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Semilocal cosmic strings
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We show that the presence of global symmetries in a Lagrangian can lead to U(1) Aux-tube solutions
even when the vacuum manifold is simply connected. We provide a model in which these Aux tubes,
called "semilocal" strings, occur and explicitly prove the existence of stable string solutions by
Bogomol*nyi's method. The formation of semilocal strings in the early Universe and the evolution of the
network is discussed. We also show that semilocal magnetic monopoles cannot exist.

I. INTRODUCTION

Topological defects in field theories and cosmology
have been the subject of intense investigation for the last
two decades. These defects are solutions to the classical
field equations and topological reasons guarantee the ex-
istence and stability of the solutions. In the early
Universe, the defects would form during a phase transi-
tion in which the symmetry of the Universe breaks down
to a smaller symmetry. A wide variety of defects is now
known and the properties of some of them are very well
documented [1].

The topological defects generally considered occur in
field-theoretic models in which the Lagrangian is invari-
ant under the transformations of a gauged syrnrnetry
group but in which no global symmetry is present. This
gives rise to local (gauged) defects. The simplest example
of this kind of model is the Abelian Higgs model original-
ly studied by Nielsen and Olesen [2]. Global defects, aris-
ing from the breaking of a global symmetry, have re-
ceived less attention in the literature. The primary
reason for this is that grand unified theories are based on
gauged symmetries and global symmetries usually have to
be included by hand without any compelling motivation
for their inclusion. This, however, does not preclude the
existence of global symmetries in the Universe and such
symmetries may well play a role in the grand unification
scheme.

In this paper, we will study the formation of defects
and in particular the formation of cosmic strings, when
there are both global and local symmetries present in the
Lagrangian. We find the result that some of these field
theories admit stable string solutions with finite energy
per unit length even when the vacuum manifold is simply
connected. In other words, strings can form even if the
hypersurface given by the minimum of the potential V is
simply connected. Alternatively, if the symmetry group
6 of the Lagrangian breaks down to H, there can be
string solutions even if the first homotopy group
~,(G/H) is trivial. The string solutions we find are very
similar to the ordinary U(1) local strings but they have
additional novel features that have some resemblance to

global defects. For this reason, we have decided to call
these strings "semilocal. "

In some ways, semilocal strings are similar to the
"frustrated" cosmic strings discussed by Hill, Kagan, and
Widrow [3]. A frustrated string may be thought of as
consisting of two distinct strings laid on top of one anoth-
er. In Ref. [3] it is argued that, even though the (compos-
ite) string solution is a stable solution to the field-
theoretic equations, the string will not be able to form in
a cosmological scenario and will be "frustrated. " This
frustration will come about because one of the two dis-
tinct strings first forms in one location and then the other
forms in some other location but the stable string solu-
tion is only the one with both strings forming at the same
location. In this way, even if the field theory admits
string solutions, the formation of these strings in the ear-
ly Universe is "frustrated. "

A similarity between the semilocal and the frustrated
string is in the ingredients that go in the Lagrangian.
Both kinds of strings, at least in the simplest models, in-
volve two complex scalar fields and only one gauge field.
But it should be pointed out that the existence of string
frustration depends crucially on the smallness of some of
the coupling constants in the Lagrangian. No such as-
sumption is required in the case of semilocal strings and
the form of the potential is fully protected by the sym-
metries. The frustrated string exists because the vacuum
manifold is not simply connected and for this reason
these strings cannot terminate whereas the existence of
the semilocal string is not purely topological and it can
terminate in a "cloud of energy. "

We expect the cosmological role of semilocal strings to
be similar to the role of frustrated strings. Even though
the field theory admits strings, a string network of the
type found by numerical simulations [4] would probably
not form during a phase transition in the early Universe.
Semilocal strings can end in a cloud of energy and the re-
gion between distant strings will be filled with gradient
energy. This might make the evolution of semilocal
strings much more complicated than that of local U(1)
strings.

In Sec. II we explicitly demonstrate a model in which
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The model we consider is a direct generalization of the
Abelian Higgs model. The only difference is that the
complex scalar field is replaced by an SU(2) doublet
4& = ( P, g). Then the action is

S=f d x —~(B ie—A )C&~
— FF—""1 . 2 1

P P 4 P&

——(4&@—g )
4

(2.1)

This action is invariant under G =SU(2)s XU(1)~ trans-
formations, where, the subscripts g and I stand for
"global" and "local." Under SU(2)s, we have
@~exp(ia, r')@ where a, are constants and under

U(1)1,4~ exp[iP(x )I]4 where I is the 2 X 2 identity rna-

trix. Once 4 acquires a vacuum expectation value
(VEV), the symmetry breaks down to H=U(1) exactly
as in the Weinberg-Salam model for the electroweak in-
teractions. And as in the electroweak model, here too
vr, (G/H)=1. However, if we were to only consider the
gauge symmetries, we would need to look at vr, (U(1)I )

which is nontrivial, and indicates the presence of gauge
strings.

