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The construction of initial-data sets to be used in the simulation of black-hole collisions is stud-
ied in the context of the conformal-imaging formalism. An approach is described for evaluating a
formal, infinite-series solution of the momentum-constraint equation. This solution allows for the
construction of completely general three-dimensional configurations of two black holes with individ-
ually specifiable linear and angular momenta. Using this solution for the momentum constraint, the
Hamiltonian constraint is solved numerically in the restricted case of axisymmetric configurations.
Two codes for solving the Hamiltonian constraint are described, one based on bispherical coordi-
nates and the other on Cadez coordinates. The accuracies of the numerical solutions are gauged by
comparison with analytic results, Richardson extrapolation, and comparison of the results from the
two codes. Finally, the physical content of data sets representing two equal-sized holes with linear
or angular momenta is explored. The results show several expected physical effects including the

gravitational spin-spin interaction.

I. INTRODUCTION

The strong-field, fully relativistic two-body problem
remains one of the most important unsolved problems in
the field of general relativity. In addition to representing
what is arguably the most fundamental dynamical inter-
action in any theory of gravity, the two-body problem
is of great interest in the expanding search for gravita-
tional waves. While aspects of the two-body problem can
be studied through weak-field or perturbative techniques,
numerical techniques remain as the only avenue for study
of the most interesting, fully relativistic, strong-field sit-
uations. The numerical study of the two-body problem
is a complex, multifaceted endeavor. In this paper, I will
describe efforts directed at one aspect of the problem:
the generation of initial-data sets which can be used to
investigate the collision of two black holes.

To date, the numerical study of the collision of black
holes has been limited to evolutions which have started
from time-symmetric initial data where the holes start
out at rest from a finite separation [1-3]. The initial data
used to start these simulations were formulated by Mis-
ner [4] and are one of the few known analytic solutions
of the initial-value equations. Collisions resulting from
these initial data are, of course, head-on. While such a
collision will result in the emission of gravitational waves,
it is believed that non-head-on, spiraling collisions will
be more efficient sources of gravitational waves and will
certainly be more common. In order to simulate such col-
lisions, initial-data sets must be constructed which can
represent black holes with some initial linear (and angu-
lar) momenta.

A framework has been erected which is designed to
allow for the construction of initial-data sets containing
multiple black holes, each with individually specifiable
linear and angular momenta [5-9]. This approach, some-
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times called the conformal-imaging approach, is based on
the 3 + 1 decomposition of Einstein’s equations, York’s
conformal and transverse-traceless decompositions of the
constraint equations, and a method of imaging applica-
ble to tensors. The conformal-imaging method has been
used extensively to study initial-data sets for the case
of a single black hole with linear and angular momenta
[10-12]. The application of the method to the case of two
black holes was first attempted by Bowen et al. [13] and
Rauber [14], who were able to evaluate the formal solu-
tion of Kulkarni et al [9] for the momentum-constraint
equations in the context of a restricted set of configu-
rations. However, their attempts to find numerical so-
lutions to the Hamiltonian constraint were unsuccessful.
Thornburg [15], using a related approach, demonstrated
the feasibility of solving the Hamiltonian constraint for
initial-data sets containing two black holes.

In this paper, I will describe a completely gen-
eral approach for evaluating the formal solution of the
momentum-constraint equations of Kulkarni et al. [9]
for the case of two holes. This general approach incorpo-
rates a parametrization of the location and relative sizes
of black holes in the initial-data slice and allows for asso-
ciating completely arbitrary linear and angular momenta
with each hole. Further, I will describe the construction
of complete initial-data sets by numerically solving the
Hamiltonian constraint in the restricted domain of ax-
isymmetry. The resulting solutions will be completely
consistent with the conformal-imaging formalism. To
verify the accuracy of the numerical solutions, two sepa-
rate codes have been developed to solve the Hamiltonian
constraint. The first code relies on a discretization of the
computational domain based on bispherical coordinates.
The discretization in the second code is based on a nu-
merically generated coordinate system which is referred
to as Cade? coordinates. This coordinate system is espe-
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cially well adapted for investigating the collision of two
black holes and was used by Cadez [1] and later by Smarr
and Eppley [2, 3] in their investigations of black-hole col-
lisions. While especially well adapted to the two-body
problem, it has proven to be somewhat difficult to work
with. I will show, however, that the Cadez coordinate
system can be used successfully to generate accurate nu-
merical solutions of the Hamiltonian constraint equation.
The accuracy of solutions found by both codes has been
investigated using Richardson-extrapolation techniques
and the extrapolated solutions of both codes have been
compared to lend further support to the high accuracy
of the solutions.

Much of the physical content of these initial-data sets
cannot be specified in, but rather must be derived from,
the initial data. In light of this, the physical content of
the initial-data sets will be explored. Because the loca-
tions of all of the trapped surfaces which will be present
in these data sets have not been determined, the anal-
ysis of the physical content and the causal structure is
preliminary. A more complete analysis of the physical
and causal structure of these initial-data sets will be pre-
sented in a future paper [16].

In this work, I will begin with a brief review of the
conformal-imaging formalism for multiple black holes
with linear and angular momenta. Next, I will describe
the numerical evaluation of the formal solution of the
momentum-constraint equation. Using this solution, I
next explore approaches and techniques for solving the
Hamiltonian-constraint equation and describe the results
from two numerical codes for solving the Hamiltonian
constraint in the restricted domain of axisymmetry. I will
conclude with a preliminary investigation of the physical
content of the initial-data sets and a discussion of future
work.

II. THE CONFORMAL-IMAGING FORMALISM

The Arnowitt-Deser-Misner [17] (ADM) or 3 + 1 de-
composition of Einstein’s equations and York’s conformal
decomposition of the constraint equations [5] provide a
well-proven foundation for specifying initial-data sets for
a wide range of problems of astrophysical and cosmolog-
ical interest. The vacuum Hamiltonian and momentum
constraints can be expressed, respectively, as

8V — YR — §¢5K2 + ¢ TA; AT =0 (1)
9
and
B S
D; AV — Ewwnj K =0. (2)

The physical metric v;; of the spacelike initial-data hy-
persurface has been conformally decomposed to v;; =
1/)4‘71']', where 1 is a strictly positive conformal factor and
%i; is the conformal background metric. The extrinsic
curvature K;;, describing the embedding of the initial-
data hypersurface in the full space-time, has also been
decomposed as K;; = T/)_ZAZ'J' + é“ﬁj K, where K is the
trace of the extrinsic curvature and /i,-j is the trace-free
conformal background extrinsic curvature. Finally, R is
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the Ricci scalar, D; is the covariant derivative, and V2
is the scalar Laplacian, all compatible with the confor-
mal background metric. Note that all quantities with
an overbar exist in the conformal background space and
are related to similar quantities (without overbars) which
exist in the physical space.

To simplify the task of solving these equations, the fol-
lowing choices are made. First, the initial-data hypersur-
face is taken to be maximally embedded in the space-time
so that K = 0. Second, the initial-data hypersurface is
taken to be conformally flat so that %;; = f;;, a flat met-
ric. This choice fixes the dynamical degrees of freedom
in the metric on the initial hypersurface and simplifies
both the Hamiltonian and momentum constraints. With
these assumptions, the initial-value equations reduce to
the simple form

_ 1 [
Vglj) = —§¢_7AijA” (3)

and

D;A¥ = 0. (4)

Note that D; and V? are now the familiar flat-space co-
variant derivative and scalar Laplacian.

The final assumptions of the conformal-imaging ap-
proach are concerned with fixing the topology of the
initial-data hypersurface. Recall that the topology of
space-time is not determined by Einstein’s equations and
so must be given. The first assumption is that the hy-
persurface be asymptotically flat. This is a natural as-
sumption as we are interested in isolated black-hole sys-
tems. The final assumption and its consequences lie at
the heart of the conformal-imaging formalism and are
not so straightforward. Because we wish to model black
holes in a vacuum, and thus have no sources to support
a nontrivial, conformally flat gravitational field, we are
forced to choose an initial-data hypersurface with a non-
trivial topology. As is familiar from a ¢ = const slice
of the Schwarzschild geometry in isotropic coordinates,
the initial-data hypersurface for a single black hole con-
sists of two asymptotically flat “sheets” connected by a
throat or Einstein-Rosen bridge [18]. There is no unique
generalization of this topology for the case of multiple
black holes, but there are two basic generalizations [19].
First, one can consider N black holes in one “universe,”
or sheet, to be connected through a throat to its own
unique asymptotically flat sheet. This produces a mani-
fold with N +1 sheets. The second basic generalization is
to have all N holes in one universe connected via throats
to the same second asymptotically flat sheet. This pro-
duces a two-sheeted manifold. A hybrid of these two
general topologies is, of course, possible in the case of
three or more holes. In the conformal-imaging formal-
ism the two-sheeted manifold structure is chosen along
with the additional demand that the two sheets be re-
lated by an isometry so that the physical fields in the
two sheets are “identical” [4, 9, 19]. This two-sheeted
structure, along with the identification of the two sheets,
is the most faithful generalization of the Schwarzschild
geometry to the case of multiple holes. To see this, it is
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necessary to examine the form of the isometry condition.

