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We present a systematic study of low-energy neutrino—two-photon interactions to lowest order of
O(a.,Gp). General structures of such interactions are analyzed. Differences due to whether neutrinos
are Dirac particles or Majorana particles are discussed. Simple formulas are derived from which one
can easily obtain the corresponding effective neutrino-two-photon interaction in all theoretical models.
The compatibility of a small neutrino mass with a large neutrino-two-photon interaction is explored.
Some physical implications of such interactions are also examined.

I. INTRODUCTION

Low-energy neutrino—two-photon interactions may
potentially be of interest for a number of processes in as-
trophysics and cosmology. A well-known example would
be the neutrino pair production via Yy —v¥. As thisis a
way for stars to loss energy, it could therefore be impor-
tant in the study of stellar evolution [1]. Other closely re-
lated processes, such as the neutrino Compton scattering
[2] vy —vy, the two-photon production [3] ¥v—y ¥, and
neutrino double-radiative decays [4] v'—vyy, may also
have interesting astrophysical and cosmological implica-
tions.

Also, some interests [5] have recently been aroused for
a similar process: YY— ¥y, where Y, like a massive neu-
trino, is a neutral fermion that serves as a dark-matter
candidate. It was suggested [6] that the detection of the
two photons would be an interesting way of detecting
dark matter in the galactic halo. Some of these ideas may
soon be tested experimentally by the GRO (gamma-ray
observatory) launched very recently.

In this article, we wish to study the general structures
of the interactions that give rise to the aforementioned
physical processes. While some efforts have already been
made in this subject, discussions have so far largely been
scattered over places where the results of analysis often
turn out to be purely academic. From the point of view
of particle physics, it is desirable to have a systematic
study of neutrino-two-photon interactions, just as what
we customarily do to the neutrino mass and mixing and
to the neutrino magnetic moment [7]. Our purpose here
is clear. We want to know if and where a relatively large
result can be obtained, and how it will depend on the in-
troduction of new physics.

In this paper, we will therefore mainly concentrate on
issues related to particle-physics theory, while some of
their physical consequences will also. be explored. We
will derive some simple formulas for the effective
neutrino—two-photon interactions. As shown below,
these formulas can be very easily employed in all theoret-
ical models. We will provide some examples to demon-
strate how this can be done. Our results are summarized
at the end.
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II. EFFECTIVE INTERACTIONS
FOR DIRAC NEUTRINOS

How neutrinos interact with two real (on-shell) pho-
tons? If a neutrino v is a Dirac particle, then the simplest
answer which one would think of is

L.g=awFF g+ia'vy vF °PF .5 , (2.1a)

where F iB is the electromagnetic field tensor with its dual
give by F “f=Le®Prrp »1» and v is a neutrino field opera-
tor:
dk m, .
[b (Ku(k,a)e tk-x
2 f (2m)} ko

=+1/2

v(x,t)=

+dlv(k,a)e® ] .
(2.1b)

The coefficients a and a' are form factors which are in-
variant functions of kinematical variables, and they are
real from Hermiticity [8]. Here, and throughout this pa-
per, CP invariance is assumed for simplicity.

If there are more than one neutrino, then Eq. (2.1a) can
be generalized as

Leﬂ"zvr(ars +brs’}/S)vsFaBFaB+ivr(arlsy5+br’s )VSF aBFaB s
(2.2)

where r and s are flavor indices. CP invariance and Her-
miticity now imply that

[ — ’ —_
a,=a,, b b

a rs

rs T Qsps s srr b;s = ——bs’r (2.3)

and all matrices are real. Evidently, terms proportional
to b and b’ violate parity P and charge conjugation C but
remain CP invariant. Others are P, C, and hence CP in-
variant.

Suppose Eq. (2.2) is the only means by which neutrinos
interact with the two photons; in a theory where neutri-
nos are massless due to a chiral symmetry such local in-
teractions must vanish: a,,a,,b,,b,, =0. It should be
pointed out, however, that one may in principle intro-
duce massless neutrinos by invoking symmetries other
than the chiral symmetry. In that case, massless neutri-
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nos may still be able to interact locally with the two pho-
tons. The only possibilities would be, of course, like
a)7,iy svF ®PF .5, which can be either diagonal or off di-
agonal, or ib,v,v, F “PF «p> Which can only be off diagonal
because b, is antisymmetric.

In this article, we are only interested in low-energy
neutrino—two-photon interactions. By low energy we
mean that energies associated with a specific interaction
are much smaller than the W-boson mass My,. For prac-
tical purposes, we are often interested in processes where
the center-of-mass energy of a scattering, or the momen-
tum transfer of a decay, is smaller than the e e~ thresh-
old. In any case, one can show that, to the lowest order
of O(a,,Gp), where a.,=e?/4m and Gy is the Fermi
coupling constant, our innocent guess of Eq. (2.2) actual-
ly exhausts all possibilities.

To show that to lowest-order weak interactions Eq.
(2.2) indeed covers all possibilities, we consider low-
energy neutrino interactions given by an effective four-
fermion interaction Lagrangian, where the Lorentz-
invariant term of interest is

[%,0,(CL+iClly v, I T,(Djy +iDJy )], (2.4)
where
L, =L,Y00up VeV 5 Vs - 2.5)

The coupling matrices C, C’, D, and D' are specified by
theoretical models. As these operators have a dimension
of 6, their couplings are of the order O (1/M}, ), assum-
ing weak interaction scales are of the order of or higher
than My,. In Eq. (2.4), [ is a charged fermion (a charged
lepton or a light quark) with its mass m; <<My,. Others
can always be arranged in such forms by a Fierz transfor-
mation. Interactions involving a heavy quark is negligi-
ble. This is because the scalar loop integral (see below)

Js o =0Ty gvslly(ky)y(ky))
2i

— <t 20 M1 — Y17, %2
- T aemQIflél € [(kl,,uzeyxvlvza k2,v16,uzvlv2a)k1 k2 +(k1'k2 )e

JIANG LIU

S

FIG. 1. An effective one-loop graph for a low-energy
neutrino—two-phonon interaction. Depending on the theoreti-
cal model, the four-fermion vertex could either be a scalar, a
pseudoscalar, or an axial-vector type.

turns out to be inversely proportional to the squared
mass of such a heavy quark.

Now, we must calculate the matrix element of /T jl be-
tween the vacuum and a state of two photons. Matrices
involve I';=v, and I';=0,5 0,5 vanish by charge-
conjugation invariance analogous to the theorems of Fur-
ry [9] and Yang [10]. The remaining terms are not zero,
and they can be calculated from a triangle Feynman dia-
gram (Fig. 1) which contains a scalar, a pseudoscalar, and
an axial-vector vertex, respectively.

