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We consider constraints on preinflation subhorizon fluctuations in a chaotic inflationary model. The
requirement that the energy density in the fluctuating field not exceed the Planck scale limits the ampli-

tude of the fluctuations. The requirement that the preinflation fluctuations have a presently observable
amplitude that is at least comparable to the quantum fluctuations generated during inflation constrains
the length scale of the fluctuations. We show that in order for preinflation fluctuations to be observable
above the background due to quantum fluctuations generated during inflation, they must have a scale at
least comparable to the preinflation Hubble length. Unless Qo & 0.94, such fluctuations could be observ-
able in the present microwave background with a wavelength less than the present observed horizon.

I. INTRODUCTION

The observed cosmic microwave background appears
remarkably isotropic [1—3]. This constitutes a horizon
problem which is usually resolved by invoking an early
inflationary epoch [4]. Nevertheless, at some level, fluc-
tuations in the background radiation should appear due,
for example, to quantum Auctuation generated during the
inflationary epoch [5—10]. It is also possible that fluctua-
tions in the scalar field and radiation energy density prior
to inAation could appear at some level in the present mi-
crowave background. For this to happen requires that
the present value for the closure parameter Qo is begin-
ning to deviate from unity. In such a circumstance, the
observed microwave background corresponds to the
preinAation Hubble scale or larger and preexisting Auc-
tuations would be observable. Indeed, the fact that Auc-
tuations even with wavelengths far in excess of the
present observed horizon would be observable today is
one of the arguments [11,12] that the amount of inflation
should have been sufhcient to guarantee that the present
closure parameter is very close to unity. Nevertheless,
there are a number of observations [13] which indicate
that the present closure parameter may be consistent
with a value slightly less than unity (Q0=0. 1 —0.5). This
is known as the omega problem [14]. If the closure pa-
rameter is indeed less than unity, then it may be possible
to observe relic fluctuations from the p rein Aationary
epoch.

The purpose of this paper is to specify the constraints
on the prospects for observing such Auctuations based
upon the requirement that their amplitude be at least
comparable to the quantum Auctuations generated during
inAation and that the energy density in the Auctuations
not exceed the Planck scale prior to inAation. We con-
struct numeric and analytical models for the evolution of
chaotic [15] inflation with plane-wave fluctuations. We
find that even for a Auctuation with the maximum ampli-
tude consistent with the energy constraint, observability
above the inflation-generated Auctuation background re-
quires a wavelength comparable to the initial Hubble

scale. The present analysis is only applicable to Auctua-
tions with a length scale less than the Hubble length be-
fore inAation. We will consider superhorizon Auctuations
in a subsequent paper.

II. EVOLUTION OF FLUCTUATIONS

rl 1—= (2)arcosh
R &Q ' (2)

whereas (HR) '=&I —Q. For example, for a matter-
dominated 0=0.1 model, we have rI=3.8H '. Thus, in
such a universe, we could see well beyond the Hubble dis-
tance. We call this the "observed horizon. " Hence we
shall avoid the use of the term "horizon" when referring
to the Hubble scale.

During inflation, (RH) decreases, making
(RbH& ) ') (ROH0 )

' possible. This is equivalent to
Qo )Qb, since, in an open universe (k = —1),

0=1—1/R H (3)

(We use subscripts i for the Planck time, b for the begin-
ning of inAation, x for the time during inAation at which
a particular Auctuation exits the Hubble scale, and 0 for
the present time. )

However, simply to have the present closure parameter
exceed the preinAation value is neither a sufficient nor a
necessary condition to solve the horizon problem [4].
This would make the preinAation Hubble length longer
than the present Hubble length, in comoving coordinates.

