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The self-gravity of quantum fields is often considered to be a negligible perturbation upon a back-
ground spacetime and not of much physical interest. Its importance is determined by the ratio of the
mass of the field to the Planck mass, this ratio being very small for those fields that we are most familiar
in dealing with. However, it is conceivable that either in the very early Universe or even today a false-
vacuum decay could occur associated with a field of appreciable mass. The eA'ect of self-gravity upon
false-vacuum decay was initially studied within the "thin-wall" approximation by Coleman and De Luc-
cia. Their analysis involved the approximate solution of the coupled Euclideanized field and Einstein
equations with the assumption of O(4)-symmetric bubble nucleation. In this paper we consider the range
of validity of the "thin-wall" approximation by comparing the Coleman —De Luccia results with exact
numerical results for a quartic polynomial potential. We also extend the analysis into regimes for which
the "thin-wall" approximation is inapplicable. In the case of an initially de Sitter space decaying into
Minkowski space, we find a smooth transition between the Coleman —De Luccia mode of bubble forma-
tion and the Hawking-Moss transition, wherein the entire spacetime tunnels "at once" to the maximum
of the potential. In the case of the decay of an initially Minkowski space to an anti —de Sitter space, we

find that there is a "forbidden region" of vacuum potential parameters for which decay is not possible.
At energies far below the Planck scale, the boundary of this region is accurately described by the thin-
wall prediction obtained by Coleman and De Luccia. At energies near the Planck scale, however, the ac-
tual "forbidden region" is significantly smaller than predicted by the thin-wall approximation; thus, vac-
uurn decays are possible which appear to be forbidden by thin-wall calculations. In all cases, the in-

clusion of gravitational e6'ects tends to thicken the wall of the bubble.

I. INTRODUCTION

Vacuum phase transitions play an important role in the
theories of elementary-particle physics and cosmology.
These include the "standard-model" quark-hadron phase
transition and electroweak transition as well as more
speculative transitions associated with grand unified
theories (GUT's), supersymmetry and possible symmetry
breaking in quantum gravity. One of the most important
applications of such phase transitions is in the
inflationary models of the early Universe. Such models
are of interest as they possess an early de Sitter —like state
in which the Universe undergoes exponential growth.
InAation could solve several of the contemporary puzzles
of cosmology, e.g. , the horizon, fatness, and monopole
problems. However, it is obviously necessary for the
Universe to evolve out of this de Sitter state as we find
ourselves today living in a Universe with zero (or very
small) vacuum energy density. In several models of
infiation ("old" inflation, extended inflation), this evolu-
tion is believed to occur via a first-order phase transition
in various of the quantum fields existing within the
Universe. These fields provide a driving force for the ear-
ly de Sitter state by having a nonzero vacuum energy
density. However, during the phase transition the fields
tunnel to a state having zero vacuum energy density and
hence place the Universe into the Robertson-Walker state
that we observe today.

False-vacuum decay associated with a first-order phase
transition proceeds via nucleation of bubbles of true vac-

uum within the medium of false vacuum. These bubbles
then expand, converting the Universe to a new phase.
For first-order phase transitions in everyday matter, the
nucleating bubbles are created as a result of statistical
fluctuations within the medium. In zero-temperature
quantum field theory, however, such bubbles are created
as a result of quantum fluctuations. In the absence of
gravity one may calculate the false-vacuum decay rate
(i.e., the bubble nucleation rate per unit four volume) via
the solution of the Euclideanized field equations with the
appropriate boundary conditions. Such a solution gives
the field configuration (in Euclidean space) of a nucleat-
ing bubble of a true vacuum. The false-vacuum decay
rate per unit four-volume may then be expressed as
I = A exp( B), where B —is the difference between the
Euclidean action for the spacetime with the bubble and
the spacetime without the bubble; the coefTicient 3 typi-
cally has a magnitude given by the field mass to the
fourth power. Coleman [1] has developed an approxima-
tion scheme for determining such decay rates in the situa-
tion where the dN'erence between the energy density of
the true- and false-vacuum states is small. When this is
the case the nucleating bubbles are found to have a well-
defined core of a true vacuum, a thin wall in which the
field evolves rapidly from the true vacuum to false vacu-
um and an exterior of false vacuum (hence, the name

thin-wall" approximation).
As the vacuum phase transitions are taking place in a

cosmological setting where gravity plays an inherently
important role, we may ask whether the self-gravity of
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the quantum fields undergoing the phase transition will
have an effect on the transition rate. This question has
been addressed within the thin-wall approximation by
Coleman and De Luccia [2]. Their analysis involved the
approximate solution of the coupled Euclideanized field
and Einstein equations, and they specifically considered
O(4)-symmetric bubble nucleation for the decays from de
Sitter to Minkowski space and Minkowski to anti —de Sit-
ter space. They found that gravitational effects enhanced
the decay rate for the transition from de Sitter to Min-
kowski space, but impeded the transition from Min-
kowski to anti —de Sitter space. In fact, for the decay
from Minkowski to anti —de Sitter space, there was found
to be a forbidden region in parameter space where no
O(4)-symmetric decays could occur.

