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An application of the quark model with gluonic degrees of freedom to hybrid baryons is discussed.
The photon-gluon transition operator for the process yq~qG is added to the electromagnetic interac-
tion, where it plays an explicit role in quark-gluon systems. The successes of the three-valence-quark
model in describing the magnetic moments of baryons is preserved in the new model. It is shown that
the Barnes-Close selection rule for hybrid baryons (q G states) is equivalent to the Moorhouse selection
rule for conventional P-wave baryons (q states). We predict a gluonic partner of the nucleon with the
same ratio of magnetic moments. It is possible that the Roper resonance P»(1440) is such a state. The
phenomenological implications of such an assignment and important tests accessible to forthcoming
photoproduction experiments at CEBAF are discussed.

I. INTRODUCTION

Historically, most investigations of hybrid (quark plus
gluon) resonances were carried out in the context of the
bag model [1,2]. A general conclusion of these studies is
that the hybrid states q G or qqG should exist in nature.
Some more specific conclusions about the valence gluon
in these studies are as follows: the confined gluon may be
divided into TE (tranverse electric) modes with
J =1+, whose color-magnetic field is proportional to
k X e in momentum space, and TM (transverse magnet-
ic) modes with J =1, whose color-electric field is
proportional to [e —(n e )n ]. A TE mode is the
lowest eigenmode. As a consequence of the spin-color
correlation, the totally antisymmetric states with three
quarks and a gluon span a 70 of SU(6). The lightest q G
basis states have positive parity and are composed of
three valence quarks and a TE gluon [3].

There are two aspects to an investigation of the role of
gluonic degrees of freedom in spectroscopy. The first is
simply a search for "extra" states in nature that cannot
be explained by the conventional quark potential model.
For example, in the meson sector a qqG state may have
J = 1 +, which cannot be constructed from qq alone.
In the baryon sector, the spectrum expected for q 6
states is quite different from that of the conventional q
baryon resonances. The second aspect involves a study of
transition properties, such as selection rules, which might
provide us a signature of gluonic degrees of freedom.
Qne such signature was found by Barnes and Close [4],
who showed that for bag-model wave functions the pho-
toexcitation of the lightest hybrid state is strongly
suppressed by a proton target but allowed by a neutron
target.

In this paper we investigate some implications and
phenomenological consequences of the presence of gluon-
ic degrees of freedom in baryon wave functions. As

gluonic degrees of freedom are clearly present in baryon
wave functions, the process yq ~qG is expected to play
an important role in photoexcitation and other elec-
tromagnetic processes involving baryon resonances. In
Sec. II we derive the photon-gluon transition operator for
the process yq —+qG in the nonrelativistic limit; this
operator provides the corrections to the electromagnetic
current at 0(+a, ). Furthermore, q and q G states are
strongly mixed in physical baryon resonances because of
the quark-gluon coupling, but the isospin and flavor
structure remain unchanged, and therefore the ratios of
magnetic moments will be the same as in the convention-
al q quark model, namely, pp/pp z This property
has been noted in the literature [4,5] for the ratio of pro-
ton and neutron magnetic moments. In Sec. III we show
that a corresponding result is true in general for other
baryon states in the 56 multiplet. So, the success of the
q quark model in describing the magnetic moments is
preserved when q 6 components are incorporated in
their wave functions.

In Sec. IV we suggest that there should be a gluonic
partner state of the nucleon, with the same Aavor and iso-
spin structure, and the same ratio of magnetic moments
as the proton and neutron. The ratio of photoproduction
amplitudes of this state from p and n is also predicted to
be ——', . This follows because of strong mixing between
the 8 and 8 wave functions, so that the Barnes-Close
selection rule (namely that 8 hybrid states are not pho-
toproduced from protons) does not apply. This is con-
sistent with the photoproduction data on the Roper reso-
nance and resurrects the possibility [2,3] that the Roper
is a hybrid state. If this is indeed the case, we expect as-
sociated P3, (1550) and P»(1540), especially. P3, (1550),
states to occur, and we predict their photoexcitation am-
plitudes which can be tested in CEBAF experiments. If
this picture is indeed correct, the calculated photopro-
duction amplitudes also suggest that the resonance
P»(1710), rather than the Roper resonances, is the q ra-
dial excitation of the nucleon: this assignment may help
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to avoid problems with potential models for which the
low mass of P» (1440) has been criticized.