Following Kulkarni et al. [9], let Ji(z) denote a co-
ordinate map which identifies points in the two sheets
through the ath throat. The demand that the two sheets
be isometric then forces certain conditions on the physi-
cal fields in the hypersurface. Most important at present
are the conditions placed on the physical metric and ex-
trinsic curvature. These conditions are

%5 (2) = (Jo )i (Ja)j Tke(Ja(2)) (5)

and
Kij(z) = £(Ja)f (Ja) Kie(Ja(z)). (6)

Here, (Ja)j» = 8J% /8z7 is the Jacobian of the ath coor-
dinate map.

Following Misner [4], Kulkarni et al. [9] take the
coordinate maps to be defined by inversion through a
sphere. This is the same isometry condition obeyed by
the Schwarzschild geometry (in isotropic coordinates),
and it is in this sense that the present choice of topol-
ogy is the most direct generalization of the Schwarzschild
geometry. In terms of Cartesian coordinates, the coordi-
nate maps can be expressed as

. a2 . .
Ji(e) = (r—a> ni, + Ci, (7)

where r, = |zt = C|, n{, = (z' — C?)/r,, and a4 and C?,
are, respectively, the radius and center of the ath throat
in the flat background space.

In terms of this explicit form for the inversion maps,
the following conditions are imposed on the conformal
factor and background extrinsic curvature:

P(z) = No o 9p(z)
:'-E'/’(Ja(x)) (8)

and

Aij(z) =RE o Aij(z)

2
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These conditions are completely compatible with the con-
straint equations. More precisely, if the conformal factor
and background extrinsic curvature satisfy these condi-
tions [(8) and (9)] (they are said to be inversion symmet-
ric if they do) and if they satisfy the constraint equations
(3) and (4) in one of the sheets, then they are guaranteed
to satisfy the constraints in the second sheet.

III. THE MOMENTUM CONSTRAINT

Solving the momentum constraint is the first step in
constructing inversion-symmetric initial-data sets. Since
the initial hypersurface is maximally embedded in the
space-time, the momentum-constraint equation decou-
ples from the conformal factor. This is one of the prime
strengths of the conformal decomposition of the con-
straints and can be exploited in certain cases to find

analytic solutions for the background extrinsic curva-
ture. Further, because the initial data are constructed
to be conformally and asymptotically flat, one can de-
termine, without solving the Hamiltonian constraint, the
total physical linear momentum

; 1
% AU d?.
P= o f 5; (10)
and total physical angular momentum content

Si = 681% io .‘E]AkldQSg (11)
of the resulting initial data [7]. Note that these integrals
are in terms of Cartesian coordinates.

In the context of the conformal-imaging formalism, the
construction of initial-data sets containing black holes
with linear and angular momenta has been greatly facil-
itated by a set of analytic, inversion-symmetric solutions
of the momentum constraint found by Bowen and York
(7 ] for the case of a single hole. There are two solutions
A which carry linear momentum P;:

A= ﬁ [Pinj + Pjni — (fij — ninj) P*n;]

3 2
F 5q [Pinj + Pyni+ (fij — 5ninj)Pony] .

(12)

a is the radius of the throat of the hole in the conformal
background space, r is the radial distance from the ori-
gin, and n’ is the unit normal of a sphere. The solution
Afj satisfies isometry condition (9) with the plus sign,
and /i;'j satisfies isometry condition (9) with the minus
sign. There is also a solution /ifj which carries angular
momentum S;:

- 3
Afj = ﬁ(ekaStnknj +ckﬂSln’°n,~). (13)

This solution satisfies isometry condition (9) with the mi-
nus sign. (There is no one-hole solution carrying angular
momentum which satisfies the isometry condition with a
plus sign.) Solutions of the Hamiltonian constraint using
(12) and (13) have been extensively explored by many
researchers [10-12].

The problem of constructing a multihole, inversion-
symmetric solution of the momentum constraint has been
addressed by Kulkarni et al. [9]. The approach is cen-
tered on the fact that the momentum constraint (4) is
linear. Since this is the case, a solution representing N

black holes, each with linear and angular momenta, can
be obtained from (12) and (13) as

N
- 1
Aij =3 (2— [Peng + Pyng = (fij — nind) Plng]
a=1

3(61“550 an] +cngS nf ng ) (14)

Note that the second term in (12) has been omitted here.
The N black holes are given individual linear and angular
momenta P} and S in the sense that if the holes are
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“sufficiently far apart,” they will have such momenta as
measured by (10) and (11). If the holes are close together,
then all that can be measured is the total linear and
angular momenta of the system.

While (14) represents a multihole solution to the mo-
mentum constraint, it does not satisfy isometry condition
(9). Including the omitted second term in (12) within
(14) does not change this. Even though (14) is not inver-
sion symmetric, Kulkarni et al. [9] have shown how to
take such a non-inversion-symmetric extrinsic curvature
and make it inversion symmetric through a method of
images applicable to tensors. When there is more than
one hole, this procedure results in an infinite number of
imaging terms being added to the “base” extrinsic cur-
vature.

Consider the operator RE for imaging through the ath
hole defined in (9). As Kulkarni et al. [9] have shown,
this operator is its own inverse, R¥ o RE = 1. Also, if
this operator acts upon a symmetric, second-rank, diver-
genceless tensor, the result is a symmetric, second-rank,
divergenceless tensor. Now consider the operator

RE=1+4) (ﬁn;) : (15)

{a;} \i=1

The label «; takes on values of 1,..., N. The sum is over
all unique sequences {a;} of length m, where a sequence
is unique only if a; # a;41. For any sequence, {a;}, one
takes a product of “image” operators corresponding to
that sequence. For example, if N = 2, then

RE=14+RE+REoRF+RYoRFoRY 4+
+RE4REORY + REOREORE+---.  (16)

It is easy to verify that RY o R* = R* for all a.
Thus, if (15) acts on any arbitrary, symmetric, trace-
free, divergenceless tensor, the result will be an inversion-
symmetric, symmetric, trace-free, divergenceless tensor.

The formal approach for obtaining an inversion-
symmetric solution to the momentum constraint (4)
is now obvious. Let /iij represent. an appropriately
weighted sum of single-hole solutions to the momen-
tum constraint. The inversion-symmetric solution is then
given by

/-L-:Riofi,j‘. 17
J J

Kulkarni [20] has shown that for any reasonable choice
for fiij, the infinite series converges if the holes are far
enough apart. In particular, if there are just two holes,
then the infinite series converges absolutely, provided
that the inversion surfaces do not overlap.

If we wish for P. and S! to represent the physical
linear and angular momenta of the holes, then the ap-
propriate form for A;; is

A =

N

N

1 o o
S (( % (Prng + Beng = (s ) Phn]
a=1 a

1
+ﬁ-(6ki352nﬁn§’ + exjeSEnkng ) (18)

[e4
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Note that (18) differs from (14) by a factor of 1 in the
angular momentum terms. This factor is included be-
cause (13) is its own image term. As seen from (12),
the self-image term of a linear momentum term behaves
asymptotically as O(r~%) and carries no linear or an-
gular momenta. A tedious, explicit calculation shows
that all other “general”-image terms have a leading be-
havior of O(r=%) and again carry no linear or angular
momenta. Thus, we find that the total physical lin-
ear momentum contained in the initial-data slice is sim-
ply >, P!, and the total physical angular momentum
is given by >~ S!+(orbital angular momentum terms)
arising from the linear momenta of the holes.

In order to find solutions to the Hamiltonian con-
straint and thus construct complete initial-data sets, it
is necessary to move past the formalism described above
and find a concrete method for computing the inversion-
symmetric extrinsic curvature. This problem was first
investigated by Bowen et al. [13] for the case of axisym-
metric spinning holes where the holes are of equal size
and have equal magnitude momenta on each hole. They
were able to find an analytic expression for each term
in the infinite series for any number of holes. Unfortu-
nately, if their approach is expanded to include linear mo-
mentum in the axisymmetric case or if nonaxisymmetric
configurations are attempted, certain recursive relation-
ships are lost and the approach becomes intractable. The
apparent difficulty in evaluating an inversion-symmetric
solution to the momentum constraint for multiple holes
has been considered a major hindrance to the use of the
conformal-imaging approach.

Fortunately, a simple solution exists if there is no need
for a full analytic expression for the solution of the mo-
mentum constraint [21]. If only a numerical value for
the components of A;; is needed, then the infinite-series
solution of (17) can be rewritten in terms of a small set
of recursively defined quantities. In this paper, we are
specifically interested in the case of two holes. In this
case, (17) can be rewritten as

Aij(z) = R* o Ayj(2)
= Ajj(z)

+ D (D) [FP(MD)E (Are)p) (M)}

n=1
+ FR(MEP)F(Are)oz)(M3)5].
(19)

The definitions of the recursively defined quantities z7,
z3, (MpP)], (Mg)!, FP, and F} are given in Appendix A.
What should be noted is that the evaluation of the nth
term in the series involves only the value of the six recur-
sively defined quantities of the (n — 1)th term and, fur-
ther, involves only simple arithmetic operations so that it
is computationally inexpensive to evaluate (compared to
the evaluation of a given term via the approach of Bowen
et al. [13)]).