A. Axial-vector-current contributions

For the axial-vector triangle diagram, the four-fermion
interaction can be written as

[Vr(pr )yaYS( Al,rs + Al,,rs'}/S)Vs(ps )(I—YGYSI) > (2.6)

where CP invariance and Hermiticity require that the

matrices 4, ,;, 4, , are real and symmetric:
Al,rs=Al,sr’ Al,,rs:AI’,xr ’ (2.7)

where, and henceforth, ! runs over all the participating
charged particles. One finds [11]

(ki1 —ky)T, (2.8)

HHva

where e’f’ and 6’;2 are the photon polarizations, and eQ, is the charge carried by I. k; and k, are the momenta carried
by the two photons. The result should be multiplied by a color factor 3 if / is a quark. The scalar integral f; is given by

- m?
flzfoldx fol *dy m'2"2xyxlfl-k2—ie - 4k11.k2 + 4(k1.’kz)2 I, (2.9)
with
=2k k, [ Jax [ ay——— :
0 0 mj—2xyk,-k,—ie
2(arcsin\/_];1—7<_2/2712)2 if k,-k,<2m?,
_ 21 VI ik ik 2.10)
22 1=Vii-2m/k,k, V=V 1—2mi/k, &,
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Equation (2.8) can be simply obtained by extracting out
the gauge-invariant part of the result of the effective tri-
angle diagram by imposing on-shell Ward identities (Ref.
[11]). Alternatively, it can be obtained from an explicit
model calculation [12,13].

The scalar integrals f; and I, have a notable feature
that their integrands become most singular and hence
their contributions become significant when m?~ 2k, -k,.
For low-energy neutrino-two-photon interactions, i.e.,
2k, -k, << M}, this implies that only those diagrams
which have an internal light particle (m; <<My, ) can be
relatively important. This is the reason why we have dis-
carded operators involving a heavy quark in Eq. (2.4).

One can simplify the result by rewriting

2i - oh 1
Jsoa=— ’;aelezfz(kl +k, )a(Fl,a)»FZ}\ +F2,a}»F7A)

i - -
=@ filk;+k, )a(Fl,pAF'zJA +F2,p}quk ),

2
(2.11)
where the last step follows from the identity
F o pF7P=—187F , FF* 2.12)

where 87 = g"Bgﬁa. After contracting with the y* matrix,
the momentum transfer (k, +k,),=(p, +p;), acts on the
neutrino field generating a neutrino mass m, via the
equation of motion. Its sign is determined by the direc-
tion of momentum flow with respect to the effective local
interaction vertex. The final result is of the form given by
the second term of Eq. (2.2). Thus, in a theory, such as
the standard model where the interaction currents are
chiral, a massless neutrino cannot interact with two pho-
tons in lowest-order weak interactions. This is basically
the result of Gell-Mann’s theorem [14].

Now, the effective neutrino—two-photon interaction
due to axial-vector currents is reduced to the standard
form given by the second term of Eq. (2.2) with

FPF z=W(F%F, s +F$PF| ,5) , (2.13)

1
2
and

, 1
arsz_;aemQIZlel(mvs +mvr)AI,rs ’
) (2.14)
by =@ Nifi(m, —m, )A[,; .

N;=1(3)if / is a lepton (quark). Others are zero.

B. Pseudoscalar current contributions

The effective four-fermion interaction can be written as

(9,7 5(Py s + Py s)vs [Ty sl) (2.15)
Now, CP invariance and Hermiticity require that
Pl,rs ::Pl,sr’ Pll,rs = —PI',sr (2.16)

and P, P’ real. For the triangle diagram with a pseudo-
scalar vertex, the calculation is straightforward. The re-
sult of our calculation is again of the form given by the
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second term of Eq. (2.2), where the two photons are in a
CP-odd eigenstate F-F, with

a) = 1

s 1Tk1 ‘k2

1

7Tk1 ‘k2

2
aele NIIImlPI,rs ’

(2.17)
b= QN I Py
In contrast with the axial-vector contribution, the pseu-
doscalar contribution is directly proportional to an inter-
nal charged fermion mass rather than a neutrino mass.
As a consequence, models with physical pseudoscalar in-
teractions may generate a much enhanced neutrino-two-
photon interaction because m;>>m,. Equation (2.17)
also indicates that even a massless neutrino may still pos-
sibly interact with two photons in lowest-order weak in-
teractions.

C. Scalar current contributions

The effective four-fermion interaction now takes the
form

(¥,(S s +81 ¥ s)vs 1) (2.18)
CP invariance and Hermiticity imply that
Sl,rszsl,sr’ SI:rs: _Sll,sr (219)

and both matrices are real. Now, in contrast with the
previous two cases, the result is of the form given by the
first term of Eq. (2.2), where the two photons are in a
CP-even eigenstate F-F. Explicitly,

a :_—l_a Q2N 1+_1_ _LIZ
rs 7Tk1'k2 em=] Y] 2 2k1'k2 1
><r”ISI,rs >
(2.20)
2
1 ) 1 4m|
=—— 1+= [1————
brs 7Tk1'k2 aeleNI [ + 2 2k1'k2 } 1
XmSy, »
where we have defined
FPF p=L(F$F, .+ F$PF, ,p) . 2.21)

Once again, the result of our calculation is directly pro-
portional to an internal charged fermion mass rather
than a neutrino mass.

This concludes that, in lowest-order weak interactions,
Eq. (2.2) is the most general effective low-energy
neutrino—two-photon interaction Lagrangian. The cou-
plings are subject to constraints given by Eq. (2.3) arising
from CP invariance and Hermiticity.

The above discussion also illustrates how one can sim-
ply obtain results without actually doing model calcula-
tions. Basically, for a given theoretical model, one needs
only to find out the effective four-fermion interactions
and then substitute the results into the corresponding
master equations (2.14), (2.17), and (2.20). The calcula-
tion for the four-fermion interaction is straightforward.
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It only involves evaluating some trivial tree graphs fol-
lowed by a Fierz transformation.

This conclusion implies that photons cannot be polar-
ized from neutrino decay or scattering if the spin degrees
of freedom of the neutrino are summed. This follows be-
cause the two terms in Eq. (2.2) cannot interfere. This
conclusion then has an important astrophysical implica-
tion. Namely, to leading order, photons from (neutral)
dark-matter annihilation or scattering or decay are not
polarized. In order to have them polarized, one has to ei-
ther violate CP invariance or go beyond lowest-order
weak interactions. As a consequence, the effect (if any) is
unlikely to be significant. This statement also holds for
Majorana neutrinos.