It may be argued that such gravitational effects are
generally negligible, as the importance of the self-gravity
of a quantum field is dictated by the ratio of the mass of
the field to the Planck mass. For example, the elec-
troweak mass scale of 10 GeV is well below the Planck
mass scale of 10' GeV and thus one would expect gravi-
ty to play an insignificant role in the electroweak phase
transition. However, spontaneous symmetry breaking,
vacuum phase transitions, and field masses near the
Planck mass are common features of current proposals in
grand unification, as well as in many quantum gravity
proposals, with or without unification. It is then conceiv-
able that either in the very early Universe or today a vac-
uum phase transition could occur associated with a field
of appreciable mass. It is therefore worthwhile to obtain
a better understanding of the effects of gravity upon such
processes.

In this paper we shall consider the range of validity of
the thin-wall approximation by comparing the results of
Coleman and De Luccia with exact numerical results.
The analysis will also be extended beyond those regimes
for which the thin-wall approximation is applicable in or-
der to gain a better understanding of the effects of gravity
in such decays. Similar comparisons have previously
been made for O(4) vacuum decay in the absence of gravi-
ty [3].

Our analysis shall be based upon bubble nucleation for
scalar fields with the quartic polynomial potential
U(P)= U, +m P rig +A,P, wh—ich we shall refer to
from now on as a P potential. The reason for choos-
ing such a potential is that it is the simplest polynomial
potential that contains two vacuum states where we may
independently vary the energy-density difference between
the two vacua and the field distance between the true-
and false-vacuum states. It is also the most arbitrary re-
normalizable tree-level potential.

The P potential is initially converted to a dimen-
sionless form and then reexpressed in terms of pararne-
ters that are more physical; the coupled Euclideanized
field and Einstein equations are also expressed in dimen-
sionless form. The analysis is specialized to the decay
from de Sitter to Minkowski space and Minkowski to
anti —de Sitter space, in a similar manner to that of Cole-
man and De Luccia [2]. The "thin-wall" results are eval-
uated for the P potential; this then allows for the sub-
sequent comparison with the exact numerical results.

We find that for the decay from de Sitter to Minkowski
space there is a continuous evolution from the
Coleman —de Luccia tunneling mode to the Hawking-
Moss [4] tunneling mode, as the mass of the field is in-
creased. The Hawking-Moss tunneling mode corre-
sponds to the entire universe tunneling, at an instant (i.e.,
along a spacelike surface), from the false-vacuum state to
the top of the potential barrier separating the true and
false vacua. During the subsequent evolution, the field
evolves classically from the top of the potential barrier to
the true-vacuum state.

For the decay from Minkowski to anti —de Sitter space,
we find a forbidden region in the parameter space
describing the potential, where no decays are possible, in
a similar manner to Coleman and De Luccia. For small
field masses the range of potential parameters corre-
sponding to the forbidden region is predicted very well by
the Coleman —De Luccia thin-wall approximation. How-
ever, as the field mass approaches the Planck mass, we
find the forbidden region to be smaller than that predict-
ed by the thin-wall approximation. Thus there are false-
vacuum decays which are possible, although they appear
to be prohibited according to the thin-wall approxima-
tion calculations.

II. FALSE-VACUUM DECAY WITH GRAVITY

It will be instructive to review the thin-wall approxi-
mation with the inclusion of gravity, as formulated by
Coleman and De Luccia [2], for the potential under con-
sideration. This will provide us with explicit results with
which we may compare the exact numerical results and
hence determine the range of validity of the thin-wall ap-
proximation.

Consider a self-interacting scalar field with a P po-
tential,

U =U, +m p —
imp +A/

with U„m, g, X~0 . U, shall be the value of the false-
vacuurn energy density, the false-vacuum state being lo-
cated at /=0 (with an appropriate choice of parameters).
Changing to the dimensionless variables g =P lm,
g = i)/m, and U = U/m gives

U= 0, +y' qy'+Xy4 . —

We reexpress this potential in terms of the more physi-
cal parameters g+, the value of the field at the true vacu-
um, and c, the dimensionless energy-density difference
between the true- and false-vacuum states. As we shall
specifically consider only decay from de Sitter to Min-
kowski space or decay from Minkowski to anti —de Sitter
space, then we have a constraint placed upon U„ the di-
rnensionless false-vacuum energy density. For the decay
from de Sitter to Minkowski space, U, =Z, and for the
decay from Minkowski to anti —de Sitter space, U, =O.
The potential is then

ele3 I4
U = [E]+g —2(28+ f+ )

~ + (3Z+ g+ )

The first term, in square brackets, is included if we are
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considering the decay from de Sitter to Minkowski space,
but excluded for decay from Minkowski to anti —de Sitter
space. Finally, we change variables one more time by
defining a scaled field o =f/f+, such that the false vacu-
um is located at o. =0 and the true vacuum is located at
o =1; we also introduce a parameter rII=Z/1t+. The po-
tential then takes the final form

U=[s]+[I7 —2(2ro+1)o +(3co+1)a ]g+ . (4)

0.200

Figure 1 shows this potential for the decay from de Sit-
ter to Minkowski space (with co=0.1 and g+ =1.0). The
equivalent potential for decay from Minkowski to
anti —de Sitter would be shifted vertically downward by
an amount c..