The method described above and detailed in Ap-
pendix A allows for the construction of completely gen-
eral, three-dimensional, inversion-symmetric solutions of
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the momentum-constraint equation. The two holes can
be assigned any desired linear or angular momenta and
can, for example, represent two holes in a bound or-
bit which will lead to a spiraling coalescence of black
holes. All that remains in the construction of complete
inversion-symmetric initial-data sets is to find solutions
of the Hamiltonian constraint. This problem will be con-
sidered next.

IV. THE HAMILTONIAN CONSTRAINT

The final step in the construction of initial-data sets
via the conformal-imaging approach is the solution of the
Hamiltonian constraint (3). As described in Sec. II, the
isometry relating the two sheets of the initial-data hyper-
surface allows that a solution need be found in only one
of the sheets. In the background space, the domain of a
sheet is the region of the Euclidean three-space exterior
to each of the throats. If proper boundary conditions
can be posed on these throats and at infinity, then the
Hamiltonian constraint can be posed as a quasilinear, el-
liptic boundary-value problem. Bowen and York [7] have
derived such boundary conditions, and these will be de-
scribed below. I will also discuss a general asymptotic ex-
pansion for solutions to the Hamiltonian constraint when
the inversion-symmetric extrinsic curvature has the form
given by (17) and (18).

In order for a solution of the Hamiltonian constraint to
be inversion symmetric, it must satisfy isometry condi-
tion (8) for every hole in the system. This set of isometry
conditions defines boundary conditions which, when im-
posed at the throats, guarantee that a solution obeys the
isometry conditions. These conditions

- v
¢ D; =
naDiv 27

(20)

Go Qo

are derived directly from isometry condition (8) by con-
tracting the gradient of this equation with the unit nor-
mal to the surface and using the fact that the inversion
surface is a fixed-point set of the isometry. This for-

N

L

1
¢=1+-2'(

r
=1

mulation of the boundary conditions reduces directly to
that derived by Bowen and York [7] for a single hole
and by Kulkarni et al. [9] for the case of multiple holes.
The boundary condition at infinity follows directly from
asymptotic and conformal flatness:

P —1 asr — oco. (21)

In practice, infinity is often not part of the domain of
solution for the conformal factor when numerical solu-
tions are found. If this is the case, then an approximate
boundary condition must be used at large distances from
the holes. York and Piran [10] have proposed and used
an approximate boundary condition based on an asymp-
totic expansion of the conformal factor. This boundary
condition was truncated at monopole order because, in
general, the dipole term in the expansion of the confor-
mal factor is not well defined. However, if the extrinsic
curvature term in the Hamiltonian constraint takes the
form given by (17) and (18), then the expansion can be
extended at least to dipole order [21].

Following Bowen et al. [13], consider the Hamiltonian
constraint written in terms of a “Newtonian” potential

@ =2(1 —):
_ 1 -
Vi = Z¢-7A,-,- AY = Ampeg, (22)

where pegr is defined as an effective energy-density source.
It is the falloff behavior of this source which will deter-
mine the properties of any multipole expansion of ®.
Asymptotic flatness requires that peg = O(r~*), and
so the series expansion is always well defined through
monopole order. An asymptotic expansion of the back-
ground extrinsic curvature given in (17) and (18) shows
that if there is a nonzero net linear momentum for the
configuration, then the effective energy density will in
fact fall off as O(r~*). In spite of this, it is possible to
extend the asymptotic expansion to include the dipole
term by adding a correction to the multipole expansion
which will cancel the leading-order terms in the effective
energy density. The resulting asymptotic expansion, ex-
pressed in terms of the conformal factor, is

din' 9 Y & pi o i ] -

where n’ is the unit normal to a sphere centered at » = 0. E and d; are the usual monopole and dipole moments of

the energy distribution given by the integrals
1 _ _
E= ——f Did?*5;
2r Joo
and

1 . R
di =~ }i[xmw + (1 - ¥)8]1d?5;.

(24)

(25)

Note that the integral for the dipole moment is in terms of Cartesian components. The standard integrals for these
multipole moments hold and, in particular, the dipole order is well defined because the correction term contributes

nothing to the dipole moment.

A boundary condition based on (23) can be obtained by taking a radial derivative of this equation and then
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eliminating the monopole term. The result is

FS

o _1-y 1 (. . 9% o ariph. 1. 3
= — —2r3(d,n—16;¥(13 Py —2PfniPfnl ) ) +20(7?). (26)

The term in large parentheses is the extension to the
boundary condition of York and Piran [10]. This addition
is an improvement if it is either impossible or inconve-
nient to use a center-of-energy and center-of-momentum
coordinate system. The presence of the dipole moment
in (26) means that this boundary condition must be im-
posed iteratively in numerical schemes. However, be-
cause the dipole term occurs at one order in r below the
dominant term, it will constitute only a small correction
and the iterative scheme will converge.

Before restricting attention to the case of two holes, it
should be mentioned that an exact, inversion-symmetric
solution to the Hamiltonian constraint exists. In the
case of time symmetry (K;; = 0), the Hamiltonian con-
straint is linear, and Misner [4] has constructed a for-
mal inversion-symmetric solution for the case of N holes.
This solution can be numerically evaluated and is used
as a test case in evaluating numerical solution schemes.
Appendix B describes a method for evaluating the series
for the case of two holes with arbitrary relative sizes and
separations.

A general configuration of the two holes is described
by three quantities: the radii of each hole a; and a3, and
the separation of the centers of the two holes |C{ — C}|.
It will be convenient to work in terms of dimensionless
quantities, and so I will choose the radius of the first
hole to set the length scale of the problem. A general
configuration is then parametrized by two quantities:

ax

a=— (27)

az
and

g = it 1} (28)

a,

To proceed with a numerical investigation of solutions
to the Hamiltonian constraint, an appropriate coordinate
system must be chosen. In order to impose the inversion-
symmetry boundary conditions, it is desirable that a co-
ordinate system have constant coordinate surfaces which
coincide with the throats. Bispherical coordinates are a
natural choice to satisfy this requirement and prove to be
an excellent choice for solving for the initial data because
the coordinate system includes spatial infinity in a finite
coordinate space. This allows the boundary condition for
asymptotic flatness to be imposed as a Dirichlet bound-
ary condition. Unfortunately, the bispherical coordinate
system becomes very distorted at large distances from
the holes and this behavior makes them ill suited for use
in an evolution of the initial data.

Considering the eventual evolution of these initial-data
sets, it would be desirable for the coordinate system to
approach spherical coordinates at large distances from
the holes. This behavior will facilitate the outward prop-

[
agation of gravitational waves on the grid and ease the
task of formulating outer boundary conditions. A coor-
dinate system with this behavior and which has constant
coordinate surfaces coincident with the throats can be
constructed numerically using a complex-plane transfor-
mation and was first used by Cadez [1] in his early investi-
gations into black-hole collisions. The definition of these
coordinates is given in Appendix C. The requirement
of constant coordinate surfaces surrounding the throats
both individually and collectively necessitates the pres-
ence of a coordinate singularity in the region between the
two holes. This fact complicates the use of these coordi-
nates but the difficulties can be handled.

In the next two sections I will describe two approaches
for solving the Hamiltonian constraint, one based on bi-
spherical coordinates and one based on Cadez coordi-
nates. The bispherical scheme will be examined first be-
cause the coordinate system is well behaved and is robust
in the configurations it can handle, aiding in the testing of
numerical results. Solutions from the bispherical scheme
can then be used to test the accuracy of solutions to the
Cade? scheme.

V. THE BISPHERICAL SCHEME

Using cylindrical coordinates as a starting point, a two-
hole configuration can be oriented so that the centers of
both holes lie on the z axis. The coordinate transforma-
tions to bispherical coordinates are then

_ Csiné
P= coshn — cos&’ (29)
;= Csinhy (30)

coshn — cosé

C is a dimensionful constant which sets the scale of the
coordinates and is chosen as C = a; sinh 173"‘ This choice
fixes the n = n(')* coordinate surface to be coincident with
the first hole. The coordinate surface defined as coinci-
dent with the second hole is labeled 7)0 For given values
of the configuration a and g defined in (27) and (28), n&
take values of

1
+ = l X‘ sy 2 — 4

o n 9 + D) X (31)
and

ng = —arcsinh(a sinh nf), (32)
where

1 2 1
x =B +ﬂ2<1+;>_;§(1+ﬁ>‘ (33)

The background metric takes the form
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a? sinh? ng

2 T ————eeeeere
ds” = (coshn — cos £)?

(dn? + d€? + sin® £d¢?), (34)

and the domain in which the Hamiltonian constraint
must be solved is g < 7 < nf, 0 < € < 7, and
0<¢<2m.