III. EFFECTIVE INTERACTIONS
FOR MAJORANA NEUTRINOS

We now turn to Majorana neutrinos constrained by the
Majorana condition

§=nt . (3.1a)

Here £=CE T and 7 is a phase factor. With the charge
conjugation defined above one finds that 7 is real, i.e.,
n==21. It also can be shown that the CP property of the
Majorana field & is given by in [15]. The plane wave ex-
pansion of a Majorana field is

Ex,0)= 3 f

m§ —ik-x
Tolbau(ka
a=s1n " Qm)

+77blu “(k,a)e™®*].
(3.1b)

By complying with the Majorana condition (3.1a) new
constraints arise. Suppose that the effective interaction
Lagrangian of Majorana neutrinos are analogous to that
of Dirac neutrinos:

Leff:Er M+bM7/5 gsFa

+i§r(ars 7/5+bMI)§ aBFaB ’ (32)

where the superscript M refers to Majorana neutrinos. In
the phase convention chosen above, we find that all the
coupling matrices must again be real by CP invariance
and

M_ M Mr— M

a,y=ay, a;'=a bM=—pM pM =_—pM

sr 2 sro

(3.3)
by Hermiticity. In addition, we can rewrite Eq. (3.2) as
Lg=E(ay/+byys)E;FPF o
+iES(a My s+bMEF “OF 4
=[E(aM—b}My )& FPF
+iE (a)'ys—byVEF “PFogln,m,

where the last step follows from the Majorana condition
(3.1a) and a rearranging of flavor indices. Equating Eq.
(3.2) to (3.4), one finds two constraints:

(3.4)

1£7,m,=0. (3.5)
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Similar to neutrino—one-photon interactions [16,17], the
physical distinction between these two constraints is as
follows: In one case, 77,1, =1, the two Majorana neutri-

nos have the same CP property. As a consequence,
bM=pM' =0 and

1)=a Qs rgsFaBFaB+la §r7/5§sF FaB ’
(3.6)

Leﬁ'(nrns:

where aM and a’ are real and symmetric. In another,

7,m,=—1, the two Majorana neutrinos have the opposite
CP property. Now a M'=0 and the interaction is

1):brs gr'ySé‘sFaBFaB_FibrA{,é‘rgs aBF
(3.7

M

Leﬁ‘(nrns =

where b and bM' are real and antisymmetric. In other
words, the interaction must be either Eq. (3.6) or Eq.
(3.7), but not a mixture of these two. In particular, for
interactions involving two identical neutrinos, where
n,=1,, the effective interaction must be of the form
given by Eq. (3.6), which is very similar to the case of a
Dirac neutrino [see Eq. (2.1a)]. This is in contrast with
the neutrino—one-photon interaction, where CPT invari-
ance implies that a Majorana neutrino cannot have a
magnetic moment.

Again, to show that to lowest order weak interactions
Egs. (3.6) and (3.7) cover all possibilities. Let us reexam-
ine the different situations.

A. Axial-vector-current contributions

We start by replacing the Dirac neutrinos in Eq. (2.6)
by Majorana neutrinos. The couphng matrices 4, ,; and
Aj ,; are changed to AM Lrs and AM 1rs- The superscript is to
remind us that now we are dealing with Majorana neutri-
nos. Again, one can show that from CP invariance and
Hermiticity both A4 f,‘fs and 4 ,‘fs’ are real and symmetric
with respect to the neutrino flavor indices » and s. In ad-
dition, the Majorana neutrino condition implies that

[§r7a7/5 Al rs + All,‘zsl’yS)gs ](7’}/‘1’}/51)
=0,MEva¥s( Al — ALy HE N Ty ysl) .

The value of 7,7, is determined by the Majorana mass
matrix. Evidently, the effective interaction Lagrangian
must be a form given by either Eq. (3.6) or (3.7), with the
by now standard procedure, they are given by

(3.8)

, 1
a,}y = _—i;aelelefl(mgs +m§r )Alj,‘zs(l+77r17s) ’
(3.9)

, 1
b= ——a . Q!N fi(m

Py g, —me VAN (1—n,m,) ,

where the phase factor (1£7,7n,)/2 is introduced in ac-
cordance with the Majorana condition.

B. Pseudoscalar current contributions

The effective four-fermion interaction still takes the
form of Eq. (2.15). From CP invariance and Hermiticity,
the analogous coupling matrices are again real and



S

Pll,‘is Plsr’ Plrs I%rl (3.10)

With the Majorana condition, the interaction must satis-
fy additionally

[§r75(PIA'£s +PI rsYS)gs ](TYSI)

(3.11)

=77r77s[§r75(Plj,‘{s 1rs75)§s ]<I7’5])

The operator Iyl is CP odd. Since the CP properties of
the matrix elements of £,ys£, and £,&, are opposite,
there are again two possibilities to make the four-fermion
interaction CP invariant. In one case, 7,9, =1, CP in-
variance and Hermiticity require that P,f”,s' =0. In anoth-
er, 7,m,=—1, it is P,{‘fs that must be zero. In any case,
the effective Lagrangian must be of the form given by the
second term of Eq. (3.2), where, depending on the relative
CP properties of the two neutrinos, the only nonzero

form factor could be either ¢’ or b, but not a mixing
of both:
. 1
ar{‘vl = 27Tk1 'k2 aelezNIIImIPII,v{s( 1 +7’r175) )
1 (3.12)
bM,: 27Tk1 'k2 aemQIZNIIImIPII,v{s’( 1 _”Ir"h) .

C. Scalar current contributions

The analysis is exactly the same. Given an effective
four-fermion interaction

[§r Slrs+S1rs7/5)]§s(Tl) > (3.13)
where S, and S/ are symmetric and antisymmetric re-
spectively. The effective Lagrangian must take the form
given by the first term of Eq. (3.2) with

2
M 1 ) 1 4m|
- N | A
ars 27Tkl'k2 aeleNI 1+ 2 2kl‘k2 I(
Xmlsll,bfs(l_*_nrns) ’
(3.14)

2

M 1 2 1 4m;
= - = [1—— |7
b 2k, &, e I T |

Xm SM(1+n,7,) .

Again, depending on the relative CP properties of the two
participating Majorana neutrinos, the only nonzero form
factor is either a™ or b ™.

Except a phase factor (1xn,n;)/2, formulas for Ma-
jorana neutrinos are very similar to those for Dirac neu-
trinos. It is not even necessary to introduce these phase
factors explicitly in the formula. As discussed below,
they will arise automatically when we calculate the ma-
trix element, due to the self-conjugate property of Ma-
jorana neutrinos [see Eq. (3.1b)].
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IV. WHERE COULD NEUTRINO-TWO-PHOTON
INTERACTIONS BE RELATIVELY LARGE?

