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t-expansion calculation of the SU(3) axial and tensor glneballs
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We use the t-expansion method to calculate the masses of the 1+ and 2++ states in the pure glue sec-
tor of the SU(3) lattice gauge theory. The masses are calculated to order t and the physical predictions
are derived from D-Pade analysis of the ratios of the square of the masses to the string tension. Our re-

sults indicate that the axial state is considerably heavier than the scalar (by at least 50% or so) while the
tensor lies in between, much closer to the scalar state.

I. INTRODUCTION

Glueball states are predicted by QCD. The calculation
of their spectrum in the pure gauge sector of lattice QCD
is of major importance. The main reason is that a reliable
estimate of glueball masses may allow an interesting com-
parison of QCD predictions derived from first principles
with the experimental candidates for glueball states such
as the fo(991) or the il(1440). No doubt, pure gauge re-
sults cannot be considered as final, since they completely
ignore the interactions of gluons with quarks. The in-
clusion of dynamical fermions seems to leave the spec-
trum of baryons and mesons unchanged [1—4] apart from
renormalizing the overall scale. The same may hold also
for glueball calculations, as long as no strong mixing
occurs with qq states. In any case, coping successfully
with the pure gauge sector is an important milestone on
the way to producing conclusive results for full QCD.

Of particular importance are the masses of the 0++
and the 2++ glueballs, which were expected to be the
lowest pure glue excitations. Early analytic and numeri-
cal SU(3) computations on spatially small volumes [5,6]
argued that the two levels have very similar masses with
the 2++ slightly lower. It has been suspected that these
results might be dominated by finite-size e6'ects and only
further numerical investigations on spatially larger lat-
tices [7—10] verified that this indeed was the case, and
that the tensor is about 50% heavier than the scalar glue-
ball.

In the Hamiltonian formulation, the 0++, 2++, and
1+ glueballs were calculated by Hamer [11]. This cal-
culation was an extension of the pioneering work of Ko-
gut, Sinclair, and Susskind [12] who computed the first
four orders of the strong-coupling expansion. Hamer
disagrees with the third and fourth order and extends the
calculation to seventh order. He concludes that the mass
ratio M(2++)/M(0 +) is strictly greater than one for
all finite couplings. The values reported by him [11],
M(2++)/M(0++ ) =1.5 and M(1+ )/M(0++) =2
around g =1 (P=6), are extracted from various approxi-
mants that continue the strong-coupling series to the
weak-coupling domain.

A variational ansatz combined with Hamiltonian
Monte Carlo methods has been used by Chin, Long, and
Robson [13] to estimate the tensor-scalar mass ratio. The

result follows a similar trend to that of Hamer [11]but
the actual values are substantially lower.

We investigate the tensor and axial glueballs by using
the t-expansion [14] method for the Hamiltonian formu-
lation of lattice QCD. This method proved its usefulness
in the investigation of other glueballs in the past, includ-
ing the scalar glueball in SU(2) [15,16] and SU(3) [17] and
various odd charge-conjugation states in SU(3) [18].

After a short formulation of the problem and the
method, we present the explicit t expansion of all the
quantities we calculate. The axial glueball has already
been calculated [18] by this method. Our new results
correct minor errors in the old calculation. The t-
expansion method has been applied to the tensor glueball
of SU(2) [19]but this is the first time it is carried out for
the tensor glueball in SU(3). We use D-Pade fits as ap-
proximants with which we extract physical results from
the series. Our results indicate that the axial glueball
is much heavier than the scalar one and the tensor
glueball lies in between. In the crossover region
we find 1.06 (M (2+ )/M (0++ ) ( 1.3 and 1.4
&M(l+ )/M(0++) &1.8.

II. SU(3) t-EXPANSIGN

The Kogut-Susskind Hamiltonian for the SU(3) pure
gauge theory is defined as

H = g Ei+xg (6—trU —trU )

l p

(2.1)

where El is the electric-color field on the link I, trU is
the magnetic-color Geld of a plaquette p, derived from the
product of four link operators Ul around the plaquette p;
g is the coupling, and x =2/g . We will also use the
variabley =&2x =2/g .

