundamen-
tal constants, we can write
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g (x)=Cg (x)=Cg( —x) .

Then we have

(3.17)

m, ( —x)
Cg(x, e )=g(x, e ) =g(x, e+); (3.18)

e( —x) m, (x)

so if we use the linear approximation

g (t, e +) =—go+g (t —to),
we obtain the result

(3.19)

Ro
' e me

(3.20)

The di6'erence between the electron and positron g fac-
tor can be written as

g (t, e ) g(t, e—+)=(g —g +)(t —t, ), (3.21)

or, in terms of the anomalous g factor a =g/2 —1, we ob-
tain the final result

a(e ) —a(e+)
(3.22)

a (e ) —a (e+) ~ 5.9X10 (3.23)

As in Secs. III—VI, if we choose 1984 as to and assume
that AT is four years, a rigorous bound results and the
final equation reads

(3.24)

IV. RESULTS AND CQNCLUSIQNS

The equations are solved for the time logarithmic
derivatives of m, b,M, m, m„a, Gz, G~, n (tidal), and
fl (nontidal). In Appendix A we derive expressions for
the time variation of m, M, and AM in terms of the time
variation of the quark masses and A. We need one more
independent equation relating the time variation of the
quark inasses and A with some other observable (four in-
dependent observables fix the time variation of the four
parameters m and A). This equation comes from the
measurement of K K mass splitting, and is derived in
Ref. [10]. The changes (or their absence) refer to time
scales ranging from the age of the solar system (meteor-
ites) to the duration of an atomic experiment (12 days).
Nevertheless, the time independence of the time logarith-
mic derivatives of the fundamental parameters, which is
assumed in this work as being a good approximation for
time scales much shorter than the age of the Universe,
permits us to solve the conditional equations all together.

where tz and t, are two arbitrary epochs in which the g
factors are measured.

In Table II(b) we quote the values from Refs. [33] and

[34], corresponding to two different measurements of g
factors. We can now estimate an upper bound for the
anomalous g-factor di6'erence throughout the last seven
years:

R &3X10-~3 yr-'
R~

(4.1)

for the present contraction rate. In the superstring
theory cosmological solution of Wu and Wang [4],
G~ ~ R~ and so we obtain

R ~7.8X10 ' r (4.2)

Thus we have, as in SV1, an overdetermined set of con-
straints (Table III) that the observational data, which are
shown in Table I, must satisfy.

We consider these observational data uncorrelated ran-
dom variables, whose standard deviations are shown in

Table I. The estimates of m, m, a, and m, are highly
correlated, and, since most of the data are upper bounds,
they are certainly not Gaussian. Indeed, the correspond-
ing "jackknife" estimate shows that the distributions are
highly leptokurtic. The least-squares estimates of errors
are not reliable under these circumstances. However, in
order to compare the results of the jackknife and the
(Gaussian) adjustment by elements [35], we show in Table
IV the least-squares solution, together with the correla-
tions between the estimates. Such correlations enhance
the error of the estimates, which are not clearly dis-
tinguished by the observational data. The correlations
between some of the dependent parameters [Tables IV(e)
and IV(f)] are still higher because of the particular struc-
ture of their coefficient matrices (see especially Table V).

In the jackknife process [36-38], each of the 28 equa-
tions was deleted one by one of the data set and 28 "pseu-
dovalues" [36] were obtained for each of the fundamental
constants. The jackknife estimates are the mean and
standard error for the pseudovalues. 95% confidence
limits were obtained from the t distribution, and the
larger was taken as an upper bound for the time variation
of the constant. In Table VI it can be clearly seen that
the errors are much lower than in the least-squares es-
timation, because of the inadequacy of the Gaussian hy-
pothesis, both for the null observations and for the esti-
mates of the time variation of the fundamental constants.