If the elements of the boundary-value problem are ex-
pressed in terms of bispherical coordinates, the Laplacian
takes the form
(coshn — cos €)3

a? sinh? n

2 )
On \ coshn — cos& Iy

1 2( sin £ _(_91/)_>
+sinf 0€ \ coshn — cos& O

1 (coshn — cos{)zg_zi/)_
sin? ¢ o2’

Vi =

" (35)

a?sinh? nF

The boundary conditions (20) on the two inversion sur-
faces take the form
hn — 0
(_M_I/} " 1/:> —0
n=ny

sinh 7 on 2 (36)

Finally, asymptotic flatness is imposed by demanding the
Dirichlet condition

Yl(n=0,e=0y =1 for all ¢. (37)

The numerical approach used to solve the Hamilto-
nian constraint is that of finite differencing. In order to
reduce the computational size of the problem, I will con-
sider only axisymmetric configurations. This restriction
means that the linear and angular momentum vectors for
the two holes must be parallel to the line connecting the
centers of the two holes. The method used to evaluate
the extrinsic curvature for axisymmetric configurations
is given in detail in Appendix A.

The restriction to axisymmetry introduces a new
boundary condition which is imposed on the £ = 0 and
& = m boundaries (except at n = £ = 0). This condition
is

3

=0.
5 oo (38)

This boundary condition can be used with L’Hopital’s
rule to define an appropriate limiting form for the Lapla-
cian on the axis of symmetry:

lim 1 _?_ ( siné 9y
£¢—0,7 sin& O¢ \ coshn — cos& D€

_ 99 1 9%
- 265 (coshn—cos§ 85) - (39)

The discretization of the computational domain is
not straightforward because it is necessary to impose a
Dirichlet boundary condition at “infinity.” In order to
ensure that 7 = £ = 0 is included in the discrete domain,
I choose 7 to be a quadratic function of a new coordinate

s and uniformly discretize s:

m = n(si) = fxs?+gxsi,

si=ixhy,, i=-8,...,0,...,8t,
1

hszm, (40)
+ —_

— (St 4+ 85T Mo

f= (8t +s )(s++s—>’

_STng Stmg

= s S

The integers St and S~ give the number of discrete
points sampled above and below 7 = 0 and must be cho-
sen so that 7 is a monotonically increasing function of s
for ny <71 < nf. The discretization of £ is trivial and is
given by

T
7
(41)

where j=0,...,7 and he=

& = J*he,

The Hamiltonian constraint and boundary conditions
are differenced using vertex-centered, second-order, con-
servative finite differencing. The nonlinear difference
equations are solved by Newton iterations on the lin-
earized equations, and the linearized equations are solved
by a “black-box” multigrid algorithm based on an ap-
proach developed by Dendy [22].

Given a solution, various quantities describing the
physical content of the initial-data slice can be computed.
The total energy content (ADM energy [17]) and dipole
moment of the initial slice can be computed from the
integrals (24) and (25). A more convenient form for eval-
uating these integrals numerically is obtained by using
Gauss’ law to transform each into the sum of a volume
integral over the region exterior to the throats plus two
surface integrals over the throats [7]. Two other quanti-
ties of interest are the physical surface area of the throats
and the proper separation of the throats. The physical
surface area for each throat is computed from

Aps = f $*d?S. (42)
r=aa
The proper separation of the two holes is given by an
integral of the physical metric along the line connecting
the two holes. In terms of bispherical coordinates, this is

given by
+ 2
"0 _Yle=n)

Lzalsinhng'/ ————dn.
ny coshn+1

(43)

There are two useful tests which can be performed to
check the validity and accuracy of the code’s solutions.
The first test makes use of Misner’s analytic solution in
the case of time symmetry. The code has been run for
a=1and 8 =3,4,...,12 with grid resolutions of (80 x
80), (160 x 160), and (320 x 320) for each configuration.
Using results from the three solutions, physical quantities
computed on the slice can be Richardson extrapolated
to the continuum limit and compared with the values
from Misner’s analytic solution. In the case of the total
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TABLE L.
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[

Total energy E/a; and masses M*/a; for two holes which are very far apart with

one hole much larger than the other and having linear momentum P, compared with the total
energy F/a and mass M/a of a single hole with the same momentum. The extrinsic curvatures
obey the isometry condition with the plus sign. (o = 20,8 = 50.)

Pla; E/a, M*/a, M~ /a; (E-M7)/ay E/a M/a
0.0 2.102 2.000 0.104 1.998 2.000 2.000
1.0 2.448 2.112 0.104 2.344 2.347 2.113
2.5 3.689 2.469 0.107 3.582 3.589 2.470
5.0 6.235 3.066 0.112 6.123 6.132 3.069
7.5 8.926 3.586 0.116 8.810 8.815 3.589
10.0 11.67 4.045 0.121 11.55 11.54 4.049
12.5 14.43 4.458 0.126 14.30 14.29 4.463
15.0 17.22 4.838 0.130 17.09 17.04 4.843
17.5 20.01 5.190 0.134 19.88 19.81 5.195

ADM energy of the slice, the relative error between the
analytic and the Richardson-extrapolated values ranged
from 0.003% at B = 3 t0 0.01% at 8 = 12. Similar results
were found for o # 1.

This set of tests, unfortunately, only examines the
code in the time-symmetric regime where the Hamilto-
nian constraint is linear. It does not test the nonlinear
aspects of the constraint solver, the computation of the
extrinsic curvature, or the volume integrals for £ and d;.
While there are no known analytic solutions to the full,
nonlinear problem for multiple holes, many researchers
have computed accurate numerical solutions for the case
of a single, inversion-symmetric hole. By letting « and
B be very large, the resulting two-hole configuration is
essentially that of one hole perturbed by a small, distant
hole. If the two holes are far enough apart, then the
binding energy is negligible compared to the total en-
ergy. Subtracting the mass of the small, perturbing hole
M~ /a; from the total energy F/ai gives an energy for
the remaining hole which has linear or angular momen-
tum. Table I compares the results from one-hole solutions
against solutions of analogous configurations of the two-
hole code in the case that the hole has linear momentum.
The effective scaled energy (EF — M ~)/a, associated with
the large hole in the bispherical code should be compared
with the scaled energy E/a from the one-hole computa-
tions. The scaled mass of the large hole M*/a; should
be compared to the scaled mass M/a from the one-hole
computations. Though all cases are not displayed in tab-
ular form, configurations in which the hole had angular
momentum and where the hole had linear momentum
generated from an extrinsic curvature satisfying isome-
try condition (9) with both signs were explored. In all
cases, the relative error between results from the one-
and two-hole codes was less than 0.5%.

V1. THE CADEZ SCHEME

The second scheme for solving the Hamiltonian con-
straint is based upon the use of Cadez coordinates. As
mentioned before, the Cadez coordinate system is con-
structed numerically and is described in Appendix C.
The two Cadei coordinates 7 and ¢ are based in cylin-
drical coordinates. 7(p, z) is a radial-like coordinate and

&(p, z) 1s an angular coordinate. The coordinate system
is logically composed of three regions (see Fig. 1):

+
region 1= { g <S£ Z<§ s s (44a)
—_— — 538
region 2= { 2: <S£n<<7:7” (44b)
region 3= { g’ <S£77 <<7r<?o, (44c¢)

Region 1 surrounds the first hole out to the singular point
at (ns,&s). Region 2 surrounds the second hole out to the
singular point, and region 3 surrounds both holes outside
of the singular point.

The background metric takes the form

2
ds? = ay

= '1W(d712 + d€?) + aip®dg?,
Y4 )2

(45)

where p and z are dimensionless cylindrical coordinates
scaled relative to a;. The Laplacian can be written as

Ban (2 (). ()
aZp g \"an) T3 \"oc ) |

1 0%y

a2p? g7’

V2 =

¥
X )
AL 92,,40,,2,

3 2
N
MR Y
\\?&\ 1

=1 Region 2 Region 1 ¢=0
és (double image)
FIG. 1. Cadez coordinates near the two holes showing the

three region nature of the coordinate system. (ns,&s) is the
singular point in the coordinate system. nt are the constant
coordinate surfaces coincident with the minimal surfaces.
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which is an appropriate form for conservative differenc-
ing. The boundary conditions on the two inversion sur-
faces take the forms

0
(Vermg+d) =0 (17)

n=nt

and

oy avy
(\/n?p+n?za—n+7)n . =0. (48)

Finally, asymptotic flatness is imposed on a boundary at
finite radius, (n = 7y), via the approximate boundary
condition (26) which takes the form

oY _ zn,—pn. OY 1 -9

O . +pm, 06 7 zn. +pm,

_ (d./a?)z
2(zn,. + pn,,)(p? + 22)3/2

9 [(P1/ay) + (P2/a1))?(22 — p?)
32 (zm; + pn,,)(p?% + 22)?

in the case of axisymmetric configurations. d,/a? is the
dimensionless z component of the dipole moment and
P; 2/ay are the dimensionless z components of the linear
momenta on the two holes.