It is useful to study the shape of the potential in Eq.
(2.1). The potential is minimum when 4& @=g . Since 4
is a complex doublet, the minimum of the potential is a
three-sphere and is simply connected. This is in contrast
with the situation in the Abelian Higgs model where the
potential minimum is a circle and the string solution cor-
respond to a solution which winds around the circle. In
our case, there is no such circle if we only look at the
minimum of the potential. The crucial observation, how-
ever, is that one must also consider the gradient energy in
order to find a minimum energy solution. Then, if we
pick a point on the three-sphere, the U(1)I transformation
generates a circle on the three-sphere. For every point on
the three-sphere there is a corresponding circle. Since
the points on the circle are connected by local symmetry
transformations, there is no energy cost, neither potential
nor kinetic, in moving along the circle. However, it costs
gradient energy to go off the circle because the only way
we can transform to a point off the circle is to use the glo-
bal SU(2) transformation. So it may be better to think of

semilocal strings form and prove their existence. We also
discuss some of the properties of these solutions and con-
sider their cosmological role. In Sec. III we show that
the semilocal property can hold for strings but not for
magnetic monopoles. We conclude in Sec. IV.

II. SEMILOCAL STRINGS

E=fd x F„+ —(D P—, ) + (D P, )—4 mn

+
4 (4.0.+0.0. n')'— (2.2)

where P, and P„a=1,2 are the real and imaginary
parts of P and P, respectively, D P, =V

+ee,b A Pb(m =1,2) is the U(1)-covariant derivative
(similarly for g, ), and e,2= —ez, = l. We start by rescal-
ing the charge and VEV of the Higgs doublet to unity:

P, =71Q„Q,=gR„A = —v, x = yeg

(2.3)

The energy per unit length becomes

2 1 2E= f d y f „+(D Q, ) +(D—R, )

+—(Q, Q, +R,R, —1) (2.4)

where P=2A, /e and f „=8 v„—B„v . This is easily
shown to equal

the three-sphere as being composed of an infinite set of
circles and that there is a string corresponding to a wind-
ing around each of those circles. (We prove the existence
of these string solutions below. ) The string solution
around any one of these circles is a minirnurn of the ener-
gy for nontrivial (winding) boundary conditions. String
solutions that involve transitions from one circle to the
other, however, are not minimum energy solutions and
can either unwind or relax to a minimum energy string
that winds around a single circle.

While the above arguments suggest the presence of
string solutions in the model in Eq. (2.1), they do not con-
stitute a proof. The reason is that the vacuum manifold
is simply connected and so a field configuration that
winds at infinity may unwind without ever leaving the
vacuum manifold. In other words, we know that the field
vanishes at the center of the Nielsen-01esen vortex, but
there is no guarantee that it will vanish in our case. To
check this, we must actually construct the string solution.

We now show that the model in Eq. (2.1) has stable
string solutions by a simple generalization of
Bogomol'nyi's proof for the Abelian Higgs model [5].
For this, we consider the energy per unit length of a stat-
ic, stringlike configuration along the z axis in Minkowski
space:

2
E= f d y [f „—e „(1—Q, Q, —R—,R, )]

+—(e „D„Q,+e,I D Qb)2+ (e „D„R,+e,b—D Rb ) + (Q, Q, +R,R, —1)

+ ( ,' f~„e~„(1—Q, Q, —R,R, ) e~„e,bD—„QaD~ Qb e~„e—,bD„RaD~Rb ] (2.&)
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The terms in square brackets in the last line are the divergence of the vector

~p elm Qa mQbe~b+ ~ ~Rbe~b+um

and therefore the energy has a contribution from the boundary:

f d2y V S =f ds e (Q,D QbE,b+R, D Rbe,b+u ),

(2.6)

(2.7)

where C is the circle at infinity. Assuming the bound-
ary conditions

a =(ai) +(a2) and u&= —u(r), u„=O
n

the Bogomol'nyi equations become

(2.15)