The Hubble distance scale H ' is sometimes referred
to as the "horizon. " In the present context, however, this
would be confusing. In a radiation-dominated Aat

(Q = 1) Friedmann model, the light travel distance,

dt
rt =R (t)f0 R(t')

is indeed equal to the Hubble distance, rI=H ', but in
general this is not true. The matter-dominated Aat Fried-
mann model has r&

=2H ', and in an open ( Q ( 1 )

radiation-(matter-)dominated Friedmann model,
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(4)

and prescribe inhomogeneous initial data at the Planck
time, defined as

H; =myPl (5)

We restrict ourselves in the present work to scales shorter
than the Hubble scale, which allows us to ignore the
gravitational reaction to the inhomogeneities. Such per-
turbations in radiation density and curvature (gravity
waves) decay as R

The energy density of the inAaton field is

But as we have just noted, the Hubble length does not
give the range of causal contact.

A necessary condition is that the comoving light travel
distance before inflation is larger than the light travel dis-
tance between the time of recombination and today. This
is not too difficult to satisfy [14] even with 00=0.1, since
before inflation a typical inflationary model can have a
curvature-dominated, Q=O, period, during which light
travels many Hubble distances, r& )&H

However, this is not a sufficient condition, since we
would like inflation to explain the homogeneity and isot-
ropy of the present Universe in the largest observable
scales from "natural" initial conditions. Causal contact
does not necessarily lead to homogeneity and isotropy.

We consider Linde s chaotic infiation [15]with, e.g.,

where f is the fraction of the total-energy density in the
inflaton field. This comes from our definition of the ini-
tial time [see Eqs. (5) and (8)] and means that the fiuctua-
tion energy may not exceed the Planck energy.

In Eq. (9) the effect of gravitational perturbations on
the inflaton evolution is ignored. This is only marginally
justified when the fluctuation length is comparable to the
Hubble length, i.e., Hk-1. Because of this we are apply-
ing Eq. (9) only when HA, &1. At an initial time t;,
H,.A,;:—l & 1. After that, HA, decreases until inflation be-
gins. During inflation, HA, grows, until H„X =1 at t .
Thus, in most cases, HA, « 1 for most of the time from t;

to t . However, for l —1, HA, is close to 1, not only just
before t„, but also just after t;. [But note that at first the
density perturbation, coming from P and VP, has only a
wavelength of A, /2, and so even for l =1, it is only half
the Hubble length initially. Later, when V(P) begins to
dominate, the density perturbation has a wavelength of
A, .] How much smaller HA, is during the time between t,
and t, depends on 0;. During a curvature-dominated
phase, HA. stays constant. If Q; « 1, the curvature term
begins to dominate the expansion soon and HA, does not
become very much smaller than it was at t, . Thus our re-

sults are approximate. They are the least accurate for
l —1, 0; «1, for which we probably underestimate the
final amplitude of the Auctuations.

For simplicity, let us consider plane-wave inhorno-
geneities in the inflation field:

&p/(p+ p), (7)

p =—P + V'P +V(P) .
2 2R2

V(P) can typically be ignored at earliest times, but be-
comes dominant as inflation begins. The gradient term
decays as R and so does the inhomogeneity in P at
first. Later, however, when V(P) becomes important, it
only decays as R . Therefore, P becomes the dominant
inhomogeneity. The quantity of importance is the densi-
ty perturbation

P(t, z) =P;+5/;sin (R,.z —t) .2'
E

The wavelength of the Auctuations,

A, , =1H; '= =I+I—Q, R, , 0&l &1,I
Pl p)

is specified as initial data.
The constraint (10) therefore becomes

(12)

at the time the perturbation exits the Hubble scale, be-
cause it will reenter the Hubble scale with the same am-
plitude after infiation [10].

To obtain this quantity we have solved numerically the
coupled equations

H'=, (p...+(p, ))+
3fPl p) R

(8)

V P —3HQ V'(P) g&f, ——' (9)

3m p)
4

(p&, )=fQ, , 0&Q, &l, 0&f &1,
8m

(10)

where R =R (t), H =H (t) =R /R, p=p(t, x), and

p d=p d,.(R, /R ) . x is a comoving coordinate. The
term g%P, where W is the Ricci scalar, is a possible cou-
pling to gravity. Minimal coupling is given by /=0 and
conformal coupling by g= —,'. For a Robertson-Walker
metric, A =6R (RR +R +k).