Despite the increment in the number of unknowns with
respect to SV1, the increment in the number of observa-
tions considered and the more realistic jackknife treat-
ment allowed us to obtain stronger bounds in the present
work. Similar bounds have been obtained by Shlyakhter
[21], coupling the Oklo phenomenon with probabilistic
arguments.

As in SV1, we can find upper bounds for the time vari-
ation of the fundamental constants at the grand
unification scale. These results are shown in Table IV(c).
We conclude that no parameter is allowed to vary with
time at a rate comparable to the Hubble constant Ho, and
so the large-number hypothesis is wholly refuted.

We can impose stronger constraints on the time varia-
tion of the size of the extra dimensional space RJ in both
Kaluza-Klein and superstring theories than in SV1. In
the case of Kaluza-Klein theories, aU ~ R~ and from
this relation we find the result
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TABLE III. Coef5cients of conditional equations. The columns show (1) the equation number (the same as that of Table I), (2)

m/m, (3) hM!hM, (4) M /M, (5) Gz/Gz, (6) a/a, (7) GF/GF, (8) m, /m„(9) n/n, (10) Qz/0&.

Eq.
(1)

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

M~
(2)

—1.62
—1.28 x 10-'
—1.3

0.0
—0.29
—5.2
—4.13

0.0
0.0

—11.5
—11.5
—11.5
—6.5

1.0
1.02
4.13

—7.16x10'
—3.30X 10

—35.5
9.17X 10

—3.51 X 10
—1.25 X 10

1.67x10'
—2.1x10-'
—1.0
—1.0
—0.951

0.0

(3)

0.0
0.0
0.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—4.88 x 10-'
0.0
0.0
4.84x 10'

—70.6
3.38

—1.56 X 10
—2.83 X 10
—1.71 X 10
—2.00x10'
—5.2x10-'

6.87 x 10-'
6.87 x 10-'
0.0
0.0

M p
(4)

0.053
4.17x 10-'
0.04
0.0
9.40 x 10-'
0.17
0.13
0.0
0.0
0.40
0.40
0.40
0.22

—0.034
—3.36x 10
—0.13

7.27x 10'
2.59x 10'

—74.3
—9.17X 10

3.51 X 10
1.25 X 10

—1.67 X 10
1.7X 10
0.0
0.0
2.3 x10-'
0.0

GN

(5)

—0.02
—4.1 X 10
—0.03

0.0
—0.11
—2
—2

0.0
0.0

—3.83
—3.83
—3.83
—1.83

1.0
0.0
2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

(6)

1.17
0.63
0.83
0.0
0.0

—2

0.0
0.0

—1.61
—1.61
—1.61
—2
—8
—4

4
—2.28 x 10
766

9.28 x10'
9.17x10'

—3.51 X 10
—1.25 X 10

1.67 x 10
—2.51x 10-'

2
0.0
3

—0.5

GF
(7)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.00

—7.82
2

176
334
194
210

0.0
0.0
0.0
0.0
0.0

(8)

1.32
.9

1.32
0.0
0.0

—1
—2

0.0
0.0

—1.44
—1.44
—1.44
—1
—4
—2

2
589

7.06
—7.8

0.0
0.0
0.0
0.0
0.0
1.0
0.0
1

1.0

(9)

1.0
1.0
1.0
1.0
1.0
1.0
1.85
1.85
1.85
1.85

0.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0

As we have mentioned before, the Einstein equivalence
principle implies that all nongravitational constants of
nature must be time and position independent. The
strong equivalence principle extends that statement to
gravitational phenomena. Our results show that both
forms of the principle of equivalence are very well
satisfied, within a small fraction of the Hubble rate.
Since the unrestricted validity of the principle of
equivalence leads to general relativity as the only low-
energy theory of gravitation, our results should be con-
sidered as an accurate verification of general relativity.

Following Barrow and Tipler [39], we mention that
any experimental evidence against the time dependence
of the fundamental constants leaves the large value of
Dirac's dimensionless numbers unexplained. We do not
know whether any explanation is desirable for such
values. Were this the case we could look for theories in-
cluding ensembles of worlds, such as chaotic inflationary
scenarios [40] or Everett's many world interpretation of
quantum mechanics [41], on which anthropic arguments
could be scientifically based.