For calculational purposes it is useful to work with

H =g E&
—xg tr( U~+ U~ )

l p

(2.2)

and to start the t-expansion procedure from the strong-
coupling vacuum, which is the state obeying

E, io) =0.
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This means that one calculates the energy function E(t,g )= g, (H"+')'+( —t)" —„+1, 6

n

(2.4)

(2.3)

which in the limit t~ ~ turns into the correct vacuum
energy. Expanding this energy function in powers of t
one performs a cluster expansion whose coeKcients are
connected matrix elements of H:

is the number of plaquettes, which is taken to infinity.
We have recalculated the vacuum energy density to or-

der H and discovered a trivial error in the result pub-
lished in the literature [20]. The error has almost no
eFect on the various fits. The vacuum energy density per
plaquette is

2

+ g
[ t2x2+ t2( —2x3+ 32x2) 1t3( 64x3+ 512x2)+ 1 t (1Ox 5 2x + 92x2)

2 2 2 3 6 3 9 24 3 27

1 t5( 650 6+ 800 X 5+ 1472X 4 32768 X 3+ 131072X 2)
120 27 3 9 27 81

+ 1 t6( 1498 X 7 72 800 X 6+ 3584X 5+ 178048 X 4 655 360 X 3+ 2097 152 X 2)
720 9 81 27 81 243

1 t7( 18634X8 671104X7 14328832X6
5040 9 81 729

+ 416 768 X 5+ 13 204352 X 4 4194304 X 3+ 33 554432 X 2)
27 81 81 729

+ 1 ts( 19352X9+ 1192576X8 17368064X7 652354304X6
40 320 3 9 81 2187

51 144 192 X 5 + 259 201 152 X 4 234 881 024 X 3 + 536 870 912X 2
) +O ( t 9

) i
81 81 729 2187 (2.5)

This expression can be handled by using D-Pade ap-
proximants. These are nondiagonal Pade approximants,
applied to the t derivative of the expression and integrat-
ed out to t~~. We are then left with a complicated

0
0

FICx. 1. Energy-density and specific-heat curves as derived
from three D-Pade approximants which were applied to the y
derivative of Eq. (2.5). The results of the approximants 0/6,
0/7, and 1/6 are represented by three different curves which
overlap with one another for all practical purposes. The peak of
the specific-heat curve specifies the crossover from strong to
weak coupling.

polynomial function of the coupling constant y =2/g .
It is advantageous [15] to apply this method to dA/dy.
The results for e that are presented in Fig. 1 are obtained
by integration over y. The latter is stopped at the point
where an approximant turns negative, since d 6 /dy
should be a positive-definite quantity. The curves plotted
in Fig. 1 were those for which this range was the largest.
They are consistent with one another for quite some
range inside the weak-coupling domain. In the weak-
coupling limit in which the lattice size is held fixed (to be
distinguished from the continuum limit in which a van-
ishes) the SU(3) problem turns into a gauge theory of
eight independent gauge fields on each link. Using the
harmonic approximation one can obtain therefore the
value of 6(y —+ 00 ) =6.368. This number should serve as
an upper limit on 6(y). Figure 1 is consistent with it.

On the same figure we plot also the specific-heat
curves, de6ned by C = —d 6/dy . All curves peak be-
tween y =1.5 and 1.7. This is therefore identified with
the crossover region between strong and weak coupling.
Above these values of y we may expect our calculations
of scaling ratios to approach the correct physical values.

From the energy-function one can deduce the t expan-
sion for the scalar mass, since this state lies in the same
sector of Hilbert space as the vacuum [15]:

(2.6)

Applying it to our energy function we obtain the follow-
ing t expansion for the scalar glueball:
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2

(t) g & 16 x +rx2+ 1 t23X 3 1r3( 736X2+ 80X3+ 53x4)+ 1 t4( 10048X2+ 608X 3+ 400X4 1820X 5)
3 2 6 9 3 27 24 9 9 81 27

1 t 5( 882 112X 2 10880X 3 129 728 X 4 117440X 5+ 3643 X 6)
120 81 9 729 81 9

1 t 6( 831040 2 1 907 392 X 3+ 10447 360 X 4 12991328X 5+ 1036000 6+ 2284 X 7 }+O(t 7) ]720 9 81 2187 729 81 27 (2.7)

III. AXIAL AND TENSQR GLUEBALLS

Nonscalar glueballs require separate calculations, start-
ing from trial states which have the required quantum
numbers. Thus the axial glueball was calculated [18] by
using the one-plaquette strong-coupling state which cor-
responds to the T, representation of the cubic symmetry
group [21]

IA &=+(trU„—H. c. )lo& (3.1)

as the starting point of the calculation. It replaces the
strong-coupling vacuum as the trial wave functional to
which the r-expansion method is applied [18]. This leads

I

I
T &

=g ( tr U~,
—tr U» +H. c. ) I

0 &, (3.2)

where the summation extends over all the appropriate
plaquettes of the lattice.