We next require the coupled Euclideanized field and
Einstein equations. The vacuum decay rate per unit
four-volume is given by I = /I exp( B), w—here B is the
difference between the Euclidean action for the spacetime
with the bubble and the Euclidean action for the space-
time without the bubble. For the decay from Minkowski
space to anti —de Sitter space, the initial spacetime
without the bubble (i.e., Minkowski space) has a vanish-
ing Euclidean action, and hence B is given simply by the
Euclidean action for the bubble. However, for the decay
from de Sitter space to Minkowski space, the initial emp-
ty spacetime (i.e., de Sitter space) does not have a vanish-
ing Euclidean action, and so it is necessary to evaluate a
subtraction term in order to obtain B. The solution to
the Euclideanized equations, when rotated back into the
Lorentzian sector, will also describe the late time evolu-
tion of the bubble.

In the absence of gravity it has been shown [5] that
O(4)-symmetric bubbles will have the smallest action and
hence be the dominant mode for decay. This result has
not been successfully extended to the situation where
gravity is present, but it is generally believed to still hold.
Thus we shall consider O(4)-symmetric bubble nucleation

in a similar manner to Coleman and De Luccia. The Eu-
clideanized spacetimes that we are considering, i.e., de
Sitter, Minkowski, and anti —de Sitter, are all O(4) sym-
metric, and so the appropriate line element for the Eu-
clideanized spacetime is given by

ds =dg +v(g) dQ (5)

where dQ is the line element of the unit three-sphere.
For (Euclideanized) de Sitter, Minkowski, and anti —de
Sitter space, the function v(g) has the values a. 'sin(ag),
g, and ir ' sinh(irg), respectively.

The Euclideanized scalar-field equation may be ex-
pressed as

g
—I /2g (g I/2gaPg )y

dU
a p (6)

where g is the determinant of the (Euclidean) metric. In
terms of the coordinates of the line element given in Eq.
(5) and knowing that for O(4) bubbles (t =(t(g), Eq. (6)
reduces to

where
2

T 1 dP —U

We again introduce dimensionless variables, g =m g,
p=mv, and make the additional substitution G =1/mz,
where mp is the Planck mass. With these variables, using
the expression in Eq. (4) for the potential, the Einstein
equation may be written

dP 3 dv dP dU
v dg dg dg

The stress-energy tensor for the scalar field acts as a
source for the gravitational field. Assuming minimal cou-
pling between the scalar and gravitational fields, the 6&&
component of Einstein's equation G &=8~GT

13
is

2
dv 8mG+

0.150- (p') =1+ —
~ ( ,'cr' [—[co]+—o. —2(2co+1)cr

mp

0.100-

0.050--

AAQ -—----------------------------0 QA~ %sf ~

—.050 I I I I I I

—.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20

+(3'+ 1)cr4] )p2$~~, (1())

where a priine indicates differentiation with respect to g.
The Euclidean scalar-field equation then becomes

3 I

o "+ o '=2cr —6(2 o+c1) +IT4(3 o+c1) o
P

The following boundary conditions are imposed upon
Eqs. (10) and (11):

p=O at /=0 (12)
FICx. 1. Quartic polynomial potential, for the decay from de

Sitter space to Minkowski space, with the scalar field defined
such that the false vacuum occurs at o =0 and the true vacuum
at o.=1. The dimensionless energy-density difference Z between
the true- and false-vacuum states takes the value of 0.1 in this
example.

for Eq. (10), and

rr'=0 at p=O, o =0 at g= oo (13)

for Eq. (11).
At this point we note a few invariances within the
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theory of O(4) vacuum decay with the P potential. In
the zero-gravity limit defined by mz ~ 00, the solution to
Eq. (10) reduces to p=g, and the solution to Eq. (11) de-
pends only upon the single parameter co. Thus the solu-
tion o(g) will be invariant under rescalings of s and g+
provided the rescaling is performed in such a way as to
keep co=flf+ constant. This may be thought of as a
consequence of only having one length scale in the theory
(that given by the mass of the field).

When gravity is introduced (i.e., m~ is set to a finite
value), the above symmetry is broken as we now have two
natural length scales within the theory. However, there
is still a similar but weaker symmetry within the theory.
The coupled solutions cr(g) and p(g) remain invariant un-
der the rescalings

gravity is included this picture still holds but the friction-
al coefficient is more complicated, now being given by
(3p'/p ).

The thin-wall approximation assumes that the field
remains near to the top of the hill of the inverted poten-
tial (close to o =1) until p becomes very large, thus sup-
posedly allowing the frictional coefficient to become arbi-
trarily small, as it is inversely proportional to p. Thus,
when the field does eventually role off the hill, its subse-
quent motion is unaffected by friction. In this case the
Euclideanized field equation may be written in an approx-
imate form, by dropping the frictional term, thus making
the equation more tractable.