II. THE PHOTON-GLUON TRANSITION OPERATOR
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The photon-gluon transition amplitude (Fig. 1) for a
bound system can be written by analogy with the QED
Compton amplitude as [6]

(a)

FIG. 1. The diagram for the process yq ~qG.

MI, =5(EI.+ cps E; ——e)g &f,k, e, lHqcDlj &&jlH. Ii, «&
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& f,k, e, lH. Ij,k, e, «& &j,k, e, «IHqcD l~, «&+ E —co —E.
g J

(2.1)

and

HqcD gg 2
a, AG +

E

(2.2)

where k and eg are the gluon momentum and polariza-
tion vectors, which when combined with three quarks
form the hybrid baryon state. The total energy of the
final state

I f,kgb & is E&+cos. The quark-gluon interac-
tion HQcD and electromagnetic interaction can be writ-
ten as

M&, =5(EI+co~ E; —~)—
&f,kgeglhqcDlj&& jlh, li&x T.

EI+a) —E.

&f,kgeslh, Ij&&jlhqcDI~ &+ E —co —E.J
where

(2.5)

Following the procedure adopted by Brodsky and Pri-
mack [7], one can rewrite Eq. (2.1) as

H, = —ge a; A(r,.), (2.3)
hqcD=+g, (co r; AG —r; Ao a;.kg)S (2.6)

respectively, where A, ;. and Ao are SU(3)-color matrices
and gluon fields, and a,. are the Dirac matrices. The elec-
tromagnetic field A in Eq. (2.3) has the form

' 1/2

h, =ge;(d'or, . A —r,. ~ A a;.k) . (2.7)

A„(r, ) =&4~ 1

2'
ik r,.ee (2.4) One may then take the nonrelativistic limit of these re-

sults. h, in the nonrealtivistic limit [7,8] is

e;r; E;+i (p, .kr; A, +r; A;p; k) p;o; B; ——— XE; +eP;
2m.

1 ~i ~)+$ ~ (e.E.Xp; —e;E; Xp& ) .
. 4MT I,.* (2.8)

We divide h QCD into terms containing creation operators
for TE and TM gluons. Because the lowest-lying hybrid
baryon states are expected to have positive parity, the
relevant valence gluon for positive-parity baryons is TE.
The corresponding TE transition operator in the nonrela-
tivistic limit is the color-magnetic interaction

1
hqcD=+sg~

2
o.j (k~X Ao)=go, J~.

where we define

1

J

(2.9)
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where H is the nonrelativistic Hamiltonian for a three-
quark system:

++V(r, —r. ) .Pi

2m'.
(2.11)

One can formally write Eq. (2.5) as

Mf; =5(Ef +cos E—; —co)

Xg f kgb hQcD J & Jlh, ~ li )
1

Ef + cog

+
& kgE'g A em J J A QCD l

1

E col g

(2.10)

which gives

eJ A)

J j
(ks X AG)

X(kX A) +0
COg mJ

e.
i—g
j J

JTE
o.X

COg

~8+0
m J

(2.18)

= 16 =— hTM
QCD

COg Ging

[H hQcD ] h

The transition operator in Eq. (2.18) correlates the mag-
netic interactions of gluons and photons. Similarly, one
can derive the transition operator for TM gluons, which
1s

Using the closure relation =gg, — A(r ).AG+0
j J m J

(2.19)

ylj&& jl=r,

we have

(2.12)
This is a photon-gluon analogue of the Thompson term in
QED Compton scattering, and correlates the electric di-
pole interactions of gluons and photons.

Mf,. =5(Ef +cos E; —co)—
1X f,k E hQcD ~ he~

Ef +COg

1
em ~ QCDE. cog

(2.13)

On expanding the operators 1/(Ef co& 8) —and—
1/(E; —

co~
—8), we find

III. THE GLUONIC COMPONENTS IN NUCLEON
WAVE FUNCTIONS

Let p, X, and 1( denote fiavor, spin, and color wave
functions for three quarks and let superscripts S, p, A, ,
and a denote the permutation symmetry. [S(a) is totally
symmetric (antisymmetric) under any exchange among
the three quarks, and A.(p) is symmetric (antisymmetric)
under the (12) exchange. ] The nonstrange q states are
the usual totally symmetric combinations [9]

Mf; =5(Ef+co E; —co)—
r

Xx( —1)" (f k r h&CD
n

(Ef —8 )"
n+1 em

COg and

(3.1)

now note that

(8 —E, )"
~ QCD

Ct)g

(2.14)
) —ysxxya (3.2)