Except the 7 neutrino, empirically the effective low-
energy four-fermion interactions [Eq. (2.4)] are known.
To a good approximation, they are given by the standard
weak interactions. In particular, in the standard model
the couplings of Eq. (2.6) are

Gg
Al,rsz_AI,rs_ 2‘/‘—2 rsel ’ (4-1)
where
1 if / is an up quark or a lepton
6,=1 of the rth generation , 4.2)

—1 if / is a down quark or other leptons .

Contributions to neutrino—two-photon interactions are
obtained by substituting Eq. (4.1) into Eq. (2.14). The
final outcome is zero, however, because neutrinos are
massless in the standard model. Because of this,
neutrino—two-photon interactions could be very sensitive
to new physics, even if the effective low-energy four-
fermion interaction is dominantly given by the standard
physics. Now, the question of interest is what kind of
new physics may potentially make such interactions rela-
tively large.

Let us consider some examples. For simplicity, we will
ignore quark loop contributions in the following discus-
sion (they can always be included in a straightforward
way).

A. The standard model with massive neutrinos

Let us start from the standard model by introducing
neutrino Dirac masses. The mixing matrix of the lepton
sector is given by V,;. Some of the calculations presented
below have been done by others [18]. We present them
here just for completeness.

The effective four-fermion interaction is the axial-
vector type. In terms of Eq. (2.6), the couplings are

Gy
A =——=QV, V,— 4.3)

,‘/
where the first term comes from a virtual W exchange.
The second term arises from a virtual Z, it is diagonal be-
cause of the absence of flavor-changing neutral currents.
Substituting Eq. (4.3) into Eq. (2.14), we obtain lepton-
contributions

Al,rs: - 8rs )’

’ GF em -5

aj == arm, +m, )12V, Vy=8,)

(4.4)

Gra
brls = ;\/%m (mvx +m"r )fl VrIV

As we mentioned before, the results are directly propor-
tional to a Dirac neutrino mass.

Next, we consider the situation where left-handed neu-
trinos form massive Majorana particles [19]. The Majora-
na neutrino fields satisfying the standard equation of
motion with a positive mass are now given by
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§r=VL,r+77rV;,,r ’ (45)

where v§ ,=(v, ,)°. Here, we will only consider contri-

butions arising from gauge interactions. In terms of the
Majorana field &, the charged current can be written as

L=Lv, @ ye Wi +EX 1L W) . 4.6
The effective four-fermion interaction due to a W ex-
change is therefore

L (W)=——G—FVV[§_ Ml—y)E T, vsl] 4.7)
eff 1/5 nVsilsrY Ys)ss yAYS . .

Terms not contributing to the two-photon interaction
have been discarded.
The neutral current due to a Z exchange can be written
as
NC_ g = A — A
L - 4 cosO BrS(VL,ry VL,S——’VE,r’y vi,s )Z)\.
w
= g

_marsgr'ykySé‘szk s (4.8)

where we have used y5(1ty5)==x(1tys). Together with
the lepton-Z interaction —(g/4cos@p ) v Z,+ -,
one finds that the effective four-fermion interaction due
to a Z exchange is

L ff(Z)=f""—_zs ErtysE ) Tyavsl) . (4.9)
el 2‘/2 rs\or 55s
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In terms of axial-vector-current four-fermion interactions
(3.8), it then follows that the couplings are basically the
same as for the Dirac neutrinos:

Gr
AII,‘fS: —_(ZVrIVsI

J— __8 s
2V2 )

G (4.10)
. UF
Alj,‘{s - ‘/i Vrl Vsl
The form factor of the neutrino—two-photon interaction
Lagrangian is therefore either
F®em

G
ar{‘v{,=4—ﬂ_“7:2—(2Vrl Vsl—srs )fl(mgs +m§r (1 +n,7;)

(4.11)
or
GFaem

M i
s 20V2

but not a mixture of both.

Again, the results are proportional to neutrino masses.
Furthermore, except for a phase factor (1+7,7,)/2, the
effective interaction for Majorana neutrinos look very
much the same as for Dirac neutrinos. As mentioned be-
fore, it is not even necessary to introduce the phase factor
explicitly in the formula. They arise automatically when
we calculate the matrix element. Indeed, one can show
from Eq. (3.1b) that, for a diagonal interaction r =s,

Va Vslfl(mgs —mg 1—mn,m,), (4.12)

fd3x(§,(k)|a,’y'§:(x,t)iys(x,t)ér(x,t)lgr(kr)):a,“f'[ﬁr(k)iysu,(k')—nfﬁ S(kDiysuf(k)]

=aM'(1+n¥)a, (k)iysu, (k') ,

(4.13)

which is two times bigger than the corresponding Dirac neutrino matrix element. As a consequence, the cross section
of the scattering yy — &£ will be enhanced with respect to that of ¥y —¥v, where the neutrinos are Dirac particles, by a
factor of 4/2=2, where the factor of 2 in the denominator arises from the identical particle statistics.

The situation for an off-diagonal interaction £ —&,(rs) is slightly more complicated. It should be noticed that, for
Majorana neutrinos, both £,iys&, and &iys,, and similarly &,&, and E,£,, contribute to the matrix element of the
same physical process. This is evidently not the case for Dirac neutrinos. In any case, one finds

S @Px (6, (k)a M 1E, (x, )iy s6, (5, 00+ &, (x, 0 5, (x, D&, (k")) =a M [, (k)i su, (k') —m,m, 7 (k" iy su ()]

Similarly,

S @Px (6, (01bY[E, (x, 008, (x, 1)=&, (x, 1, (x, D] &, (k")) =b Y (1 = ,m, )T, (K, (K") .

=aM'(1+n,m,)a,(k)iysu (k') . (4.14)

(4.15)

The matrix element for Majorana neutrinos are again twice as large when compared with Dirac neutrinos. Neverthe-
less, depending on their relative CP properties, they can have only one term, i.e., either a™’ or b™’, but not both. By
contrast, both terms are allowed for Dirac neutrinos, and their form factors are about the same when m, >m, . Since

s r

these two terms do not interfere, the decay rate or scattering cross section for Majorana neutrinos is still about a factor
of 2 bigger than that of Dirac neutrinos.