The numerical approach to solve the Hamiltonian con-
straint will again be to use finite differences. Also, as
in the bispherical case, only axisymmetric configurations
will be treated. The method used to evaluate the extrin-
sic curvature for the bispherical scheme (and described
in Appendix A) is also used in the Cadez scheme.

Axisymmetry again introduces a new boundary condi-
tion on the z axis. The condition is

(49)

oy 0,
Zr f — y Iy
e = O foré {fs for n < n,. (50)

The discretization of the computational domain, and
thus the differencing of the Hamiltonian constraint, is
complicated by the presence of the coordinate singularity
at (9s,&s). It was, in fact, improper handling of the dis-
cretization at this point which foiled an earlier attempt to
find inversion-symmetric solutions to the two-hole Hamil-
tonian constraint [14]. There are at least two good ap-

TABLE IIL

proaches for handling the discretization. One approach
is to guarantee that a grid point is placed exactly on the
singular point and difference the Laplacian at the singu-
lar point by treating the neighboring grid points as being
irregularly spaced in cylindrical coordinates [21]. A sec-
ond approach is to guarantee that the singular point is
zone centered and thus never lies on a grid point [23].
The differencing of the Hamiltonian constraint is simpler
and better behaved in the latter case and is the method
described below.
The “radial” coordinate 7 is discretized as

= (i = )y + 15, (51a)
—Z%,...,0 region 1,
i=<¢ —-I7,...,0 region 2, (51b)
1,...,Z region 3,
and
_ . ot
hy = Ng—MNs _ NMs—7M _Ns—7N (51c)

I-3 I-+1 It+4

The same discretization length h, is possible in both re-
gions 1 and 2 even when the holes are of unequal size
because there is freedom in the definition of the Cadez
coordinates to place the singular point anywhere along
the 2 axis between the holes. The discretization of the
¢ coordinate is performed in a fashion similar to the dis-
cretization of the bispherical-n coordinate:

& =E&(s5) = f*s]+3xs;,
si=0G -3k, j=1,...,8%...,8t+8",

1
=T 2
F= (St+S87)m (ST +87)%,

T s S¥s-
(ST +87)%,  Str
9= T sEs S

The integers St and S~ give the number of discrete
points above and below &, and must be chosen so that £
is a monotonically increasing function of s for 0 < ¢ < .

The Hamiltonian constraint and boundary conditions
are differenced using vertex-centered, second-order, con-
servative finite differencing as in the case of the bi-
spherical scheme, and the nonlinear difference equations

ADM energy of time-symmetric solutions of the Hamiltonian constraint at three different mesh resolutions (in

Cadez coordinates), Richardson extrapolated and compared with the analytic solution for the ADM energy. B indicates the

separation of the two holes. The outer boundary is at ~ 200a;.

E/a; E/ay E/ay Relative
B (~ 64 x 32) (~ 128 x 64) (~ 256 x 128) (extrap.) (analytic) error
4 5.4419 5.3789 5.3674 5.3636 5.3642 —0.011%
5 5.0244 5.0125 5.0109 5.0103 5.0106 —0.006%
6 4.8057 4.8040 4.8043 4.8045 4.8046 —0.002%
7 4.6664 4.6677 4.6686 4.6689 4.6690 —0.002%
8 4.5691 4.5714 4.5723 4.5726 4.5727 —0.002%
9 4.4971 4.4995 4.5004 4.5007 4.5008 —0.002%
10 4.4416 4.4438 4.4446 4.4449 4.4449 < 0.001%
11 4.3975 4.3994 4.4001 4.4003 4.4003 < 0.001%
12 4.3587 4.3623 4.3635 4.3638 4.3639 —0.002%
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are solved iteratively via Newton’s method. The same
“black-box” multigrid solver used for the bispherical
scheme was used with the Cadez scheme. As in the bi-
spherical case, the total ADM energy and dipole moment
are computed for each solution along with the areas of
the minimal surfaces and the proper separation between
the minimal surfaces.

As a first test of the accuracy of the Cadei code, Ta-
ble II lists the total ADM energy for a set of runs where
a = 1 and B = 4-12. For each value of 3, the code
was run at three resolutions and the results are Richard-
son extrapolated to the continuum limit. Because of the
constraints on the radial discretization imposed by the
singularity in Cadei coordinates, 8 = 3 is not included
in this table. Also, the same constraint forces the radial
discretization of each value of 3 to be different although
each is chosen to be nearly 64 zones on the coarsest grid
when the outer boundary is at ~ 200a;.

VII. SOLUTIONS FOR
BOOSTED AND SPINNING HOLES

Using the two codes described above, an enormous pa-
rameter space exists in which solutions can be explored.
If we consider axisymmetric solutions of the constraints
for which the conformal factor obeys isometry condition
(9) with a minus sign, then there is a six-dimensional pa-
rameter space («, 8, P1, P2, S1, and S3) to be explored.
For solutions obeying isometry condition (9) with a plus
sign, the parameter space is four dimensional (because
there can be no spin). Both of these parameter spaces
are far too large to be explored effectively by the numer-
ical techniques described above. In this section, I will
consider the following reduced parameter spaces.

Six two-dimensional parameter spaces can be con-
structed by assuming that the two holes are of equal size
and have linear or angular momenta of equal magnitude.
If we consider solutions of the constraint equations for
which the extrinsic curvature satisfies isometry condition
(9) with a plus sign, then we find two configurations. The
first has the linear momentum vectors aligned antiparallel
to each other so that there is no net momentum at in-
finity, and the second has the linear momentum vectors
aligned parallel to each other. The third and fourth con-
figurations are identical to the first two except that the
extrinsic curvature satisfies the isometry condition with
the minus sign. The final pair of configurations represent
holes with angular momenta aligned either antiparallel
or parallel. For clarity and brevity in the discussion be-
low, T will refer to these configurations, respectively, as
cases 1-6. For each of these cases, there are two remain-
ing parameters to be explored. The separation between
the two holes can be varied, and this quantity is roughly
parametrized by the “conformal separation” parameter
B. The second parameter to be varied in each initial-
data set is the magnitude of the linear momentum P or
angular momentum S for each of the holes.

All six configurations have been explored extensively,
solving identical configurations with both the bispheri-
cal and Cadez codes to allow for comparison. For the
bispherical code, each point in the parameter space was
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solved at three different grid resolutions as described for
the time-symmetric test cases in Sec. V. Solutions from
the Cadez code were also found at three different grid res-
olutions as described for the time-symmetric test cases in
Table II. For the case of 8 = 3, the Cadez code was only
run at two resolutions, (298 x 148) and (496 x 296). For
each point in the parameter space, the values for the total
ADM energy, the area of the minimal surfaces, and the
proper separation of the holes were Richardson extrap-
olated to the continuum limit and the results from the
bispherical and Cadez codes were compared. For the to-
tal ADM energy, agreement between the bispherical- and
Cadei-extrapolated results was typically at the 0.01%
level. The worst agreement occurred when there was a
large net linear or angular momentum for the configura-
tion. In these cases, the outer boundary in the Cadez
code was as close at 4Mp (where My is the total mass
of the system). In these cases, the error was as high as
2.5%, but this can be lowered by increasing the radius of
the outer boundary. Agreement between the bispherical
and Cadez codes for the minimal surface area and proper
separation were typically 0.02%. For small values of 3,
the error in the proper separation was as high as 0.4%,
due to the relatively small number of grid points that
the Cadez coordinate scheme places between the holes.
In the remainder of this section, I will examine the con-
tent of the initial-data sets which have been constructed
for the six cases described above.

In examining and comparing physical quantities asso-
ciated with these initial-data sets, it will be necessary to
find some kind of natural scaling. The proper separation
of the two holes, for example, is less meaningful than the
separation-to-mass ratio. The question, of course, is how
to scale the quantities in such a way as to clarify the
problem. It is perhaps most natural to scale all of the
physical quantities in terms of the “mass” of one of the
holes. The mass of each hole, while not uniquely defined,
will be taken to be defined similarly to the Christodoulou
formula [24]

M2 — M‘Q + 52
<t

(53)

The irreducible mass M, of one of the holes cannot be
defined solely from the information on a single slice of
the space-time. In fact, if there is an event horizon en-
compassing both holes, then the irreducible mass of an
individual hole is not even defined. However, we can
determine the area (and thus the mass M = /A/167)
of the apparent horizon from information in the initial-
data slice. Even when a horizon encompasses both holes,
there will be a trapped surface (though not an appar-
ent horizon) associated with the individual holes. The
mass of a hole will, thus, be taken to be given by the
Christodoulou formula (53) with the irreducible mass re-
placed by the mass of the apparent horizon (or trapped
surface).