D„Q, ~O as r~0D, D„R,~O as r~ ~, (2.8)

we find that the boundary term is proportional to the cir-
culation of the gauge field, which in turn has to be an in-
teger multiple of 2m in order for + to be single valued on
C

fdy P'S =f dsu e =2mn. (2.9)

(The integer n is called the winding number of the string. )
Thus,

=n+ f d y —[f „—e „(1—Q, Q, —R,R, )]
2m 4

+ (em~ D.Q~+ eabD~ Qb )mn n a

+ (emnD~Ra+e~bD~Rb)mn n a

+ (Q, Q, +R,R, —1)
2

(2.10)

Let us concentrate on the case P = 1: the energy is mini-
mized when

f „—e „(1—Q, Q, —R,R, )=0,
e „D„Q,+e,bD Qb =0,
Emn n &a Eab m &b

The ansatz

ie) i 02Qa&(r)e, R ~a2(r)e as r~ co

(2.11)

(2.12)

ie)(0 iv )(aie —')=0 'v =8 8, (2.13)

and this, in turn, means that

(8 iv )(aze—') =(iB 82 i d 8, )(a2e —')

=0 =8 (82 —8, )=0
so 02=8$+c as r~ ~. Introducing

(2.14)

is compatible with the above conditions provided that, as
r ~ ~, (a, ) +(a2) = 1 and the phases 8, and 82 differ by
a constant, c. The correlation of the phases is due to
their coupling to the U(1) gauge field u since the condi-
tion that D Q, goes to zero at the boundary implies

da n=—(1—u)a, =—(1—a )
dv T

(2.16)
dp' 7" dr n

with the boundary conditions a —+1,V~1 as r —+ ~.
These equations were analyzed in Ref. [5] where it was

found that the solutions are stable for any value of n.
Notice that they are identical to the Nielsen-Olesen vor-
tex equations, and therefore the field @ must vanish at
the center of the string. Furthermore, the string solu-
tions can be labeled by the continuous parameters
ai(r oo ) [or a2(r~ oo )] and c. In this sense, the model
contains an infinite number of strings corresponding to
the infinite number of U(l) circles on the three sphere.

The case with @%1 can be analyzed in an identical
manner. With the ansatz in Eq. (2.12), the equations are
identical to the equations found by Bogomol'nyi for the
Nie1sen-Olesen string and hence we simply state his re-
sults: the strings with unit winding number are stable for
all values of P and for ~n ~

~2 the strings are unstable if
P) 1. These results should apply to the semilocal string
also.

This completes the proof of the existence and stability
of string solutions in the model (2.1).

In the early Universe, semilocal strings would form if a
suitable phase transition took place. During the phase
transition @ would get a VEV that was uncorrelated at
long distances. This corresponds to a random selection
of points on the three-sphere at every point in space. In
traversing some large contour in space, it is possible that
we will wind around a U(1)I circle on the three-sphere.
This means that there mill be a semilocal string passing
through the large contour. In general, it will also happen
that in two distant regions of space, we will get two
"different" semilocal strings (that is, with different values
of a, and c ). The difFerent strings are not connected by
any gauge transformation and so there is energy expense
in the gradients of the parameters a& and c. This means
that the region between the two di6'erent strings will be
filled with gradient energy. The evolution of the string
network will depend on the string tension and on the dy-
namics of this gradient energy. The gradient energy may
also be thought of as providing a long-range interaction
between diferent strings.

Next consider a straight isolated semilocal string. We
have already seen that the vacuum manifold is simply
connected and so the winding of the field configuration
may disappear. This means that the semilocal string can
end. However, the field configuration can only unwind
by using the global transformations and we know that
global transformations are costly in terms of gradient en-
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ergy. Hence, when the string ends, it must end in a cloud
of gradient energy. This energy expense is infinite for a
single isolated string but may be finite when one has a
whole network of strings.

We expect that the evolution of the sernilocal string
network will be quite different from the evolution of the
Nielsen-Olesen string network. However, a definitive
word on this rnatter can only be given after more exten-
sive studies, some of which may have to involve numeri-
cal simulations.

III. SEMILOCAL MAGNETIC MONOPOLKS-
A NEGATIVE RESULT

global transformations. As seen in the semilocal string
case, this is the key feature of semilocal defects. A direct
outcome of this condition is that the global symmetry
must be larger than the local symmetry. The second con-
dition is reasonable because any accidental degeneracy of
the potential would tend to be lifted by quantum correc-
tions, so we expect V=O to lie on an orbit of the full
symmetry group, but then condition (i) implies that G
will be enough to cover it completely. The third condi-
tion means that the local symmetry transformations are
not trivial on the entire vacuum manifold.