More generally, the mass matrix of Majorana neutrinos can have Dirac mass terms if one also introduces right-
handed neutrinos. Some interesting features of such mass matrix will be examined explicitly when we turn to consider
some other nonstandard models.
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B. Two-Higgs-doublet model

Including one more Higgs doublet, there will be a physical charged scalar ¢* in the SU(2); X U(1)y model. The in-

teraction of ¢ and the leptons is

— g + = [ U1
L,=—=5—¢*y
o~ Vam, T |, vy

v
L mR+—2m, L|I+H.c.,

(4.16)

where v, and v, are the vacuum expectation values of the two Higgs doublets, and L and R are the helicity-projection
operators. Here, we assume for simplicity that neutrinos are Dirac particles. It then follows that the effective low-

energy four-fermion interaction is given by

GF m,mvr _ _
Leﬂ‘=_ 2\/5 Versl mz [vr(l_YS)Vs][l(l_YS)l]+

where the ellipses represent terms which do not contrib-
ute.

Here, all terms in Eq. (4.17) are essentially proportion-
al to a neutrino mass. Phenomenologically, we have
mp/m?,. <<1. Thus, unless one stretches the theory to
the breaking point where the ratio of v, /v, becomes ex-
tremely large, contributions to the neutrino—two-photon
interaction from the charged scalar will be much smaller
than that from the standard physics (4.4). An enhance-
ment could be obtained provided

v m .+
L4 (4.18)
op) m,

In that case, the dominant term would come from the
third term of Eq. (4.17) and it would take the similar
form as that from the standard-model physics:

Gra v, °{ m 2
’ F%em 1 1
= +m, WaVafi |—
Ay 277_‘/5 (mvs mvr) rl sIfI v, m¢+ s
(4.19)
, _ Groey Uy ? m g
s 277‘;5 (mvs_mvr)Verslfl ; m¢+

The possibility of having an extremely large ratio in a
three-Higgs-doublet model [20] has recently been ex-
plored in connection with the study of CP violation in the
K3 decay [21].

For a reasonable choice of the parameters, contribu-
tions from neutral scalars are negligible. This is again
due to the fact mlz/m 30 << 1, here m 4o is the mass of a

neutral physical scalar.

2
m
¢+

v, | m? _ v,
+ o 2 [Vr’ya(l—’}/S)vs][(lﬁya'}/Sl)_ E‘l_

mm,

s

7,1 4+y v I T(1+y5) ]

m, m

——%[Vr'}/a(thyS)vs](Tya’}/Sl) + - s
m¢+

(4.17)

C. Left-right model

All models discussed so far have a common feature
that the required helicity flip of the effective Lagrangian
Eq. (2.2) or (3.2) is achieved by an explicit neutrino mass
insertion. We now consider the SU(2), XSU(2), XU(1)
left-right model [22], where the helicity flip can be
achieved via a charged lepton mass insertion.

Once again, we start from Dirac neutrinos. The
relevant interaction Lagrangian of the model is given by

L =‘%W;‘ Ty L +6R)v,+H.c.,
where a =1,2 refers to the two W’s of the model: W is
the one observed in the laboratory and W, is the so called
right-handed W. V!(¥?) is the mixing matrix associated
with the left- (right-) handed charged current. 6 is the
left-right mixing. Phenomenologically, it is generally re-
quired that

(4.20)

0L . (4.21)

Because of the left-right mixing, 650, new terms are gen-
erated in addition to the standard ones discussed before.
In terms of the effective four-fermion interaction, terms
which could potentially be important are those from the
left-right mixing (V=V¥")

Log=2V2G 0V, Vy[(Fv )T — ¥y v, Tysl)] .
(4.22)

Comparing Eq. (4.22) with Egs. (2.15) and (2.18), one sees
that P/, =S/, =0and
P, =—S,,,=—2V2G0V,V, . (4.23)

It then follows from Egs. (2.17) and (2.20) that the only
nonzero terms arising from the left-right mixing are those
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which are symmetric in 7 and s: L =m (v VL VL VL)
_ +mp (VYR s VR VL)
2V 2Gpa, 1 4m} rs_ ’rc ’ . o

ars:_WeVerslml 1+E I_H 1| » +Mrs(VR,rVR,s+VR,sVR,r) (4.25)
contains both Dirac- and Majorana-mass terms. We will
(4.24)  assume that the neutrino mass matrix can be diagonal-
_ ized perturbatively. Then in the basis where the
o = — 2V 2Gpa.y, OV VmI charged-lepton mass matrix and the submatrices of m,,
s mky -k, M and M, are diagonal, the charged-current interaction La-

An interesting feature of Eq. (4.24) is that the results
are directly proportional to a charged-lepton mass rather
than a neutrino mass. Now, if one takes the limit of 6
from phenomenology shown in Eq. (4.21) literally, one
would see that results given by Eq. (4.24) would be much
larger than those from the standard model physics (4.4)
because, for a reasonable choice of m,
m,/m, =5X 10° eV/m y, >>0. In the small family mix-
ing limit, the enhancements for the diagonal
neutrino—two-photon interactions are 6(m, /m, ),

O(m, /m v, ), and 6(m_/m, ), respectively. In addition,

in the standard model (with massive neutrinos), the two
photons can only be in a CP-odd eigenstate F-F, whereas
here both CP-odd and CP-even eigenstates are allowed.
However, we will argue in the next section that, in the
simple version of left-right models, it is technically not
natural to have a small neutrino mass and a large left-
right mixing. Some fine-tunings have to be introduced.
Let us now turn to consider Majorana neutrinos, where
the mass Lagrangian
J

grangian is still given by Eq. (4.20). Here, we choose the
matrices diagonalizing m, and M,; to be the same for
simplicity.

The mass eigenstate fields &, and £, are obtained by di-
agonalizing the remaining mass matrix. Perturbatively,
one finds

§r z(VL,r + Ur’svgt,s )+T]r(vi,r + UrlsVR,s ) >

, i (4.26)
gr z(‘VR,r + Ursvi,s )+77r(v§2,r + UrsVL,s ) ’
where 7,,7,==*1 and
Urs’ Ur/s z%O(’nDMil)rs (4.27)

are the mixing matrices which connect a heavy neutrino
to a light one. Evidently, the self-conjugate fields given
above satisfy the Majorana condition (3.1a). Now, the in-
teraction Lagrangian involving light Majorana neutrinos
is

~ 5 VuW o Ty "6, —0U,m,Txy 6,)+ Hee.
It then follows that the effective four-fermion interaction
due to the left-right mixing is

(4.28)

Leﬂ‘z _‘/EGFG{ (nrkl,rs +173K1,sr )[(—gsgr )(l_l )_(gs‘ySgr )(1_7/51 )] _(anl,rs “nsKl,sr )[(Es75§r )(l_l)—-(gsgr )(1_7/51 )]} 4

where

Kl,rs = VSI Vql Uqr . (4.30)

The overall sign of the effective interaction Lagrangian
is determined by the sign of the phase factor. This is in
contrast with a chiral-type interaction, i.e., left Xleft or
right Xright currents, where phase factors always enter
as a combination of (1£m,n,)/2, which is either zero or
1. Hence, the overall sign of the interaction Lagrangian
remains the same irrespective of the sign of 7, and 7,.
Now, using our master equations (3.12) and (3.14), one
finds that the results due to the left-right mixing are
M

gy \/_2GFaem N
bM ——‘n_k-'Tz—eml(nsKl,sr—nrkl,sr)
w14 [i=Ami
2 2k1‘k2 ! ’
- 4.31)
asr \/ZGFaem
b M- :WGmI(nsKl,srinrkl,rs )1, .