We have repeated the axial calculation which we will
present here together with that of the tensor glueball.
Both were calculated to order H ( t ):

to an estimate of the lowest energy in the axial sector of
Hilbert space. By subtracting the vacuum energy one ob-
tains the result for the axial mass. Similarly we solve the
tensor problem by starting from a state defined in terms
of the E representation:

2

M (t)= [ —"+x+tx + 't ( ——'x +—x )
—'t ( —"'x +——"x + —"x )

2 3 2 3 6 9 3 27

j 1 t4( 5 12x 2 256 x 3+ 7760x 4 1()x 5) 1 r 5( 146048 x 2 2048x 3+ 360512x 4 19040x 5 415 x 6)
24 3 243 120 27 729 81 9

1 r 6( 11 692 672 x 2 730240X 3+ 19 757 216 x 4 1 946000 X 5 40040 6+ 25754X 7)+~ ( t7) ]720 243 27 2187 729 27 27 J

2

(t) —g
~ 16 x +rx2+ 1t23 3 1r3( s4&X2+ 80x3 129x4)+ 1 t4(7264X2+ 992X3 8080x4 380X5)

3 2 6 9 3 81 24 9 3 243 27

(3.3)

I t5(635872X2 1088X3 382880X4 34240X5+ 283X6)
120 81 3 729 81 9

1 t6( 16303 200 2 1050208 x 3+ 3 999 628 x 4 4615 712 x 5 + 136640x 6+ 9022 x7) +O( r 7) ]720 243 81 2187 729 81 27 (3.4)

IV. MASS ESTIMATES

The method for estimating the glueball masses is based
on calculating the scaling ratio

M(t)'
o.(t)

(4.1)

Comparing these expressions with the scalar mass (2.6)
we see that all start out with the same value at x =0, be-
cause all these states were built out of single plaquettes.
However, whereas the expansion of the tensor mass
agrees with the scalar out to order t, the axial deviates
from both already in the leading term. To see what this
means for the physical masses we have to use appropriate
extrapolations to the t —+ ~ limit. These will be discussed
in the next section.

(L /2, 0,0)S= ~ U, .
I = (

—L /2, 0,0)

The series of the string tension to order t is

(4.3)

l

where o is the string tension. The latter can be obtained
by calculating the di6'erence between the ground-state en-
ergies of the sector with a string of length L and the sec-
tor without any string. The tension o(t, g ) is def.ined by
dividing this diA'erence by the length L of the string and
taking the limit 1.—+00. Thus to calculate o(t, g ) we
compute

& 01S'He SI0 &o(t, g )= lim —. E(t,g ), (4.2)—
&ols'e-'"slo&

where the operator S creates a straight infinite string
along one axis: i.e.,

2
g [4 1 r364X2+ 1 t4( 928X2 160X3) 1 r5( 3040X2 9376x3)

L 3 6 9 24 9 9 120 3 27

+ 1 r 6( 2044960 x 2 348064 x 3+ 3360X4+ 2800X 5) +Q ( t7) ]720 243 81 9 9
(4.4)
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FICr. 2. Results of the 1/3 and 1/4 D-Pade approximants
designated by solid and dashed lines respectively. The approxi-
mants were applied to the series of M /o. for the three dift'erent
glueballs.

FIG. 3. Various estimates of the ratio MT/M& as derived
from ratios of approximants of M /o. for two states. The full
and dashed lines refer to results derived from 1/3 arid 1/4 D-
Pade approximants shown in Fig. 2. The dotted curve
represents results of the diagonal 2/2 Pade fit and the dot-
dashed curve follows from the 3/3 Pade.

Having obtained an algebraic series for both o(t) and
M(t) one is in a position to construct one also for R.
This was used successfully both for the SU(2) theory [15]
and the SU(3) one [17]. The numerical evaluation is
based on applying D-Pade approximants to the physical
ratios R.