In general, it is necessary to implement a trapped-
surface locator in order to determine the area of the ap-
parent horizon associated with each hole. This has not
yet been attempted in the two codes which compute the
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initial data. Fortunately, it is shown in Appendix D that
when the extrinsic curvature satisfies isometry condition
(9) with a minus sign (cases 3-6), the minimal surface
is a trapped surface. Thus, the mass of the apparent
horizon equals the mass of the minimal surface which is
known. For cases 1 and 2 in which the location of the
trapped surface for each hole is not known, the mass of
the minimal surface has been used as a lower limit on the
mass of the apparent horizon.

Figures 2-5 below display the naturally scaled physi-
cal quantities which correspond, respectively, to cases 3—
6. Plots corresponding to cases 1 and 2 are not shown
since they are qualitatively the same as those for cases 3
and 4. Each figure displays four characterizing physi-
cal quantities as a function of the naturally scaled linear
or angular momentum on one of the holes and evalu-
ated at six different values of the separation parameter
B = 3,4,6,8,10,12. Plotted in Figs. 2(a)-5(a) is the
scaled total ADM energy E/M of the slice. If we con-
sider the case of two Kerr holes infinitely far apart, then
E/M for the system will be two regardless of the mag-
nitude of the angular momenta on the holes. Plot (b)
in each figure displays the scaled proper separation L/M
of the two holes. If we assume that the two holes will
eventually coalesce into a single boosted Schwarzschild
or Kerr hole, then we can use Hawking’s area theorem
[25] to determine a lower limit on the final mass of the
resulting black hole. If S; and S, are the signed mag-
nitudes of the spins on the two holes, each having an
apparent horizon of mass May on the initial slice, then
the final mass of the hole M; must be

1 /5 +5; 2
M M 24| —— ) . 4
> o2 (352) 64

If P, and P, are the signed magnitudes of the linear
momenta of the two holes, then an upper limit on the
amount of energy which can possibly be radiated from
the system in the form of gravitational radiation is

2
Erag < E2~(P1+P2)2_MAH\/2+1 <51+52> .

8\ Mi,

(55)

The maximum possible radiation content of the slice,
scaled to the mass of one of the holes, is displayed in
plot (c) of each figure. Finally, plot (d) in each figure
displays the maximum radiation efficiency of each slice

Erad

efficiency < .
VE?— (P + Py)?

(56)

Consider first Fig. 2 which represents two holes with
antiparallel linear momentum vectors. This can repre-
sent either two holes headed directly toward or away from
each other. The energy, mass, and separation are iden-
tical in either instance. As mentioned above, if the two
holes are at rest infinitely far apart, then £/M should be
two. Thus, any configuration with £/M < 2 should be
gravitationally bound. The first thing that is noticed
in Fig. 2(a) is the increasing effect of negative bind-
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FIG. 2. (a) Total energy, (b) separation, (c) maximum
radiation energy, and (d) maximum radiation efficiency for
two equal-sized holes with axisymmetric linear momenta P
aligned antiparallel to each other and generated from an
inversion-symmetric extrinsic curvature obeying the isometry
condition with a minus sign. The conformal separation pa-
rameter is fixed along each sequence with 8 = 3,4,6,8,10,12
increasing from bottom to top.

ing energy as the separation parameter [ is decreased.
We also see that if the two holes are far enough apart
and have large enough momenta, then it seems energet-
ically feasible (if the momenta are directed away from
each other) for the two holes to be unbound. Examining
Fig. 2(b), we find that the conformal separation param-

E/M
L/M
(=]

T

1

Radiation Efficiency

P/M
(CY]

FIG. 3.

(a) Total energy, (b) separation, (c) maximum
radiation energy, and (d) maximum radiation efficiency for
two equal-sized holes with axisymmetric linear momenta P
aligned parallel to each other and generated from an inversion-
symmetric extrinsic curvature obeying the isometry condition
with a minus sign. The conformal separation parameter is
fixed along each sequence with 8 = 3,4,6,8,10,12 increasing
from bottom to top.
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eter is strongly correlated with the physical separation-
to-mass ratio L/M . This is somewhat unexpected given
the nonlinearity of Einstein’s equations.

If the two holes coalesce, then Fig. 2(c) shows the
scaled maximum amount of energy which can be released
via gravitational radiation. As expected, E\.q/M in-
creases as both separation and momentum increase. An
unusual feature is seen for 3 = 3. In this case, the energy
available for radiation is negative. This behavior must be
due to the inappropriate application of Eq. (55). At this
point, a horizon must have formed surrounding the two
holes. This is confirmed by the numerical work of Cadez
[2], where he has found that an apparent horizon will
surround two time-symmetric, inversion-symmetric holes
if < 4.16.

Figure 3 represents the case of two holes with paral-
lel linear momenta. Examining the scaled total energy
in Fig. 3(a) shows the gross behavior of a single boosted
particle, although at lower values of the momentum the
lowering of the total energy due to increased binding en-
ergy as the holes are brought closer is clearly visible. Fig-
ure 3(b) shows that the L/M ratio is again fairly insen-
sitive to P/M. Figures 3(c) and 3(d) show little new
information about the radiative potential of the initial
slice beyond that already seen for a single boosted hole
[12]. The differences result primarily from the effects of
binding energy.

The most interesting of the configurations are cases 5
and 6, which involve two holes with antiparallel and
parallel angular momentum vectors and the behaviors
of which are displayed, respectively, in Figs. 4 and 5.
The behaviors of the scaled total energy displayed in
Figs. 4(a) and 5(a) are surprising and unintuitive. While

E/M
L/M
[}
T
ki
5.

Radiation Efficiency
I
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I
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2 1 %-os
) R T T R M
(o} 0.2 0.4 0.6 0.8 1
S/M?
(c)
FIG. 4. (a) Total energy, (b) separation, (c) maximum

radiation energy, and (d) maximum radiation efficiency for
two equal-sized holes with axisymmetric angular momenta
S aligned antiparallel to each other and generated from an
inversion-symmetric extrinsic curvature obeying the isometry
condition with a minus sign. The conformal separation pa-
rameter is fixed along each sequence with 8 = 3,4,6,8,10,12
increasing from bottom to top.
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they clearly show the effects of binding energy as the
holes are brought closer together, they also indicate that
the total energy-to-mass ratio decreases as the angular
momenta increase, with the decrease being most dra-
matic when the spins are antiparallel.

Examining the L/M ratio in Figs. 4(b) and 5(b) shows
that it is much more strongly affected by the spin of the
holes than by their linear momenta. This fact compli-
cates the interpretation of the total energy of the slice
seen in Figs. 4(a) and 5(a) because the constant § se-
quences no longer have nearly constant values for the
separation-to-mass ratio. Since the holes are getting
closer for constant B as the angular momenta are in-
creased, they necessarily have greater binding energy and
the decrease in E/M must be due, in part, to this ef-
fect. However, rough interpolation along lines of con-
stant L/M clearly shows that the decrease in separation
is not the dominant contribution to the decrease in £E/M
at large values of angular momentum. It is possible that
the Christodoulou mass is not the correct quantity with
which to scale the total energy and separation. On the
other hand, its use in the scaling of the angular momen-
tum does have the correct limiting behavior as the an-
gular momentum is increased. That is, S/M? appears
to be asymptotic to one, which is the “Kerr” limit. The
“odd” behavior of the scaled energy is more likely due to
a combination of the behavior of L/M at low values of
momentum and the appearance of a horizon surrounding
the two holes at large values of momentum. A more thor-
ough understanding of this behavior will likely require a
search for the apparent horizons in these data sets.

Moving on to examine the radiative potential of the
slices, consider first Figs. 4(c) and 4(d) which represent
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FIG. 5.

(a) Total energy, (b) separation, (c) maximum
radiation energy, and (d) maximum radiation efficiency for
two equal-sized holes with axisymmetric angular momenta S
aligned parallel to each other and generated from an inversion-
symmetric extrinsic curvature obeying the isometry condition
with a minus sign. The conformal separation parameter is
fixed along each sequence with 3 = 3,4,6, 8,10, 12 increasing
from bottom to top.
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FIG. 6. Comparison of the scaled total energy for two

equal-sized holes with axisymmetric angular momenta S
aligned antiparallel (dashed lines) and parallel (solid lines)
to each other showing the spin-spin interaction. The confor-
mal separation parameter is fixed along each sequence with
B =3,4,6,8,10,12 increasing from bottom to top.

the case of two holes with antiparallel spins. We see that
the amount of energy which is potentially available for ra-
diation does increase initially as the angular momentum
is increased. However, after a certain point, the available
energy rapidly diminishes with increased angular momen-
tum. These effects are seen not only in E..q/M but also
in the efficiency which is a ratio that is independent of the
scaling parameter. This indicates that the drop in energy
cannot be due to the choice in scaling parameter and is
either a physical effect or is associated with the presence
of an encompassing horizon. Examining Figs. 5(c) and
5(d), we find that the amount of energy which is poten-
tially available for radiation and the radiation efficiency
both decrease continuously as the angular momentum is
increased.