(4.29)

f

They are again directly proportional to a charged lepton
mass. If the mixing angles in U,, were not very small,
contributions arising from the left-right mixing could
dominate.

Again, when we calculate the matrix element, for
7,m,=—1(+1) only bM(aM) and bM' (aM') terms are
not zero. Unlike in the SU(2); XU(1)y model, there are
no simple relations between the matrix elements of Dirac
neutrinos and Majorana neutrinos.

D. The Zee model

The Zee model [23] is a simple extension of the stan-
dard model, where one introduces a charged scalar sing-
let in the Higgs sector. This charged singlet 7 is as-
sumed to carry a lepton number and therefore couples
only to leptons. Such a simple extension has a number of
interesting physical implications. One example would be
the neutrino magnetic (transition) moment. A large por-
tion of theoretical models [24-28] constructed so far,
which could provide an extremely large neutrino magnet-
ic moment, bare some resemblance to the Zee model.
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Let us first consider the case where neutrinos are Dirac
particles. To do so, we also introduce right-handed neu-
trino into the model [29].

The new physics arising from interactions with z * is

L=[F,w{ I h"+Ivi h")

+F (g dgh* +1gve b )], 4.32)

where

Frl = —Flr (4.33)

due to Fermi statistics. To maximize the effect of in-
terest, here we assume that there is no mixing in the lep-
ton sector at the tree level. Introducing small mixing an-
gles will not alter our conclusion.

One can easily calculate the effective four-fermion in-
teraction Lagrangian from Eq. (4.32) and subsequently
obtain

a;s GFaem M%V P
b |~ Vam |g'm? (F FytFuFo)f/(m, £m, )
(F. F'F F' ymy —
- rid sl — m ’
K} si+rl lkl'kz
(4.34)
2
Ay | _ GFaem w , ,
brS N ‘/577"(1 'k2 gzth (FVIFSI j:FSIFrI )
X l+l 1 4m12 I (4.35)
S ) 2k, -k, | 1] '

where m,, is the mass of h.

It is evident that the final results have both neutrino-
mass and charged-lepton-mass-dependent terms. Literal-
ly, the charged-lepton-mass-dependent term could dom-
inate, just like in the left-right model, provided the corre-
sponding couplings in F and F' are not very small. Phe-
nomenologically, the most stringent constraint arises
from the absence of u—ey. There, one finds (Ref. [29])
F3,/m? <1078 GeV ™2 Constraints on other combina-
tions of the parameters are much weaker.

In addition, the constraint that F must be antisym-
metric introduces a special feature to the model. Consid-
er, for instance, a low-energy photon annihilation
vy —¥(kw(k,) with 2k -k, S1 MeV. In the absence of

J

M
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h, the product of the annihilation would dominantly be
v,. This follows because the loop integral [see Eq. (2.9)]
f; or I, is inversely proportional to the mass square of the
charged lepton of the same generation:

2
fe _ mu,r
2

—_ >>1 .
f.u-,T me

(4.36)

As a consequence, m, fe /mvu >1 unless m, .
vaemi,f/mez. However, in the new physics, v, is
forced to couple to the heavier charged leptons but v,
can interact directly with e. Consequently, by switching
on the new physics, one could have, depending on the ex-
plicit values of F and F’, a sizable (and even an equal)
amount of v, . generated entirely from the new physics.
This is the major difference between the Zee model and
the conventional left-right model.

Combining these two aspects, even if we apply the
most stringent phenomenological constraint F, F,, ~107°
GeV ™2 uniformly to all the possible nonzero combina-
tions, enhancements to some of the diagonal
neutrino—two-photon interactions are still very large.
When compared with the standard physics result, the ra-
tios of the enhancement are approximately 10~ eV/m v,

for v,, 10° eV/m, for Vi
I
tively. Also, the ratio of v, ; and v, in the photon annihi-

lation can be 10 eV/m,, .

and 10% eV/m, for v, respec-

We turn to the case where neutrinos are Majorana par-
ticles. In this case, we do not introduce v;. Now, in or-
der to have neutrinos be massive, one needs to have two
Higgs doublets ¢, ,, which mix with each other via a
term such as €;¢i¢jh ~+H.c. in the Higgs potential.
The Yukawa coupling of the model is given by

m )
L,=Fw§ I ht—5 L 2

—S= v, lx¢{ +H.c.,
‘/2 MW COSBVL,r R¢l c

(4.37)

where tanf3 measures the ratio of the vacuum expectation
values of the two Higgs doublets. For simplicity, we only
allow ¢, couple to the leptons so that the model has a
natural flavor conservation.

In terms of the Majorana fields defined in Eq. (4.5), the
effective four-fermion interaction Lagrangian of the mod-
el can be calculated easily from Eq. (4.37). Omitting
terms which are directly proportional to a neutrino mass,
we find

@ tap” 8%em mf F,I
b - | 8V 2w cosPk -k, My he,) Riak ol
(4.38)
a'{y _ +011,” _ 8Qem m,2 F 1+ 1 1 4m12 I
by | —b 8V 2m cosBk, k, My{hgy 7|0 2 2%k, -k, |
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Here, (% ¢,), arising from the A-¢, mixing, has a dimen-
sion of mass?, and (h¢;) '~M[?—M;? where M, and
M, are the .masses of the two charged Higgs bosons of
the model.

One can show that this model also generates off-
diagonal calculable neutrino masses. Thus, &, is not a
mass-eigenstate field. The mass-eigenstate fields can be
obtained by diagonalizing the neutrino mass matrix. It
can be shown that the same parameter which enters into
Eq. (4.38) also appears in the radiatively generated neutri-
no mass matrix. Therefore, in the absence of fine-
tunings, Eq. (4.38) is, in fact, effectively proportional to a
neutrino mass.

On the other hand, the fact that the neutrino mass ma-
trix is off-diagonal implies large mixings in the lepton sec-
tor. Thus, similar to the case of Dirac neutrinos, large
enhancements for v, . can be expected from the new
physics and, particularly, from the off-diagonal standard
charged-current interaction, where the enhancement can
reach the maximum of the order of miﬂ/ m2 for Vi

E. Supersymmetric model

In a supersymmetric model [30], additional contribu-
tions arise from supersymmetric particle interactions.
All these contributions are basically generated from
axial-vector-current interactions and hence the results are
directly proportional to a neutrino mass.