Finally, Broadhurst, Ellis, Koo, and Szalay [42] report-

TABLE IV. Coefficients of QCD parameters. The columns show the coefficients relating the time
variation of M&, hM, M p, and AM+ with the time variation of A and u, d, and s quark masses.

Observable

M~
hM
M p
M(EC ) —M(K )

A (QCD)

0.53
0.53
0.50
1.0

mu

0.022
—4.34

0.065
0.0

0.038
8.04
0.11
0.047

m,

0.40
0.40
0.32
0.95
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TABLE V. Least-squares results. The table shows the name of the parameter, the value and the standard deviation for the funda-
mental parameters of our model, the 95% confidence limits as upper bounds and the same quantities in units of the Hubble constant.
In order to get upper bounds a low value of 1CO ~ 55 km sec ' Mpc ' has been used. The last part of the table shows correlation ma-
trices necessary to obtain bounds on the time variation of dependent parameters. (a) Values and bounds for the fundamental parame-
ters. (b) Model independent bounds for SM parameters. (c) Bounds for GUT and model-dependent parameters. (d) Correlation ma-
trix for directly observable parameters [with the numeration of ibi]. {e) Correlation matrix of A and quark masses. if) Correlation
matrix of SM-dependent parameters.

(a)

M~/M~
hM/hM
M~/~
m, /m,
a/o.
G e/yG/e

G~/G~
n/n
Q~ /Q~

A/A
m„/m„
md/md
m, /m,
0,
n& /a&

a2/a&
0

0/v

(iU/aU
n3/a3
p/p
AU/AU

(0.0+2. 1)X
(0.0+7.6) x
(0.0+1.9) X
(0.0+1.3) X
(0.3+5.9) X
(0.0+2.4) X

( —0.9+1.9) X
—14.73+0.44

4.74+0.90

10 4

1O-4
1O-4

10
1O-'
10
1O-'

(b)

5.0X 10
4.0X 10
2.4X 10
5.2X 10
6.4X 10
4.8X ]0
1.1 X 10
1.3 X 10
1.4X10-'
2.4X 10

(c)

6.2X10 '
4.0
9.2X 10
2.0

(d)

2.4X 10
1.5 X 10
3.8 X 10
2.6X 10
1.2X10-'
4.8X10-'
4.7X10-'

3.9 X 10
2.7X10-'
6.8X 10
4.6X10-'
2.1X 10
8.5 X 10
6.8 X 10

9.0X 10
7.2 X10-'
4.4X10-'
9.4X 10
1.2X 10
8.8 X 10
2.0X 10
2.4X10-'
2.6X10-'
4.4X 10

1.1 X 10
7.2X10-'
1.7X10-'
3.6X 10

1.00 —0.094
1.00

0.96
—0.89

1.00

—0.47
0.49

—0.21
1.00

0.12
—0.11
—0.15
—0.91

1.00

—0.058
0.11

—0.065
—0.43 X 10

0.11
1.00

—0.011
0.012

—0.045
—0.11

0.13
0.016
1.00

—0.34 X 10-'
0.36 X 10-'

—0.017
—0.044

0.052
0.67 X 10
0.40
1.00

—0.16X 10
0.17X 10

—0.010
—0.027

0.032
0.40 X 10
0.25

—0.66
1.00

(e)

1.000 00 —0.954 33
1.000 00

—0.963 68
0.999 05
1.00000

—0.999 98
0.952 50
0.962 03
1.000 00

1.000000

GF

—0.118669
1.000 000

0.117840
—9.99 997

1.000000

—0.118201
0.999 999

—0.999999
1.000000

—0.112264
0.999 961

—0.999 971
0.999 967
1.000 000



TIME VARIATION OF FUNDAMENTAL CONSTANTS. II. 3105

TABLE VI. Jackknife results. The table shows the name of the parameter, its jackknife mean and
standard error, the absolute value of the larger of the 95% confidence limits for the t distribution and
the same quantity in units of the Hubble constant.