Finally, one more physical aspect of the two-hole inter-
action can be seen by examining these two-hole initial-
data sets. The gravitational spin-spin interaction has
been investigated by Wald [26] for the case of a spinning
test particle in the exterior field of an arbitrary, station-
ary, rotating source. The orientation dependence of this
interaction can be seen by comparing the scaled energy-
versus-momentum sequences from cases 5 and 6. Figure 6
presents an overlay of Figs. 4(a) and 5(a). It is appar-
ent that the total energy of the system along constant
[ sequences is lower when the spins are antialigned than
when aligned. This implies that the spin-spin interaction
is attractive when the spins are antialigned and repulsive
when aligned, as was found by Wald. This conclusion is
somewhat clouded by the fact that constant  sequences
do not represent sequences with constant L/M; however,
the L/M curves for constant 3 are nearly identical for
both the parallel and antiparallel spin scenarios so the
comparison is valid. In addition to observing the spin-
orientation dependence, a qualitative separation depen-
dence is also apparent from Fig. 6. We see that the mag-
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nitude of the spin-spin force decreases as the separation
between the holes increases from the fact that the differ-
ence in the energy levels for the aligned and antialigned
cases decreases with increasing separation.

VIII. CONCLUSION

This paper has shown that highly accurate, complete,
axisymmetric initial-data sets representing black-hole
collisions can be constructed following the conformal-
imaging formalism. Because a completely general,
three-dimensional method for evaluating the inversion-
symmetric background extrinsic curvature has been
devised, future efforts at constructing general three-
dimensional initial-data sets need only confront the nu-
merical solution of the Hamiltonian constraint. The nu-
merical difficulties and computational resources required
to comnstruct such solutions are considerable, but the
problem should be tractable with current facilities.

A preliminary analysis of the data sets constructed in
this paper has shown that the black holes present in the
initial-data slices exhibit the general properties which we
expect to find in two-hole configurations (binding en-
ergy, spin-spin interaction, etc.). The analysis presented
herein is, however, incomplete and a more thorough in-
vestigation is under way [16] which includes a search for
apparent horizons and an investigation of the initial ra-
diation content of the data sets.
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APPENDIX A: NUMERICAL EVALUATION OF
THE INVERSION-SYMMETRIC
EXTRINSIC CURVATURE

For the case of two black holes, the components of
the inversion-symmetric extrinsic curvature can be ex-
pressed, as in Eq. (19), in terms of an infinite series of
recursively defined quantities. In the first part of this ap-
pendix, I will formally define these recurrence relations.
Following this, I will show, in detail, how these relations
(and the components of the extrinsic curvature) are eval-
uated in cylindrical coordinates in the case of axisymme-
try.

Let Ji and Ji be the isometry maps which identify
points in the two sheets through, respectively, the first
and second hole. Further, let (,]1);. = 8Ji/8z7 and

(J2)§ = 8J3/827 be the Jacobians of these maps. Finally,
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assume that we wish to evaluat.e the inversion-symmetric fFln—-l (g__]_) 2 for n odd,
extrinsic curvature at some point x*. ‘ ) "L/ (z2h)
The two “imaged” position vectors (z7)* and (z%)* are Fr o= (A5)
recursively defined by 1= Fr-t (gz_)2 for n even
T2 )
J{(I;.—l) for n odd, L1 forn = 0,l
(1) = Jé(rr—»l) for n even, (A1) ( Fp-t 21)2 for n odd,
zt for n =0, "2/ (z27t
. F3 =< (A6)
Z 2 2
i J?(x';—’) for n odd, Fé‘_l (%-1-) ._,. for neven
(z3)" = § Ji(gn-1y for n even, (A2) (zz77)
2 forn = 0. \1 for n=0.

Consider now the case of axisymmetry. I will use cylin-
drical coordinates [p ¢ 2], and make use of the config-
uration parameters o and £ defined in (27) and (28). For
the centers of the holes, I will define

The two “imaged” transformation matrices (Ml"); and
(Mz"); are recursively defined by

(M{“l)j(Jl)f(rn_l) for n odd, Ci=[0 0 a¢1] and C5=[0 0 a1(s]. (A7)
(M{l); = (Mln_l)z(h)f(z?—x) for n even, (A3) The physical, unscaled linear and angular momentum
6;: for n =0, vectors are
(ME=1)i(J2)} ggny for n odd, Pi=[0 0 P] and Pi=[0 0 P (A9
(M;); = (M;—l)z(,]l)f(x,,_,) for n even, (A4) and
8 forn=0. Si=[0 0 Sy and Si=[0 0 S, (A9)
Finally, the two “imaged” scale factors FJ' and FJ are The cylindrical coordinate components of fiij, defined
recursively defined by in Eq. (18), can be written in dimensionless form as

J

Amo 3 (%) (z - <1)3 (%) (z - Cz)s Lo
= — [p? + (z — C1)2]5/2 + [+ (2 — (:2)2]5/2 ’ ( )

a1 2
Agg 3, ( (5*) (z=¢1) (%) (z - ¢) ) ’ (Al1)

o P\ i - P

A BY -G 2 z— 2 ) (2 - 2 z — 2

i _a((B)e-ol +2e w7 (&)¢E-0b 2l A
a2 (P2 + (z = €1)?] [0 + (2 = 2)?]

Ay 3 [(B) P +2:-0)?) N (&) [0+ 20 - &) (a3
ay 27 [P2+(Z—C1)2]5/2 [p2+(2_<2)2]5/2 ’

~ S S

Ay _3 5 (%) (%) Al4
o~ 2 (w - A -T) (A0

A¢z=§p2 (%)(z‘@) + (%)(z_@’)” . (A15)
2" N[22+ (2= [+ (2= )T

f

The isometry maps Ji and Ji can be written in terms Ji = a~?p a?(z — (a) +¢
of dimensionless cylindrical coordinates as 2T+ (2 —¢C2)2 P2+ (2 — (2)? 2)-
; p z—G (A17)
Jz = ( + ) 3
=\ emar C Arc-ar T

The components of the Jacobians of the isometry maps
(A16) can be written in matrix form as
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(2=¢1)%-p? —2p(2—¢1)
. [P2+(2=€1)%)? 7 [p24+(2—¢1)?])?

—2p(2—¢1) 0 p2=(2-¢1)?
[p2+(2=¢1)2]7 = [p24+(2—(1)3)?

a"[(z—(z)z—PQ] 0 —2a~2%p(2—C(3)
[p’+(z(;(z)"‘]2 [,02+(Z(-)-(§2)"’]2

(A18)

(72)i = (A19)

—2a”%p(:=Ca) a”?[p?=(2=¢(2)?]
(P2 +(2-¢2)?)? [p2+(2=(2)?)?

For completeness, the dimensionless form for the “im-
aged” scale factors (A5)-(A6) are

Fn—-l

FXETerETeuE P for n odd,
Fn — a—ZFn.—l A20
1 PEE=G) | (pn) for n even, ( )
1 for n =0,
J
2

It is clear that care must be taken in computing the sec-
ond, fifth, and sixth terms on the right-hand side of (A22)
so as not to encounter roundoff and division by zero errors
as the p = 0 axis is approached. The second term is eas-
ily handled by the fact that A;; is traceless. The last two
terms cannot be handled so easily. The proper evaluation
of these terms depends on the fact that in axisymmetry
and cylindrical coordinates, the imaging transformation
does not mix the linear and angular momentum terms.
That is, the evaluation of

1 [Ri o (i)] and L [Ri o (—/i)] (A23)
p ay 06 P a1 6z

depends only on /i,,d, and A¢z. Looking at (A14) and
(A15), we see that both terms contain overall factors of
p. This indicates that the factors of 1/p should be “com-
muted” with the inversion operator. Consider the nth
term in the expansion for the first expression in (A23):

2oy [t (Awe)  cip]

re

+%F; [(M;)f (A“)(’S)(M;)f]w' (A24)

If we denote the p component of = as pZ, then it is
straightforward to verify that

1 _Fr

- = = (A25
P Pa )

2997

o~ 2pp-!
= 2
p2+(2—(2)?
Fn—l
—
p?+(2—-(1)? (=271)

1 for n=0.

for n odd,

. (=371
= for n even, (A21)

With the definitions given above, the components of
the inversion-symmetric extrinsic curvature can be com-
puted to arbitrary accuracy. However, because of the
use of cylindrical coordinates, there are complications in
obtaining accurate and smooth numerical values of the
square of the extrinsic curvature. The square of the ex-
trinsic curvature can be written in dimensionless form

A 2 . 2
a—)] +2d1 [Ri o (?)] (A22)
APy ’ are
[
and so (A24) can be rewritten as
n n Ak n
(F7)? | (M) <——‘> (M7);
(=) pd
ny\2 nyk Akl nye
+(F3)° (M7 | — (M3'); , (A26)
(=3) pd
which is completely regular as the p = 0 axis is ap-

proached. The second expression in (A23) can be handled
in exactly the same manner.