There is a class of models [31] which contain R-parity-
violating interactions of the form

AL L;E+ Ny L, Q, D, (4.39)
where L, Q, E€, D€ are the usual lepton and quark SU(2),
doublets and singlets respectively and i, j, k are genera-
tion indices. Because of Fermi statistics, the coupling
Ajjx is antisymmetric under the exchange of i and j.
These interactions can provide a contribution (through
effective scalar or pseudoscalar interactions) to the
neutrino—two-photon interaction which appears not
directly suppressed by a small neutrino mass. If the left-
and the right-handed slepton (squark) mixing is not zero,
it will be directly proportional to a charged-lepton
(quark) mass. However, in that case, a nonzero and cal-
culable neutrino mass will also be generated, and the
same parameter that makes the neutrino—two-photon in-
teraction large also enters into the neutrino mass. Thus,
this contribution is again effectively proportional to a
neutrino mass.

On the other hand, interactions given by Eq. (4.39) can
induce significant flavor-changing neutral currents. Par-
ticularly, a large off-diagonal v -e coupling would allow
the scalar-integral of a tau-neutrino—two-photon interac-
tion be f, or I, rather than f_or I.. The consequence is
very similar to that discussed in the Zee model.

From the above model discussions, one sees that to
have a relatively large neutrino two-photon interaction it
is necessary to introduce new physics such that (1) its in-
teraction strength with neutrinos are not very small, (2)
the new interaction will not generate a calculable neutri-
no mass such that the same parameter, which determines
the neutrino mass, also enters into the effective

JIANG LIU 44

neutrino—two-photon interaction, (3) the required helici-
ty flip in Egs. (2.2) and (3.2) is realized by a charged-
fermion mass insertion, and finally (4) the resulting scalar
loop integrals [f; or I, in Egs. (2.9) and (2.10)] are not
suppressed by a heavy-mass scale. Theoretical models
which contain nonchiral weak interactions may potential-
ly be able to satisfy these conditions. Our model discus-
sions also show that, numerically, it appears possible to
obtain a large enhancement in some nonstandard theoret-
ical models.

V. THE COMPATIBILITY
OF A SMALL NEUTRINO MASS AND
A LARGE NEUTRINO-TWO-PHOTON INTERACTION

Although it appears that a much larger neutrino—two-
photon interaction can be obtained in some theoretical
models, fine-tunings have to be introduced in order to
keep neutrino mass small. It would be of interest, of
course, if such fine-tunings could be avoided. This is a
technical issue related to the naturalness of having a
small neutrino mass and a large “helicity-flip” interac-
tion. The problem is that, for a given Feynman graph
contributing to the neutrino-two-photon interaction, it
will also generate a neutrino mass after removing the two
external photon lines. As far as neutrino—two-photon in-
teraction is concerned, this problem has not yet been ful-
ly addressed.

To illustrate where the fine-tuning enters, let us consid-
er the left-right model with Majorana neutrinos as an ex-
ample. The results from the new physics due to the left-
right mixing are given in Eq. (4.31). When compared with
those arising from standard-model physics, they are
directly proportional to a charged-lepton mass rather
than a neutrino mass.

However, the same parameter which enters into the
neutrino—two-photon interaction Lagrangian also ap-
pears in the neutrino mass matrix. Indeed, the mixing
matrix K; . defined in Eq. (4.30) contains a matrix called
U, which connects a light left-handed neutrino to a heavy
right-handed neutrino. Its order of magnitude is given by
Eq. (4.27), where mj is typically of the order of the
charged lepton mass m;. Now, combining the light-
heavy mixing and the charged lepton mass in Eq. (4.31)
one sees that

mU~miM™1, (5.1

which is basically a “seesaw” formula [32,33] for a light-
neutrino mass. As a consequence, contributions from the
new physics and from the standard physics are not that
different [34].

One could make the new physics result much bigger
than the standard result by introducing fine-tunings.
This can be done because the light neutrino mass is actu-
ally given by

m,~m—mjM /4. (5.2)

Thus, one could fine-tune the difference of these two
terms such that the outcome, but not the individual term,
is small. In that case, one would still have m,U>>m,,
and the new physics result would be much bigger than
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the standard one. Such a fine-tuning is unnatural because
it has to be done in all order.

Similarly, one can show that it is also necessary to in-
troduce fine-tunings if neutrinos are Dirac particles [35],
where the fine-tuning enters into the determination of the
left-right mixing 6. Similar situations happen also in oth-
er simple theoretical models [36].

For neutrino—one-photon interactions, it is known that
the naturalness problem could be solved by a “charge”
symmetry introduced by Voloshin [37]. Unfortunately,
this symmetry will not help us to solve the naturalness
problem in neutrino—two-photon interactions. This is
because at one-loop level only those intermediate states
invariant under charge conjugation contribute.

Moreover, the effective neutrino—-two-photon interac-
tion operator [see Eq. (2.2)] has a dimension of 7, which is
a factor of 2 higher than a neutrino—one-photon interac-
tion operator, Vo ,gvF @ Comparing the form factors of
these two, the form factor of a neutrino—two-photon in-
teraction will have an additional mass square in the
denominator. Therefore, when introducing new physics,
we must make sure that the heavy mass of the new phys-
ics will not go to the denominator. Otherwise, we would
still end up with a much suppressed neutrino—two-
photon interaction, even though the suppression itself
does not directly result from the smallness of a neutrino
mass.

A typical example of this kind is the following: one
could imagine an interaction such as

L =iF,v$ ,vg 4°+iF'EysE¢°+H.c. , (5.3)
where
F =F, . (5.4)

Here, ¢° is a neutral pseudoscalar and E is a heavy
charged fermion. All the particles in Eq. (5.3) are SU(2),
singlets and the whole theory can be easily made gauge
invariant. One can make the neutrinos massless by, for
instance, imposing a discrete symmetry vg ;— —vg ;, SO
that the right-handed singlets cannot couple to the left-
handed SU(2), doublets. Also, one can choose F,; diago-
nal by an orthogonal rotation of v ,. Now, we are in a
situation where neutrinos are massless but the
neutrino-—two-photon interaction is not zero

LeE:ia;rErYSng aBFaB ’ (55)

with §, =vg ,+7,v% , and

aemFrrF’

2
¢0
I is given in Eq. (2.10) where one replaces m; by mg, the
mass of the heavy fermion. For a low-energy process,
mEIE/kl'kzzl/mE.