The initial inhomogeneity is constrained by

Vl p)

3
16m.

1/2

QfA;1 . (13)

The shorter the wavelength, the smaller the amplitude
must be for the energy density not to exceed the Planck
density. The maximum initial amplitude we consider is
therefore (3/16m. )'~

mp& =0.078mp&, for fiuctuations ini-
tially of Hubble length. (The wavelength of the density
perturbation is then half of this. ) Fluctuations beyond
the Hubble scale can of course have larger amplitudes,
but for them our present approach is not valid; indeed, it
is suspect for l —1.

We are especially interested in the case where the
length scales of these fluctuations were not expanded by
inflation to be many orders of magnitude larger than the
present observable scales; i.e., we have just the minimal
amount of infiation, corresponding to P,. —5mp~. The re-
sults from a set of runs with V(P)= —,'pP are shown in
Table I.
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TABLE I. Computed 5p/(p+p)~„ from the numerical runs (with minimal coupling, /=0) for
different values of l and 0;. The other parameters were f=1, p, =10 ', and P;=5.0mp, . The corre-
sponding approximate results from the analytic formula [Eq. (24)] are shown in parentheses.

0.1

0.5

0.9

0.01

2.4x10-'
(2.6X 10 )
5.3X 10

(5.8X 10 )

6.9X 10
(7.8 x10-')

0.1

2.6x10-'
(2.6 x 10-')
5.6x10-'

(5.9X 10 )

7.3 x10-'
(7.8X 10 )

0.5

1.1X10
(1~ OX 10 )
2.0X 10

(1.8X10 )

2.0X 10
(2.0x10-')

0.9

2. 1x10-'
(1.5 x10-')
1.3X10

(1.ox 10-')
7.7x10-'

(7.2X 10 )

III. ANALYTIC MODEL

H A,„=H R l+I —Q, =l (14)

As specified above, our problem has five parameters
Q;, l, f, P;, and p (for a given form of the potential and
the coupling to gravity). It is not practical to span this
space with numerical results, and so let us supplement
them with an analytical formula for 5p/(p+p)~ . For
this we need some additional approximations. Let us first
find out how much the universe has expanded when the
fluctuation exits the Hubble scale:

ous, so that they are important only for the uniform part
(t).
Initially, P is dominated by the wave part, but as

inAation gets going, the uniform part approaches the
slow-rolling solution

V'(P)
3H

Since P changes slowly, this is essentially constant, and
soon the slow-rolling term begins to dominate P. The
energy-density term —,'5lP )=$5/ thus switches from an
R behavior to R . The Quctuation is described by

The expansion law (8) has an analytical solution if we
approximate and

5p= —5((t )+ 5(V(t )+5p„d+5V (19)

4
8~ R,

p=a
3m4p, R

+c, p+p=& j'&+, &v(()'&+ —,p, , (20)

with a and c constants; i.e., we assume that V(P) does not
change much from t,. to t, and the rest of p decays as
R . The latter assumption is violated when P experi-
ences a nonzero gradient in the potential, V'(P), and the
behavior of —,'&(() &, changes to R . However, in most
cases this term will be smaller than the curvature term in
(8), and so the solution for R is not much a6'ected. With
the further assumption c «a [also noting that V(P) is
not important initially], the result is

R 1 —l (1—Q;)
(16)

cl

where

We can then ignore terms that decay as R, leaving

5p —,'5(P ) +5V„
p+p x

(21)

Since

we have

5p 3

p+p x 277

5$„

2~ 2~—5(P ) =P 5P„= 5$„= 5V, (22)

c=
4 V(P;) .