When gravity is present the friction coefficient may be
written as

m ~a'"m,
'E~a

~a

(14)

(15)

(16)

3 I
1 8=3 + ( —'cr' —

[ [co]+cr —2(2'+ 1)o.
p p 3 top

1/2

where a is an arbitrary constant. In the zero-gravity limit
the m rescaling was unnecessary. The Euclidean action
for the nucleating bubble will also be found to scale under
these transformations:

+(3'+ 1)o J )g+

(21)

S = f d x g'~ g" B„QB P—+ U(P)+1

=2 fdic
1 dd
2 dg

3 2d v dv
Sn 6 dg2 dg

—v . . (19)

In determining the Euclidean action for the nucleating
bubble, we may use the fact that the scalar field will be a
solution to the coupled Euclideanized field and Einstein
equations [Eqs. (10) and (11)]. Using the field equations
to simplify Eq. (19), we find

S~ = 2~ f d g p—U . (20)

III. THIN-WALL ANALYSIS

SE~a 'SE .

The Euclidean action for the nucleating bubble has
contributions from both the scalar-field potential and ki-
netic terms together with the gravitational Ricci scalar
term:

Coleman and De Luccia claim that if p becomes large be-
fore the field rolls off the hill, the frictional coefficient
[Eq. (21)] is very small and may be neglected. This is ob-
viously true for the first term in Eq. (21), i.e., I/p . The
second part of the frictional term does not depend upon
p, however, its dependence being solely upon the shape of
the potential and the mass of the scalar field. In the situ-
ation where the mass of the scalar field is very small, this
second term will also be small and may be neglected in
accordance with the analysis of Coleman and De Luccia.
We shall see, however, that in the decay from Minkowski
to anti —de Sitter space this second term plays a key role
in determining the critical mass, after which there are no
more allowed decays. This suggests that the analysis of
Coleman and De Luccia may be inadequate for large
mass fields in the region of criticality.

The thin-wall approximation in the presence of gravity
requires some results from the approximation scheme in
the absence of gravity. It shall be necessary to associate a
degenerate potential Uo(o ) with U(cr ) in such a way that
Uo(0)= Uo(l)=0 and (dUO/do )(0)=(dUO/der)(1)=0.
While in general there is no unique way to construct such
a degenerate potential, if we accept the restriction of
dealing with at most a quartic polynomial, then there is a
unique degenerate potential, namely, that obtained from
Eq. (4) by setting co=0. We also subtract off the constant
term in the potential [s] if it is present. Thus

Uo=o. (1—cr )f+ . (22)
The thin-wall approximation as presented by Coleman

[1] makes use of the analogy between Eq. (11) and the
classical motion of a particle of unit mass moving in the
inverted potential —U, where o. corresponds to the
particle s position and g to time. In the absence of gravi-
ty there is a "frictional" term in the equation of motion
with the unusual frictional coefficient given by (3/g'), i.e.,
inversely proportional to the Euclidean time. When

The thin-wall approximation requires us to evaluate
the bubble wall action integral:

S, =p+ f do. (2UO)' (23)

The Euclidean action and radius of the nucleating bubble,
for the thin-wall approximation scheme in the absence of
gravity, are given by [1]
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27m'S4,
STw

2 3/6
(24)

and

3Si
(25)

For the P potential one finds

S, =P+ I [2cr (1 —o ) ]'~ do. = (26)

while the Euclidean action becomes

~2/2
STw

24

and the bubble radius is given by

1
Po= ~2

(27)

(28)

IV. DECAY FROM DE SITTER SPACE
TQ MINKOWSKI SPACE

In the presence of gravity the thin-wall results are
modified because the approximate solution of the coupled
Euclideanized field and Einstein equations are now re-
quired (for a complete derivation and explanation, see
Coleman and De Luccia [2]). Their results are summa-
rized here and evaluated for the P potential. During
the decay from de Sitter space to Minkowski space, the
nucleating bubble radius is given by

po

1+(po/2A)
(29)

where po is the bubble radius in the absence of gravity
[Eq. (25)] and A is the radius of curvature of the associat-
ed Euclideanized de Sitter space, which expressed in di-
mensionless form is given by

Thus, as the mass of the field is increased, where c. and

P+ are kept constant, the bubble radius decreases and the
decay rate increases (i.e., there is a decrease in 8). These
results are now compared with the exact numerical re-
sults in order to estimate the validity of the approxima-
tion scheme.

There is an important difference between the false-
vacuum decay from de Sitter to Minkowski space and
false-vacuum decays both in the absence of gravity and in
the decay from Minkowski to anti —de Sitter space. The
spacetime outside a nucleating bubble is that of the false
vacuum, and thus for the decay from de Sitter to Min-
kowski space the exterior spacetime is (Euclideanized) de
Sitter space. This spacetime is closed and has the topolo-
gy of a four-sphere. Thus there is a maximum value for g
within this spacetime which occurs at the "south pole" of
the four-sphere if the origin of coordinates /=0 is locat-
ed at the "north pole. " We may consider the nucleating
bubble, without any loss of generality, to be centered on
the north pole of this four-sphere. As a result, the
boundary condition [Eq. (13)] requiring o ~0 as g—+ ~ is
not valid for the decay of de Sitter space as this value of g
is never attained in the Euclideanized de Sitter space; we
therefore replace this boundary condition with the re-
quirement that at the south pole (i.e., where g takes its
maximum value) the field derivative cr' must vanish, for
the same reason that this quantity must vanish at the
north pole, namely, to prevent singular behavior in the
Euclideanized field equation.