Now, suppose we introduce small masses for the neu-
trinos. Then the standard physics contribution to the
neutrino—two-photon interaction is no longer zero.
Comparing these two, one finds

[———
Ay = mEIE .

7Tk1 'k2m
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new result F'FMlZV mglg
standard result gzmio m, 1,
F'FM2, m?
W e (5.6)

2.2
g m¢0 mvemE

Here, the point is that even if one assumes the maximal
allowed value of F'F/m 30~g2/M;2V, the new physics
contribution can hardly be much bigger than the stan-
dard result obtained from a much simpler way. In fact,
this could happen only if my $25(10 eV/m v, ) GeV, but

one knows that my cannot be much smaller than My,.
Thus, the new physics result given by Eq. (5.3) is in fact
equally suppressed.

Such a heavy-mass suppression could have been avoid-
ed if the last term of Eq. (5.3) were iy se¢®. But then, by
gauge invariance, one finds that ¢° has to be a member of
an SU(2) multiplet. In that case, the other members of
this multiplet will necessarily generate a neutrino mass,
and there is no guarantee in general that the result will be
sufficiently small once one makes the neutrino—two-
photon interaction large.

While at present we do not yet have a solution to this
naturalness problem, a toy model outlined below appears
to work in the desired direction. The idea is to find a
mechanism in which one-loop contributions to the neutri-
no mass, but not to the neutrino—two-photon interaction,
cancel exactly.

One could imagine an interaction like

8
L=—=
V2

V. Iy"(L +6R)v,

+ 3 ¢;(7LVCL,,+6-I.R1(},,) +H.c. ,
a=1,2,3,4

(5.7)

where one has a massive charged vector boson ¥V, and
four charged scalars ¢,(¢, is a gauge singlet,
a =1,2,3,4). Their interaction strength with the normal
leptons and their ‘“left-right mixing,” 68, are equal. If
their masses are also the same, m;,=m 4, =M, then one-

loop radiative corrections to the neutrino mass from V'~
and from ¢, would be the same but with the opposite
sign, and thus cancel (see Fig. 2). Unlike a scalar multi-
plet, the neutral partner of V;f will not generate a neutri-
no mass, if neutrino masses are assumed to be zero at the
tree level.

One thing special about this toy model is that there are
no complete cancellations for the neutrino—two-photon
interaction. In fact, the effective pseudoscalar current
contributions from ¥, and ¢, actually add up, although
the scalar part cancels. This follows because a scalar
charged-current contributes, after a Fierz transformation,
equally to a scalar- and a pseudoscalar-four-fermion in-
teraction, whereas those from a vector charged current,
although equal in size, have the opposite sign.

In any case, the effective-four fermion interaction of
Eq. (5.7)is
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FIG. 2. Depending on the relative interaction strength and
the participating particle masses, contributions to the neutrino
mass, but not to the neutrino—two-photon interaction, could
cancel in these two sets of graphs.

885!
2M?

Leﬁ'=_0 [(VrySVS )(TySI)—%(VraaBVs )(Taaﬂl)]

— L(W,0 457 v W ToPysD)] . (5.8)

Clearly, up to one-loop level, no term in Eq. (5.8) would
disturb the requirement that neutrinos are massless, be-
cause

tr(Ty 51, tr(To o), tr(To gy 1) =0 . (5.9)

This would have not been the case, if there were terms

such as (¥,v)(II). In any case, the one loop
neutrino—two-photon interaction is
ia;v,ysviF PF g , (5.10)
with [see Eq. (2.17)]
a,s=~%ﬁml . (5.11)
While the first term in Eq. (5.8) leads to a

neutrino—two-photon interaction, the presence of the last
two terms implies that such a mechanism can also gen-
erate a neutrino magnetic moment which is not
suppressed by a neutrino mass. Our explicit loop calcula-
tion shows, indeed, that is the case. Potentially, this
might be yet another viable mechanism for producing a
large neutrino magnetic moment.

It is of course not obvious if this idea can be material-
ized in a realistic model. The trouble is that there does
not seem to have a viable symmetry reason to relate a
vector boson to a scalar. On the other hand, introducing
small asymmetries (explicitly in all possible ways) is not
crucial for our results. Although, in that case, one would
have at the one-loop level a nonzero neutrino mass, it
would be suppressed by the small asymmetry parameters
chosen explicitly at the tree level. The point is that these
small parameters will not enter into the leading terms of
neutrino—two-photon interactions. Thus, one could have
a theoretical model where the neutrino—two-photon in-
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teraction is large and the neutrino mass is arbitrarily
small.

The question of compatibility becomes irrelevant if one
considers nonlocal interaction arising from two-loop
graphs. It is known [38] that a vanishingly small nonlo-
cal neutrino—two-photon interaction can be generated at
two-loop level, even if neutrinos are massless.

VI. CONCLUSION

We have presented a systematic study of
neutrino—two-photon interactions. At one-loop level,
these effective interactions turn out to be local and they
can at most have two independent terms for a diagonal
process, such as a neutrino—two-photon scattering. The
number of independent terms becomes 4 for an off-
diagonal interaction, such as a flavor-changing two-
photon decay. We have derived some simple formulas
for the corresponding form factors. By using these for-
mulas, one can easily obtain results in all theoretical
models. We have also provided some examples to illus-
trate how this can be done. By doing so, we also show
that a relatively larger neutrino—-two-photon interaction
can be obtained in some nonstandard theoretical models.
Because of the possibility of having a large flavor-
changing neutral interaction, one can have a much
enhanced neutrino—two-photon interaction invoking v,
and, particularly, v,.

Differences arising from whether a neutrino is a Dirac
particle or a Majorana particle are examined in some de-
tail. In the absence of CP violation, we find that the
structure of a Majorana neutrino—two-photon interaction
is determined by the relative CP properties of the partici-
pating Majorana neutrinos.

We have also examined the question of compatibility of
having small neutrino masses and a large neutrino—two-
photon interaction. A new illustrative mechanism is dis-
cussed. It shows potentially how this problem might be
solved.

Even with a much enhanced neutrino—one-photon in-
teraction suggested by some nonstandard theoretical
models (often via some arbitrary fine tunings), it appears
difficult to have its effects be significant. Only in some
very special circumstances might such effects be able to
compete with those from, for instance, neutrino-
electron(nucleon) scattering or neutrino—one-photon in-
teraction. On the other hand, to have a large
neutrino—two-photon interaction, we have to introduce
new physics any way. It is therefore conceivable that, in
some special situation, those seemingly dominant effects
might be canceled once we switch on the new physics,
leaving the neutrino—two-photon interaction as the only
dominant interaction. Detailed phenomenological stud-
ies will be presented in a separate article.
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