8~
3m p)

(17)
6m.5Q„1+ 2' V'(P )g2

The inflaton field contains a uniform part P(t) and a
wave part with amplitude k5$. The wave part decays as
5$ ~R ' and 5$=5$2vr/~R . This statement is exact
only for a conformally coupled free field in a flat (i.e.,
k =0 or Q= 1) Robertson-Walker model [16]. However,
we found that it also held well in our numerical calcula-
tions with k = —1, minimal coupling, and V(P), over
most of the period evolved. This happens because the
amplitude of the fluctuation 5$ becomes small, and thus
the last two terms in Eq. (9) become almost homogene-

6m.5$,1+
2~ V'((t, , g, ,

'. R.
R;

(23)

(24)

where

Inserting (12), (13), (16), and (17) into (23) gives our ap-
proximate analytic result

5p (/f QQ;l
p+p [1—l'(1 —Q, ) ]'"
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V(y )3/2

A = 1+ 8m&2
2m V'(P,. )m p3)

(25)

Setting f=1 gives us the upper limit for a fluctuation
whose initial wavelength was I &1 times the Hubble
scale. For V(P) =—„'pP, with p= 10 ' and P; =5mp&, we

have 3 =8X10

IV. QUANTUM FLUCTUATIONS

The above discussion has been completely classical;
i.e., we have ignored quantum Auctuations. We should
now compare the amplitude of these preinflation Auctua-
tions to the inflation-generated quantum fluctuations [8]:

(26)

.2

0 L
0

at t„. For them

=24
p2

1/2

V'(P; )m p)

FIG. 1. Contour levels of the ratio of the maximum
preinflation fluctuations to quantum fluctuations according to
Eqs. (24) and (27). 0; is the closure parameter at the Planck
time (H= mp&), and I is the comoving length scale of the fluc-
tuation in units of the Hubble length at the Planck time. When
l is close to 1, our calculation underestimates the preinflation
fluctuations.

V. RESULTS

1 —n 0
(28)

i.e., I & 1 for 00)0;. However, the largest observable
scale, that of the cosmic microwave background, has the
comoving scale 2ri/RO=4arcoshl/QQO. Our fluctua-
tion has the comoving scale l+1—0;. These are equal
for a fluctuation with

4 1
arcosh

Ql —n, Qn,

In Fig. 1 we compare the present amplitude from
preinAation fluctuations to the amplitude from inflation-
generated quantum fluctuations. Shown are contours of
constant ratio of the former to the latter. These are plot-
ted in the fluctuation length scale I versus preinflation
closure parameter Q; plane. The point to note is that the
preinflation Auctuations are not comparable to the quan-
tum Auctuations unless the length scale becomes compa-
rable to the Hubble scale I —1 for any initial curvature.
Thus we see that l «1 preinflation Auctuations will be
swamped by these quantum Auctuations. For I —1 our
calculation indicates that both Auctuations could be of
comparable magnitude. Since for these scales our calcu-
lation is likely to underestimate the preinflation fluctua-
tions, they could actually be larger.

Finally we can relate Q0 to the present scale of any an-
isotropy in the observed microwave background. The
Auctuation that is just now reentering the Hubble scale is

For these Auctuations to be observable above the quan-
turn Auctuations requires l 1, which implies

0 ~ 1 =0.94+0.060; .
cosh (+1—II;/4)

(30)

VI. CONCLUSION

We have shown, for a chaotic inflationary universe
with plane-wave Auctuations, that only those fluctuations
with a length scale comparable to or greater than the
Hubble scale before inAation could appear as fluctuations
in the cosmic microwave background. We have also
shown that, for 0.94+0.06Q; & Q0& 1, such Auctuations
have a longer wavelength than the presently observable
scale. Thus they could only be observable in the lower
multipole moments of the anisotropy such as the quadru-
pole or even the dipole [12] moment.
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For 00&0.94+0.066; the present observable scale is
larger than the Hubble scale at the Planck time and
preinflation Auctuations with a wavelength less than the
present observable scale could be seen. On the other
hand, for 0.94+0.060; &00& 1, the present observable
preinflation Auctuations would have wavelengths greater
than the present observable scale.
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