Figure 2 shows the evolution of the numerically in-
tegrated bubble profile as the mass of the field is in-
creased, with the potential parameters E =0.5 and
l(+ =1.0. We observe that, as the mass increases, the nu-

cleating bubble profile flattens out and eventually reaches
an equilibrium state where a further increase in the mass

1.00

8am c2-

3mp
(30)

0.80—

0.60—

Bo

[ 1+(po/2A ) ]
(31)

For the P potential under consideration, the de Sit-
ter to Minkowski space formulas (29) and (31) become

The difference between the Euclidean action of the space-
time with and without the bubble (remembering that
there will be a nonzero subtraction term associated with
the empty de Sitter space) is

0.40—

0.20

0.00
0.00 0.20 0.60 0.80 1.00

and

mm g+p= 1+
&ZE 3m p'E

2 8

24m

(32)

(33)

FICx. 2. Bubble profiles associated with the decay from de
Sitter space to Minkowski space for several values of the field
mass. The potential parameters s and g+ are kept at the con-
stant values of 0.5 and 1.0, respectively. The masses associated
with the bubble profiles are (a) m =0.1, (b) m =0.2, (c) m =0.3,
and (d) m =0.4. All bubble profiles with m )0.4 are well de-
scribed by the Hawking-Moss mode„ i.e., cr takes the constant
value corresponding to the top of the inverted potential, —U.
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has no effect upon the profile. The final state is described
by the field having a constant value throughout the Eu-
clideanized spacetime; this constant value corresponds to
the field lying at the top of the potential barrier. This,
however, is precisely the Hawking-Moss [4] tunneling
mode. Thus, as the mass of the field is increased, the
Coleman —De Luccia tunneling mode evolves continuous-
ly into the Hawking-Moss tunneling mode.

The Hawking-Moss tunneling mode corresponds to the
entire universe tunneling "at once" from the false-
vacuum state to the top of the potential barrier. This
simply results in another de Sitter universe, though one
that is unstable to field perturbations, with a larger vacu-
um energy density. After such a transition has taken
place, quantum or other fluctuations push the field off the
top of the potential hill and the field then evolves classi-
cally to the true-vacuum state. The expression for B cor-
responding to the Hawking-Moss mode is fairly easy to
calculate, being just the volume of the respective Euclide-
anized de Sitter space multiplied by the associated energy
density, and is given by

3m4
BHM =

4 (s Eop) .
sm4

(34)

The smooth evolution of the bubble profile from an ap-
proximately thin-wall bubble to the spatially homogene-
ous Hawking-Moss mode is certainly not evident from
the thin-wall study of Coleman and De Luccia; the ex-
istence of such a transition, however, has been previously
studied by Jensen and Steinhardt [6,7]. It might be ar-
gued that with a=0. 5 the thin-wall approximation is not
valid anyway; however, a similar transition takes place

10

101
(a)

i I

', (c)

10

0 1

0 Pt

0.00 0.10 0.20 0.30 0.40

rri/m
P

0.50 0.60 0.70

FICx. 3. Di6'erence between the Euclidean action for the bub-
ble spacetime and the empty spacetime (B) for the decay from
de Sitter space to Minkowski space as a function of the field
mass m, where the potential parameters E and f+ are kept at
the constant values of 0.5 and 1.0, respectively. Curve (a) shows
the exact value of B obtained numerically, curve (b) shows BT~
corresponding to the thin-wall approximation, and curve (c)
shows BHM corresponding to the Hawking-Moss tunneling
mode. B,„„,=BHM for field masses above the "crossover"
point, this being the point where BT~ =BHM.

with values of c and m for which the thin-wall approxi-
mation is valid.

Though the transition from the Coleman —De Luccia
mode to the Hawking-Moss mode is continuous, there do
appear to be three distinct regimes associated with this
decay.

As the mass is initially increased from zero, the end
point for the bubble profile, i.e., o(g „„),remains very
close to o. =0; we may characterize these as "strong"
Coleman —De Luccia modes. Then, as the field mass con-
tinues to increase, a rapid transition occurs in which the
end point of the bubble profile evolves rapidly from o. =0
to 0 0 t p

where o.„ is the fiel d value corresponding to
the top of the potential barrier. Finally, we arrive at the
Hawking-Moss mode where the bubble profile takes the
constant value of o.„ throughout the spacetime. A fur-
ther increase in the field mass does not change the
characteristics of the nucleating bubble profile; i.e., the
nucleating bubble always appears via the Hawking-Moss
mode for larger field masses.