M~ /M~
AM/hM
M p/~
m, /m,
a/a
G jeyG/e

GN /GX
n/n
+IV /+N
A/A
m„/m„
md/md
m, /m,
c
a)/a)
a2/a&
0

v/v
aU/aU
a3/a3
I /I
AU/A„

8.2x10-'
4.4X 10
9.1 X 10

—7.2x10-4
9.7X 10
3.4x10-'

—3.0x10-'
—1.49x10'

5.16X 10
8.8 x10-'

—4.4x 10-'
—2.5 X 10
—9.1x10-'

1.4x10-'
—3.5 X 10
—7.3 X 10
—1.2x10-'

4.1 X 10
1.8 X 10

—9.9 x10-'
6.6x 10-'
4.9 X 10
1.3 X 10

6.5 X 10
4.3 X 10
7.1 X 10
1.1x10-'
6.9x10-'
3.7X 10
3.0X 10
7.0x10-'
1.7 x10'
7.0X 10
3.6x lo-'
2.1x10-'
7.3 x10-'
1.6x10-'
2.6x10 '
5.6X 10
1.4X 10
3.1 X 10
1.3 x10-'
7.5 X 10
5.0X 10
3.6X10 '
1.0x10-'

2.1 X 10
1.3 x10-'
2.4X 10
3.0X 10
2.4X 10
1.1 X 10
6.6x 10-'

24X10 '
1.2X 10
6.6x10-'
2.4X 10-'
5.3 X 10
9.3 X 10
1.9x10-'
4.1 X 10
1.0x10-'
7.7X 10
2.6X 10
1.7 X 10
1.3 X 10
3.4x10-'

3.9X 10
2.4x 10-'
4.4x 10-4
5.5 x 10-4
4.4x10-'
2.0X 10
1.2x10-'

4.3 x 10-'
2.2X 10
1.2X 10
4.4X 10
9.7x 10-'
1.7x 10-'
3.5 X 10
7.4x10-'
1.9X 10
1.4x 10-'
47X10 4

3.1x 10-'
2.3 x 10

—'
6.2X 10

ed that the pair correlation function between galaxies as a
function of the comoving separation shows a (damped)
periodicity of 128 h Mpc. Hill, Steinhardt, and Turner
[43] proposed that this fact could be explained if the
gravitational constant or the Rydberg constant oscillated
with time. The "modern" values (entries 1—5, 7—12,
14—18, 24, and 27—29 in Table I) force the phase of the os-
cillation to be near zero. On the other hand, long-lived P
emitters relate nowadays fundamental constants to their
values at the solar-system formation age, 4500 Myr ago;
and the Oklo phenomenon to their value 1800 Myr ago.
These two epochs exclude periodic variation of funda-
mental constants except for a window near the 450-Myr
period. The perversity of unanimated objects makes this
window very near the observed value of the period. On
the other hand, bounds on a periodic variation of G& can
be obtained only through paleontological data. Visual in-
spection of the data set does show a periodic variation
with a period near 400 Myr superimposed on a linear
trend. Whether this is a real effect or an artifact of the
data set requires a delicate separate analysis.

Thus, our analysis cannot exclude the time variation of
fundamental constants as the origin of a periodicity in the
structure of the Universe, but makes it unlikely. If our
solitude should gladden with this elegant hope [44], we
should seek its origin elsewhere.