APPENDIX B: NUMERICAL EVALUATION OF
MISNER’S SOLUTION TO THE
HAMILTONIAN CONSTRAINT

Misner has given a formal, inversion-symmetric solu-
tion for the Hamiltonian constraint in the case of N holes
at a moment of time symmetry [4]. In the case of two
equal-sized holes, Lindquist [19] has given an explicit, an-
alytic form for the formal solution in terms of an infinite
series in bispherical coordinates. In this appendix, I out-
line a simple method of evaluating Misner’s solution in
the case of two, arbitrary sized holes.

For any number of holes, Misner’s solution can be ex-
pressed in terms of a scalar imaging operator N, acting
through the ath hole. This operator is defined by the
two conditions
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Naw(z);%‘l«pua(zn and Nao1z‘:—“. (B1)

o

The general N hole solution is represented formally by

Ya)y=1+ (HN,,,) :

{a. =1

(B2)

where the notation is as described for Eq. (15). For the
case of two holes, a straightforward but tedious calcula-
tion reduces (B2) to

oo
wp Wk
=1 1 2
s = e 3 (T ).
n=1
based on the following recursively defined quantities:

+ (1 for n odd,
¢r (,,"—1_2- + (o for n even,
¢, forn=1,

(B3)

1
aT

(B4)

—("— + (o for n odd,
2

C— + ¢, for n even,
¢ forn=1,

n-—1
4
|(1 '_Cll
a—lwn——l
¢~ =¢al
1 forn=1,
a~twr!
¢z~ = Cal

W~

¢z (B5)

Il

for n odd,
(B6)

for n even,

for n odd,
(BT)

——=2—— for n even,
127 ¢l

1 forn=1,
7’111 = V p2+(2—<?)2,
VP2 + (2= ()%

¢y and (5 are defined in (A7), and « is defined in (27).

The series expansion for the conformal factor (B3) dif-
fers from the expansion for the extrinsic curvature (19)
in the crucial point that each term in (B3) is evaluated
at the same spatial point. In (19), the point of evaluation
for each term is imaged. This complication was necessary
in the case of the extrinsic curvature in order to make the
solution tractable. Since the position dependence of (B3)
is not imaged, the series expansion can be used directly
in the integrals for the multipole moments (24) and (25).
The results for the total ADM energy and dipole moment
are

(B8)

rn

(B9)

E_ Z (WP 4+ W3), (B10)
1 —
== 2 (WICE + WEeR). (B11)

1

3
1

APPENDIX C: CADEZ COORDINATES

Cadez coordinates are defined in terms of a complex-
plane transformation. Letting the base coordinate sys-

4“4

tem be cylindrical coordinates, the complex variable ¢ is
defined as

(=z+1p. (C1)

The Cadei coordinates are defined as the real and imag-
inary parts of a complex function x(¢). Specifically,

n(p,z) = Rex(¢) and £(p, z) = Imx((). (C2)

Defined in this way, the coordinate system is guaranteed
to be orthogonal everywhere that x is analytic. The ex-
plicit form of the complex function x is taken to be

x(¢) = CIn(¢ = ¢*)+ C5 In(¢ = ¢7)
+D ICHE=¢H)™+Cr(¢-¢)™)

n=1

(C3)

The coefficients C* are real scalars, and the two complex
parameters (¥ fix the locations of the two holes and are
defined by

¢(t=¢ 4140 and ¢ =(+ 40, (C4)

in terms of the definitions in (A7) and (27) and (28).

To see the general behavior of this transformation, con-
sider the limit that |(| is large compared to |(*| and |[(7|.
In this case, the coordinate transformations become

n(p.z) = (Cf +C5)n/p? 1 22, (C5)
E(p,2) ~ (Cf +Cy ) arg(C). (C6)

We are free to scale the Cadez coordinates so that C +
Cy =1 and, in this limit, 7 is simply a logarithmically
scaled, spherical-polar radial coordinate and £ is simply
the spherical-polar colatitude coordinate.

The remaining coefficients are fixed by the demand
that the spherical throats be surfaces of constant 7. In
terms of the complex variable {, the two sets of points
constituting the throats can be parametrized by 6% as

(@) =¢t +cosf +isingt, (C7)
C(67)=¢ +a"Y(cosf™ +isind7), (C8)
where 0 < % < 7. The coefficients C'ii are then fixed by

nt = Rex[¢(67)) = Rex[¢(67)],

where 7% are the coordinate values of the Cadez coordi-
nate 7 for each of the throats (which can be freely chosen
and will be discussed further below) and with the con-
straint that C'(')* + Cy = 1. In practice, the infinite series
(C3) is truncated and the two equations (C9) are eval-
uated on a large set of points on (CT7) and (C8). Tlns
yields a set of equations which can be used to fix the C
coefficients numerically by a linear least-squares fit.

While the coordinate transformation from cylindrical
to Cadei coordinates is easily obtained from (C3), the
inverse transformation from Cadez to cylindrical coordi-
nates has no simple expression of which I am aware. De-
termining the cylindrical coordinate location of a given
Cade# coordinate pair (n,£) must be accomplished by
numerical means and can be computed via Newton’s
method generalized for complex functions.

Because of the behavior demanded in the coordinate
system around the throats and built in at large distances,

and 7~ (C9)



44 INITIAL DATA FOR AXISYMMETRIC BLACK-HOLE COLLISIONS

there is necessarily a critical point in the complex trans-
formation (C3). This critical point is, in fact, a saddle-
point singularity of the coordinate system and will be
located somewhere on the p = 0 axis between the two
throats. The exact location will be determined by the
choices made for the values of n*. In fact, the freedom to
choose ¥ is used to position the singularity at some de-
sired location. Given choices for %, the actual position
of the singular point can be determined by numerically
solving the critical point equation dx/8¢ = 0 (again by
Newton’s method).

The final freedom in specifying the Cadez coordinate
system is ultimately determined by the demands of the
discretization near the singular point as described in
Sec. VI. From Eq. (51¢) we demand that

773_77+ :I++%
ns—n~  I-+73’

(C10)

where 7% are integers defined in (51b) and 7, is the 5
coordinate value of the singular point. This demand can
be satisfied iteratively by making initial guesses for n*,
solving for the Cadez coefficients, and determining an
initial value for ;. Next, if (C10) is not satisfied, assume
nt — nt+cand = — n~ —¢. Inserting these into (C10)
and solving for € gives new guesses for n* and the cycle
continues until (C10) is satisfied. This procedure has
proven to be rapidly convergent.

APPENDIX D: MINIMAL SURFACES
AND APPARENT HORIZONS

For the case of a single inversion-symmetric black hole
with linear and/or angular momenta, it has been shown
that if the extrinsic curvature satisfies isometry condition
(6) with a minus sign, then the minimal surface and the
apparent horizon coincide [12]. If the isometry condition
with a plus sign is satisfied, then the minimal surface
and apparent horizon do not coincide except in the de-
generate case of time symmetry. In this appendix, I will
show that in initial-data sets constructed in accord with
the conformal-imaging approach, the minimal surface for
each hole is always a trapped surface, regardless of the
number of holes, if the extrinsic curvature satisfies con-
dition (6) with the minus sign.

The trapped-surface equation can be written as [12]

2999

Dis' — 2K + Ajjsis’ =0, (D1)

where s is the outward-pointing, spacelike unit-normal
vector to the trapped surface and A;; is the trace-free

part of the physical extrinsic curvature. From (6) we
find that A;; must satisfy
Aij(2) = £(Ja)i (Ja); AxelTa(2)]. (D2)

In the conformally flat background space, the unit nor-
mal to a sphere centered around the ath hole is ni,. We
find, then, that the unit normal to the ath minimal sur-
face in the physical space is

§’a = 1/)“2an, (D3)
with the understanding that we are restricted to ro, = a,.
Consider now the third term in (D1) where we substi-

tute the unit normal to the ath minimal surface for the
normal to the trapped surface:

5,50, Aij(2) = £5,(Jo)f 5, (Jo)§ ArelJa(2)].  (D4)

In terms of the Cartesian coordinate definition of the
isometry maps given in (7), we find that

2
& (Ja) =y, (—) (6] — 2ni,ng
T

a 2 .
()
Ta

We recall now that the ath minimal surface is a fixed-
point set of the ath isometry map. We have, therefore,
Jo(z) = z (and r4 = ay), and so Eq. (D4) becomes

(D5)

§a8hAij(z) = £5,5, Aij(2). (D6)
We conclude, therefore, that if isometry condition (6) on
the extrinsic curvature is satisfied with the minus sign,
then

588 Aij(re = ag) = 0.

(D7)

But we know that D;5 = 0 because 5, is the unit
normal to a minimal surface. We also have K = 0 by
construction in the conformal-imaging approach. We,
therefore, find that 5%, satisfies the trapped-surface equa-
tion (D1) and so the minimal surface is a trapped surface
(and an apparent horizon if there are no other trapped
surfaces surrounding it) if the extrinsic curvature satisfies
isometry condition (6) with a minus sign.
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