Figure 3 shows the difference between the Euclidean
action for the bubble spacetime and the empty spacetime
(i.e., B): (a) for the exact numerical bubble solutions, (b)
for the thin-wall approximation, and (c) for the
Hawking-Moss mode. The Hawking-Moss mode, for
small field masses, has a larger action than that of the
thin-wall approximation; however, as the field mass is in-
creased, there is a crossover point, beyond which the
Hawking-Moss action is smaller than the approximate
action calculated from the thin-wall formalism.

The behavior of the exact action, determined numeri-
cally, is quite striking. For small field masses the exact
action is qualitatively similar to the curve derived from
the thin-wall approximation, with a finite value at I =0
and a gradual decrease as the mass of the field is in-
creased (the two curves could be made quantitatively
more similar by choosing a smaller value of E). At the
point defined by BHM =BTw, the phase transition process
undergoes what may be described as a "crossover" in the
mode by which the phase transition proceeds; beyond
this point, Bexact BHM. This beliavior is quite remark-
able as the thin-wall approximation does not (and cannot)
even hint at this transition; thus the "crossover mass" at
which BHM =BTw provides an upper limit on the scalar-
field mass for which the thin-wall approximation has any
validity.

It is worth noting the relationship between the transi-
tion in B and the corresponding bubble profile evolution.
For this example a field mass m=0. 3 places B„„,in the
Hawking-Moss region; however, the bubble profile for
m =0.3 [Fig. 2, curve (c)] has not yet fully transformed
to the Hawking-Moss form. This may be explained by
the fact that the Hawking-Moss solution corresponds to
the field lying at an extremum of the potential; thus,
first-order variations of the field about this extremum re-
sult in higher-order variations in B (remembering that B
involves the integral of the field potential for the nucleat-
ing bubble throughout the spacetime). Hence the bubble
profile for m=0. 3 gives a value for B extremely close to
the Hawking-Moss value because its profile is only a
small variation away from the Hawking-Moss solution.
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V. DECAY FROM MINKOWSKI SPACE
TO ANTI-DE SITTER SPACE

Associate wit ed
'

h th decay from Minkowski space to
anti —de Sitter space, the thin-wall formulas for t e u-
ble radius and Euclidean action are

the mass of the field and the dimensionless field distance
between the two vacuum states constant, then a re uc-
tion in c. wi a so ring all 1 b

'
bout this singular behavior in B

and revent any subsequent vacuum decay.
The critical mass in this situation is given by

1 /2

Po

l —(po/2A)
(35)

1 3E
C mp (39)

and

Bo

[l —(po/2A) ]

(37)

and

2ys
B= 1—

24K

2 4 —2
rrm f+
3mp E,

(38)

Equation (38) implies that for the decay from Mm-
kowski to anti —de Sitter space the bubble radius and ac-
tion may ecomb ome infinite for some potentia s. In particu-

k d ~ constant and increase the mass
will beof the scalar field from zero, then a critical mass wi e

reached, at w ic poinh h
' t the action becomes infinite an

~ ~ ~

d t goes to zero; no bubble solutions wi exist
for greater field masses. Alternatively, if we keep o

With an initially empty Minkowski spacetime, the
di erence ed ft' between the Euclidean action for the spacetime
with and without the bubble reduces to simp y e

i.e. there is noclidean action for the bubble spacetirne; i.e.,
nonzero subtraction term.

For the P potential, Eqs. (35) and (36) become

2 4mm g+1—
&2Z 3m p'e

For most fields that we are familiar with, the dimen-
sionless quantities Z and g+ wil yp' y

'
1 t icall be of order uni-

ty, or, at most, a ewf orders of magnitude. Thus, from
~ ~ ~ ~

see that the associated critical mass wi be
close to the Planck mass and certainly well away rom

Coleman and De Luccia (see also Weinberg [8]) explain
this divergence of the Euclidean aetio

'
n in terms of the re-

t that the nucleating bubble solution have zeroquiremen a
~ ~ ' — e Sitterr . For the decay from Minkowski to anti —deenergy. or e

the ravitational corrections to the en gyer result inspace, e gr
the bubble having a larger radius than in the ze -g yzero- ravit
limit, ecause e', b the net gravitational contribution to the
energy is positive. eAt the critical mass the gravitationa
corrections resu t in elt

'
the bubble having an infinite radius,

tive volume energy density of the true vacuum can over-
come the positive gravitational corrections to result in a
bubble of zero total energy.

We shall now consider the exact numerical results to
see how they compare to the thin-wall approximation.

4 d 5 how the evolution of a nucleating
ithbubble pro e as efile as the mass of the field is increased, wi

fixed at '@=0.5 andthe otential parameters being fixed at 'E = . ane poe
+ =1.0; these obviously do not correspond ond to thin-wall

profiles. We note that as the mass of the field approaches
the critical value the starting point for the field [i.e.,

1.00 1.00

0.80— 0,80-

0.60— 0.60-

0.40- 0.40-

0.20— 0.20-

0.00
0.0 2.0 4.0 6.0 8.0 10.0

0.00
10 20 30 40 50 60

FIG. 4. Bubble profiles o(g) for the decay from Mmkowski
anti —de Sitter space for several values of the field mass.space to anti —de itter space

The potential parameters Z and g+ are ept a e c
f 0.5 and 1.0, respectively. The masses of theof the field for

the three curves are (a) m =0, (b) m =
The critical mass m, is approximately 0.860.865 for this choice of
potential parameters, and so curves (b) a (nd (c) show the changes
in the bubble profile as criticality is approached.