APPENDIX A: TIME VARIATION OF
NUCLEON AND MESON MASSES

Nucleon masses

In SV1 we worked with chiral QCD, that is, QCD
with massless quarks. In that limit all observables with

M = A +m B"+mdB"+m B'+ (A 1)

where A„denotes the (mass) of the level in the chiral
limit. The expansion coefficients B„",B„",and B„' are the
matrix elements of the operators uu, dd, and ss in the
unperturbed, symmetric state ~p, n ):

&~= &p, n ~qq ~p, n ), q =u, d, s . (A2)

According to the general scaling which stands in the
chiral limit, 3„ is a pure number multiplied by A and

dimension of energy are proportional to A, and the
theory possesses the internal symmetry
SU(Nf)XSU(Nf), where Nf is the number of quark
flavors. The theory does not distinguish between quarks
of different flavors nor between left and right com-
ponents. Any member of a given multiplet has the same
mass. When we introduce in the Lagrangian quark mass
terms, the SU(Nf ) multiplets become nondegenerate. Al-
though Nf (the number of quark flavors) is six, the
heavy-quark degrees of freedoms are frozen. The decou-
pling theorem [12] asserts that infinitely heavy quarks
decouple from all quantities of physical interest. For in-
stance, for any member of the baryon octet (M ~ 1 GeV)
the eff'ective number of quark flavors is three (there is not
enough energy to produce any appreciable amount of
quark-antiquark pairs with masses exceeding 500 MeV).
Indeed, we can calculate their masses perturbatively
around the chiral mass value, taking as small parameters
the quotients m /A. Following Gasser and Leutwyler
[12], the expansion of the square of the mass M„(A, m )

(q=u, d, s, etc. ) in powers of the quark masses takes
the form
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the coefficients Bq are proportional to A. Had we calcu-
lated Bq using the complete Hamiltonian, any of the pure
numbers mentioned above would be functions of the
quantities mq /A.

If An does not vanish, the square root of the expansion
(Al) yields a new expansion for the nucleon mass:

M„ mu md m,=0.53—+0.019 +0.044 +0.40
M„ A m„ md m,

(A13)

It is remarkable that 40% of both nucleon masses is ac-
counted by the strange-quark mass. Indeed, the strange
content of the nucleon is the principal cause of break-
down of the general scaling found in SV1.

M =a +~m bq+n n ~ q n

q

(A3) Meson masses

M =a +M) (proton),

M„=a +M~ (neutron),

(A4)

(A5)

where

Mz~= m„b "+md b "+m, b',
Mq=m„b "+m„b"+m,b' .

(A6)

(A7)

There is an experimental indication that strange quarks
in the proton are present already at large distances. The
determination of the ~N X term

X =
—,'(m„+md )&p iuu +dd~p &, (AS)

is a factor of about 2 larger than the value expected from
the Gell-Mann —Okubo mass formula and the assumption
&p ~ssip & =0. The value of X" indicates instead that [13]

where a„=3„'i and b~= 1/2A„' 2BJ.
Now we have a„~A and b„~ constant. In the chiral

limit the baryon multiplet is degenerate, so a„=a for a
given multiplet. Furthermore, SU(3) symmetry imposes
some constraints between the coefficients bq. It can be
shown [12] that the expansion (A3) for the nucleon
masses takes the forms

M ~ =(m„+md)B+O(m~lnm~), (A14)

where B=—(2/f )&O~uuiO& is proportional to A. The
expression for the neutral pion reads

M 0 =2mB ——(m, —I )B
4 „sin 0
3 ' cos0

(A15)

where m =(m„+md)/2. The mixing angle is propor-
tional to the ratio of the SU(2)-breaking mass difference
m, —rn to the SU(3)-breaking mass difference m, —m.
Since this ratio is a small number, the mixing angle is
small, so up to terms of order 0 the state ~ is degenerate
with ~—+.

The final formula for the time variation of the pion
masses is then

m„ m„=0.5—+- "+M„A 2 m„+md m„

mdmd

m +md md

(A16)

In a similar way, the time variation of the E mesons
can be written as

%'e first analyze the ~-meson masses. The square of
the charged pions can be written as [12]

&plsslp &

&p i(uu+dd+ssip &

(A9)
md +1 md=0.5—+-

M& A 2 md+m, md

m, m,

md +mg m~

b "/b =0.45, b /b =0.36, b'/b =0.29 . (A10)

where b = b "+b "+b'. Following Ref. [60], the value for
b is 11.6+3.8.