Now, from Eq. (3.1), it is clear that

In this section we will show that it is not possible to
have semilocal monopoles within the context of grand
unified theories.

In a general phase transition we can write the initial
symmetry group G as GI XG and the final symmetry
group as H& XH~. Let us denote the generators of GI by
T', and the generators of G by ~'. We will assume
minimal coupling and so the kinetic term of the scalar
field depends on the covariant derivative,
D„N= (d iW—„'T—')@ Here. , W„' are the gauge fields
corresponding to the local transformations generated by
T'. Then, the action is invariant under G only if

[T',r']=0 . (3.1}

Magnetic monopoles exist in the field theory if vr2(Gi /Hl )

is nontrivial. However, we have

~2( Gl /Hl } ~1(Hl ) (3.2)

The magnetic monopole will be semilocal if the following
holds.

(i) Given any constant field N and any constant local
transformation e'+, there is a corresponding global

k k
transformation e' ' which has the same effect on 4'.

eia ~ @ eiPT @
~ k~ ~ a

(3.4}

The a" will depend on the choice of N and P'.
(ii) The vacuum manifold, that is, the hypersurface

V=O, lies on an orbit of G; in other words, given any @0
in V =0, any other point N in V=O can be written as

(3.5)

for some choice of n .
(iii) Given any local symmetry transformation, there is

at least one @ in V=O which is not invariant under it.
The first condition is crucial because it will permit any

magnetic-monopole configuration to be unwound using

provided that vrz( Gi ) =m &( Gi ) = l. (It is generally be-
lieved that the grand unified group should satisfy these
conditions. ) For ~i(Hl) to be nontrivial, Hl must neces-
sarily be nontrivial and contain at least one generator
that annihilates the VEV of 4& ( =No) at a given point in
space-time. Without any loss of generality we can call
this generator T'.

(3.3)

0=[T',r']@o=T'(r'@o)=0 for all i . (3.6)

But this means that every @ in V=O is annihilated by T'
which is contrary to condition (iii). So Hl is trivial and
semilocal rnonopoles cannot exist.

As a corollary, this proof shows that the only topologi-
cal defects that can have the sernilocal property are those
for which the relevant local syrnrnetry breaks completely.

IV. CONCLUSIONS

We have shown that the formation of U(l) gauge
strings can be complicated by the presence of global sym-
rnetries. It may be possible to have strings even if the
vacuum manifold is simply connected, that is,
~,(G /H ) = 1. For this reason we propose that it is better
to consider the homotopy group ni(Gl/Hl) where the
subscript l refers to only the local (gauged) parts of the
initial and final symmetries of the Lagrangian. If this
group is nontrivial, then gauge strings will form. If, in
addition, we find that m&(G/H) is trivial, then we may
conclude that the strings in the theory are not genuine lo-
cal strings but are of the semilocal variety.

In Sec. II, we described a model with SU(2)g XU(1)l
syrnrnetry —essentially the Weinberg-Salam model for
the electroweak interactions with the SU(2) charge and
gauge fields set equal to zero. For this model, we used
Bogomol'nyi's method to explicitly prove the existence
and stability of the semilocal string solution. The model
can easily be generalized by using larger global symmetry
groups.

The cosmology of sernilocal strings might be very
different from that of ordinary U(1) gauge strings. A
peculiar feature of semilocal strings is that they can end
in a cloud of energy and the space between strings may be
filled with energy. For an isolated string, the energy ex-
pense in terminating a string is infinite. In the cosmologi-
cal context, we do not have an isolated string and the en-

ergy expense is large but finite. The network of strings
will evolve under the tension in the strings as well as the
gradient energy in the global field.

Finally, we have considered the possibility of semiloca1
magnetic monopoles. Had this possibility been realized
we may have had a natural solution to the monopole
overabundance problem since there would be energy
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filling the region between monopoles and this could
enhance the annihilation rate (as happens in the global
monopole case [6]). However, under some reasonable
conditions, we proved the negative result that semilocal
monopoles cannot be formed.

Note added in proof. It has been brought to our atten-
tion by Mark Hindmarsh that our ansatz can be general-
ized. He then finds that semilocal string solutions with

n =1 are stable for P&1, neutrally stable for P= 1, and
unstable for P) 1.
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