FIG. 5. Bubble profiles o.(p) for the decay from Minkowski
space to anti —e i er

' —d Sitter space. The potential and mass parame-
ters or t e reef h three curves are the same as for Fig. 4. e o. p

l 1 ti n has a marked difference to the o(g p) rofile evo-profile evo ution as a
a be ex lained in1

'
n as criticality is approached, which may e exp a'ution as cri

e uations, shown interms of the solution curves of the Einstein equa
'
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tr(p=0)] approaches a limiting value of 1.0. This may be
explained quite easily within the "rolling o6' the hill of
the inverted potential" analogy: As the mass of the field
is increased, then from Eq. (21) we see that the magnitude
of the frictional term is increased. Thus more energy is
required to reach the final point of o (p~ ae ) =0, and so
the field has to start from a higher point on the hill. If
the mass of the field becomes sufficiently large, then we
could expect the frictional term to be sufficient to prevent
the field from ever reaching o. =0 at any finite value of p.

In the absence of gravity the frictional term was in-
versely proportional to the Euclidean time, and so there
was always a value of p for which the frictional term was
small enough so that the field could "roll off the hill" and
reach o. =0. However, in the presence of gravity the fric-
tional term contains a piece which does not depend upon
p and is only a function of the field mass and shape of the
potential. Therefore, the thin-wall approximation stra-
tegy of waiting long enough in Euclidean time for the
friction to become negligible will not always work with
gravity present.

The bubble profiles o (p) undergo a dramatic evolution
as the mass of the field is increased; this may be explained
with reference to the solution curves p(g) for the Einstein
equation, shown in Fig. 6. For all decays from Min-
kowski space to anti —de Sitter space, there will be a po-
tential barrier which has a corresponding positive energy
density. Thus, when the bubble profile evolves through
this barrier, the spacetime will undergo a de Sitter —like
stage of evolution. This appears in the p(g) profiles as a
flattening out of the curves, and this phenomenon in-
creases in prominence as the mass of the field is in-
creased. Eventually, if the mass of the field is increased
sufficiently, there will be a point in the p(g) profile where
p'=0. This may be thought of as the bubble profile run-

ning into a de Sitter horizon (of course, in the Euclidean
signature space this is more accurately described as an
"equator"). The initial appearance of such a point in the
bubble profile defines the critical mass associated with the
decay from Minkowski to anti —de Sitter space.

Figure 7 shows the critical mass as a function of c, the
lower curve corresponding to the thin-wall approxirna-
tion critical line and the upper curve corresponding to
the exact critical line. For small c, which is the domain
in which one would expect the thin-wall approximation
to be accurate, the thin-wall approximation gives a re-
markably good prediction for the critical mass as is illus-
trated by the exact critical line being asymptotic to the
approximate critical line in this region. Beyond the
domain of validity of the thin-wall approximation, the ex-
act critical line diverges from the approximate critical
line, such that the exact critical mass always lies above
the approximate critical mass. Thus there are vacuum
decays which the thin-wall approximation would label as
forbidden, but which could actually occur.

Figure 8 shows the evolution of the ratio of BTw to
B,„„,as the mass for the field is increased, where the po-
tential parameter f+ is kept at 1.0 and E takes on the
values 0.1, 0.3, and 0.5 for the three curves (a), (b), and
(c), respectively. We observe that the thin-wall approxi-
mation initially underestimates 8 (and hence overesti-
mates the vacuum decay rate), though the agreement
with B,„„,improves as c. is decreased, as expected. As
the mass of the field is increased BT~ is found to diverge
before B,»«, this occurs because the critical mass for the
thin-wall approximation always lies below the exact criti-
cal mass.

10

3.0

2.0-
(b)

(c)

C)

0.0-Q

—1.0— 10
0 2 10 ' 10

—2.0
0.0 2.0 4.0 6.0 8.0 10.0

FIG. 6. Solution curves for the Einstein equation giving the
p(g} evolution for the three bubble profiles shown in Figs. 4 and
5. As criticality is approached, the p evolution reaches a "pla-
teau" which may be pictured as the bubble profile "running into
a de Sitter horizon" (a point where p'=0). The plateau corre-
sponds to a de Sitter phase of evolution and occurs when the
bubble profile runs through the potential barrier where the en-
ergy density is positive.

FIG. 7. Critical mass associated with the decay from Min-
kowski space to anti —de Sitter space, above which no O(4)-
symmetric decays are permitted. The lower curve shows the
critical mass line derived from the thin-wall approximation and
the upper curve shows the exact critical mass line obtained nu-
merically. In the thin-wall regime, corresponding to a small
value of 'R, the exact critical mass asymptotically approaches the
value given by the thin-wall approximation and there is good
agreement between the exact results and approximate results.
Away from the thin-wall regime, as 7 becomes larger, the exact
critical line deviates and lies above the approximate critical line.