Dorninquez and de Rafael estimate the following
values for the light-quark masses [61]:

m =5.6+1.2 MeV, md =9.9+1.1 MeV,

Similar results have been obtained for the proton matrix
elements of the pseudoscalar quark densities qi y ~q [14].

Donoghue and Nappi [60] have estimated, based both
on Skyrme and bag models, the following quark content
for the nucleons:

(A17)

and for charged kaons the formula is similar to Eq. (A17)
but with the d quark replaced by a u quark.

Nucleons exchange Goldstone mesons (pseudoscalar
octet) as well as vector mesons. As was mentioned above,
the strange content of the proton is important, so we can-
not neglect the exchange of mesons with strangeness
different from zero. On the other hand, the wave func-
tions of the vector octet are identical to the pseudoscalar
octet ones in their liavor indices [62]. All this suggests
the expression as an approximation for the time variation
of the mean nucleon exchange meson,

m, =199+33 MeV .

(A11)
A 1 1=0.5—+—m,
A 6 ' m +m„

m,

m, +m„m,

Taking time-logarithmic derivatives in Eqs. (A6) and
(A7) and using the values (A10) and (Al 1) we obtain the
results

M m„ md m,=0.53—+0.025 +0.033 +0.40, (A12)
Mp A m„md m,

+m 1 +
m, +m„

+m, 1 +
m +m

m,

m, +m„m,
m,

m, +m„m,
(A1S)
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or, using Eq. (Al 1) for the quark masses,

m md=0.5—+0.321 +0.114 +0.065
A m, md m„

x +~~ dx dx~+ 1 ~~ Bm 1
" dr dr 2 ()xv m

+ g (84)

In the solar reference system, the Newtonian limit for x'
of this equation is

(A19) x, 1, 1—V'(b =—V'm
dt'2 2 m

(85)

g'(x', t')=go+qt'(I+w /2)+r'l(1+w /2)x'w . (82)

1S

The action S for a point particle in a gravitational field

S— O'T m x 7 gp~ x 'T
dx" dx
d7 d7

(83)

and the geodesic equation becomes

APPENDIX B: EOTVOS EXPERIMENTS AND
PREFERRED REFERENCE SYSTEMS

As proved experimentally [63], the solar system is
moving with respect to the BCR at a velocity of 350
km/sec. It is reasonable to expect a space dependence of
the fundamental constants. In order to determine this
dependence we write, for any fundamental parameter g,
the equation

g( t) =go+ qt,
which holds in the comoving reference system.

The change of a scalar field under post-Galilean trans-
formations [28] leads to the expression

We obtain the expression for Vm from Eq. (82), and then
Eq. (85) becomes

dx' 1m=V(t+ — w .
2 m

(86)

The anomalous acceleration is proportional to the
comoving time-logarithmic derivative m/m. If two bo-
dies di6er in chemical composition, this latter quantity
may di6'er between them, and a violation of the WEP will
appear. If not, any difFerence between the relative contri-
butions of the gravitational binding energy to the total
mass of each body will produce a Nordtvedt-type efFect,
and so a violation of the general weak equivalence princi-
ple (GWEP).

Braginsky and Panov [29] have set upper bounds for
the difFerence between the gravitational accelerations in-
duced by the Sun on aluminum and platinum bodies.
The time variation of their masses will be mainly deter-
mined by the time variation of the aluminum and plati-
num nuclear masses, respectively. Using the results ob-
tained in Sec. II and in SV1 for the time variation of nu-
clear masses we obtain Eq. (20) of Table III.

Postal address: Dpto. de Fisica, U.N.L.P., C.C. 67, 1900
La Plata, Argentina.
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