Results for &R vs y, as derived from the 1/3 and 1/4
D-Pade approximants for all three glueball states, are
plotted in Fig. 2. We concentrate on these particular ap-
proximants because they are the ones that display stabili-
ty in y. As expected, the tensor mass coincides with the
scalar mass throughout the strong-coupling regime,
becoming larger in the crossover region of 1.5&y &2.
The axial-mass is quite larger than the scalar one in the
strong-coupling domain as well. Since the three different
types of curves do not reach a Aat minimum at the same
value of y it is difficult to draw a precise prediction for
the masses or their ratios. Within the crossover range
Mz reaches a value of about 3&cr. Using as the physical
dimensional input cr =(420 MeV), as determined from
slopes of Regge trajectories, we are led to a value of
Mz =- 1.3 GeV. M~ reaches a shallow minimum
at y = 1.5 of about 5v o. Judging from the variability be-
tween y =1.5 and 2 we may estimate 1.4&M~/Mz
& 1.8. A similar "educated guess" for the tensor glueball

leads to 1.06 & MT/Mz & 1.3. These variations rellect the
qualitative conclusion that the 1+ state should be con-
siderably heavier than the 0++ with the 2++ lying in be-
tween, much closer to the scalar.

Finally we wish to point out that in the SU(3) tensor
calculation one can make use also of diagonal Pade ap-
proximants. Using them in the same way as the nondiag-
onal ones, i.e., approximating first the M /o. ratios and
then deriving from them the ratio of the masses, we ob-
tain the results shown in Fig. 3. All show the same gen-
eral trend of mild increase of Mz. /Mz in the crossover re-
gion. The fact that the ratio increases within the cross-
over region does not allow us to draw a Arm conclusion

about its physical value. Thus, at y =1.5 the average of
the four curves is 1.07+.04 whereas at y =2 it reaches
1.6+0.2. Basing our estimate on the ratios of the mass
curves, rather than on their minima, we find the variation
1.07&MT/Mz &1.6 over the region 1.5 &y &2.

V. DISCUSSION

Our results for the axial glueball compare favorably
with other evaluations of this quantity. The pioneering
work of Kogut et al. [12], which was based on a Hamil-
tonian strong-coupling expansion, predicted a value of
M~/M+=1. 58 at y~~. Using the same method Ha-
mer [11] was led to a ratio of about 2. It is difficult to
state what the margin of error of his calculation should
be. From the 4-dimensional Lagrangian formulation we
may quote the analytic results of Weisz and Ziman [5],
which vary in the domain of 1.5 to 2, and the numerical
simulations of Michael and Teper [7], which lead to a ra-
tio of about 2.

The striking difference between the axial and tensor
glueballs can be interpreted as an indication for the truth
of this approach. The axial state, which is an odd
charge-conjugation state constructed from one-plaquette
operator in the strong-coupling regime, seems to rise to
the level of other odd charge-conjugation glueballs,
which can be constructed from two plaquettes in the
strong-coupling limit [22]. In this way it indicates that
states necessitating three gluons in the weak-coupling
limit are heavier than two gluon states.

Our estimate for Mz. /Mz is smaller than that of Ha-
mer [11]but is higher than the results of the variational
calculation of Chin, Long, and Robson [13]. They esti-
mate the ratio to increase slowly with y, passing through
1.2 at y =2. 1.

It is interesting to note that SU(2) QCD exhibits simi-
lar features; specifically, the SU(2) mass ratio of
M(2 +)/M(0++) rises to a value of approximately 1.5
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over the intermediate-volume regime. This observation is
supported by various Monte Carlo computations [23,24]
and analytic calculations [25,26] in the Lagrangian for-
mulation. The SU(2) study in Ref. [24] that includes
dynamical fermions reveals that the contributions of fer-
mions can be absorbed into a shift of the coupling con-
stant, leaving the mass ratio essentially unchanged. This
is consistent with the observation in Ref. [2], which stud-
ied the SU(3) theory with rather heavy quarks.

The Hamiltonian calculations of SU(2) and SU(3) glue-
ball masses accentuate the technical differences between
the two theories. The series of the tensor glueball in the
SU(2) calculation of Ref. [19] is very different from the
SU(3) one presented here. The successful fitting pro-
cedures are also different. The D-Pade method worked

for SU(2) but has shown some singular behavior. It was
helpful therefore that one could also apply the
exponential-fit method there, fitting the t expansion with
a series of decreasing exponentials in t. Using the same
method on the SU(3) series leads to rather poor results
for the vacuum energy beyond the crossover region, and
no reliable results can be extracted for the mass ratios.
Nonetheless the D-Pade estimates of the tensor and sca-
lar masses lead to similar physical conclusions in both
theories.
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