3060 DAVID A. SAMUEL AND WILLIAM A. HISCOCK

2.00 VI. CONCLUSION

1.50--

I
~1.00 ——---

0.50--

9 shows the evolution of the ratio of the thin-Figure s ows e
for the samewall bubble radius to the exact bubble radius for

8 We define the bubble ra-set of parameters as in Fig. 8. We d
dius to be p(o;„;«»/2), where cr;„;„,& is the starting value

=Q. Th 1 tative behavior of the bubble ra-
tion ofolution is very similar to that of the evolution odius evo ution is ve

8 the divergence in the thin-wall radius again o
before the exact divergence as a resu. t olt of the thin-wall
critical mass lying below the exact critical mass.

2.00
(c)

1.50--

0.50--

0.00
0.00 0.10 0.20 0.30 0.40

m/m
P

0.50 0.60 0.70

FIG. 9. Evolution of ratio of the bubble "radius' computed
in the thin-wall approximation to the exact bbubble radius
[defined as p(o',»„,~/ ),2where cr;»„»~ . - is the starting value of o at
p=0] for the decay from Minkowski space to anti —de Sitter
s ace as the mass of the field is increased. The three curves
have different values of E given by (a c=
a=0.5; g+= . in a=1.0 '

all three cases. The qualitative ehavior
here is similar to that of the evolution of B, shown in ig.

I II I I

10+00 i I i I I

0.00 0.10 0.20

m/m
y

FIG. 8. Evolution of the ratio of BT~ to B for the decay
~ ~

as the mass offrom in owsM' k ki space to anti —de Sitter space,
e esofcthe field is increase . ed The three curves have different va ues o c

b (a) a=0. 1, (b) X=0.3, and (c) a=0.5; itj+= . in a
' '

ll underesti-ases. The thin-wall approximation initia. ythree cases. e
1 w the exact crit-s B. As the thin-wall critical mass hes be1ow emates . s e

ical mass, the thin-wall expression for B diverg p
'

r es rior to the
divergence in the exact value for B.

The exact numerical solutions to the coupled Euchde-
anized field and Einstein equations certainly throw more
light onto t e e ec o se-h 6' t f self-gravity upon false-vacuum de-
cay than is provided solely from the results of t e t in-
wall approximation. erTh re are also predictions of the
qualitative be avior ah th t are quite di6'erent from t e
hin-wall behavior, though these may be argued to ie

beyond the region of applicability of the approximation
scheme.

to MinkowskiFor the decay from de Sitter space to
space, we o serve ab transition from the Coleman —De
Luccia thin-wall tunneling mode to the Hawking- oss
tunneling mo e as ed the mass of the field is increase . This

thou h a continuous evolution, pre ominan y
lidean ac-occurs in the parameter range where the Euc i ean ac-

tions for the aw ing-
es are e ual. Fort in-wah' - ll approximation tunneling mo es are equa . or

n field mass, the exact tunneling mode appa given e ma
f th "mechanism" which corresponds o e pps to the a rox-avor t e mec
imate tunneling mo e wid th the smallest Euclidean action.

an —DeThus, for small field masses, where the Coleman — e
Luccia t in-wa rnh - all mode has a smaller Euclidean action

he Hawkin -Moss mode, the exact tunneling mo e
has the characteristics of the Coleman —De ucc'
For large field masses, where the Hawking-Moss tunnel-
ing mode has the smaller Euclidean action, the exact tun-

d has the Hawking-Moss characteristics. It
eman —De Luc-should be remembered that both the Coleman — e uc-

cia an aw ing-a H kin -Moss "modes" and actions are approxi-
mations to the exact solutions we have obtained numeri-

For the decay from Minkowski space to anti —de Sitter
space, the thin-wall approximation prediction of the ex-
istence of a region o or if "f bidden decays" in the potentia
parameter spacet space was found to be correct. For a fixe

ae for theshape o poten ia,f t* 1 there is a maximum mass sca e for
s occur. Theotential, beyond which no further decays occur. epotentia, eyon

thin-wall critical mass curve is found to e y
a proximation to e acp

' '
t th actual boundary of this forbidden

b nd the domain in which the thin-decay region, even eyon
wall approximation is applicable. When the thin-wa ap-
proximation o

'
n to the boundary deviates from t e exact
f the forbidden decay region, it is always sucboundary o e

ta eah t th approximate critical mass ies be ow e
' '

al mass. As a result, some decays which app ear tocritica mass. s a
1 a roximationbe forbidden according to the thin-wal app

may actually proceed.
or both the decays from de Sitter to Minkowski space

and from Minkowski to anti —de Sitter space, gravity is
h 6' t f "thickening" the bubble walls,

thus transforming bubbles which in the absence of gravi-
ty would be regar e asd d thin-walled to thick-walled bub-
bles in the presence of gravity.
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