The totally antisymmetric q 6 states transform as a 70 of
SU(6), and the nonstrange members are explicitly

(@ E& )hQcD I
l ) = [8' hQcD ] I

l' )

&flhQ(D(Ef —H ) = &f I [&,hQ, D ], (2.15)
and

,'[(4'x' px )-& (4'x—+p x')—y']IG &, (3.3)

—(y'~ —y'y')x'I G &, (3.4)

which leads to our general expression for the transition
operator, (3.5)

n

, [[8,. ..[P,hQcD]]„,h, ] .
n COg

(2.16)

If the binding potential in Eq. (2.11) is relatively weak,
only the first few terms in the summation of Eq. (2.16) are
required for accurate results, as the remaining terms are
higher-order relativistic corrections. For TE gluons, the
lowest-order transition operator is

I&& = I&o &+& I&s &&&s Ih TQ~cD I&0 &,
N No Ngg'

(3.6)

The superscripts 2, 4 denote the total quark spin as
2S+1.

Because of the quark-gluon vertex [Eq. (2.9) for the TE
gluon], the nucleon wave functions should be linear com-
binations of q and q 6 components, and are given by

TE 16 = [hQcD he~]
COg

(2.17)
where E~ (Ez ) denotes the unperturbed energy of the

0 g

q (q G) basis state, and E& E~ = —co . Definin—g
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5 =v'6 ((((', G

we have

JTE
3

(3.7)
N

'..::.:.':.'.l 0000000000aaea,

eeaeg g

:::::::400000000000000g

&'&slhQGDI&0&=& &gl" QcDI&o&=5. (3.8)

See the Appendix for more detail. To leading order in 5
the normalized nucleon wave function is therefore

(a) (b)

FIG. 2. The electromagnetic interaction for quark-gluon sys-
tems: (a) the photon-quark interaction and (b) gluon radiation in
the process yq ~qG.

lx&= [lx, &
—5(l'x, &+I'x, &)] .

1+25
(3.9)

e.
Jem g

2tlZ

JTE
cT + l 2 cTJ X

COg

(3.10)

The magnetic interaction for such a quark-gluon system
1S

P=Po+P1 ~ (3.1 1)

(as in Ref. [4]), and the second term gives a correlation
[see Eq. (2.18)] between the radiated gluon and absorbed
photon [Fig. 2(b)]; this contribution was absent in Ref.
[4]. For neutrons and protons, this gives

where the first term is the magnetic interaction [Fig. 2(a)] where

4

pa= ((('0 x o( (((0)+5 ( N~ x rrJ N~)
J

+ X o'. X +2 E o.'
J

(3.12)

and

Ng i cr X
+1+25& . m. co

JTE
iso + 1V i o. X

j J
No) (3.13)

The matrix element

((a XJ ) N)j J

represents the radiation of both gluon and photon, i.e.,
the process yGq ~q, which vanishes for the operator

e.
i[o. XJ ].

j J

The proton magnetic moment is

1+ 46
3

Po Po (3.14)

2 $2
P1= Po 1+252

(3.15)

Hence to O(5 ), the magnetic moment of the proton is

1+—'5
P =Po+Pl =Pa =Po(1

1+25
The relation P"= ——', P~ is preserved when the q G states

[Ref. [4] quotes po(1 ——', 5 ), which is an O(5 ) approxi-
mation to Eq. (3.11)],and

are incorporated, as has been noted previously [4,5].
Similarly, for the 6 states,

(3.17)

the corresponding magnetic moment is

(3.18)

Q+ +
so that the ratio p /P~=2 is preserved to O(5 ).

Generally, one can prove that the magnetic moments
of the 56 multiplet of SU(6) are all multiplied by a factor
of (1——', 5 ) when the q G basis states are incorporated in
their wave functions. The underlying physical reason is
that the isospin and fiavor structure of the SU(6) repre-
sentation is unaltered by the gluonic degrees of freedom,
because the quark-gluon vertex of Eq. (2.9) depends only
on spin and color operators. Therefore the addition of
gluonic degrees freedom to q systems should not affect
the ratios of magnetic moments. The successes of the
quark model in describing static electromagnetic cou-
plings are therefore preserved in this approach. The
gluons do, however, lead to extra states which can be dis-
tinguished from the q SU(6) XO(3) states. We will dis-
cuss this in the next section.
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IV. EXCITED STATES WITH GLUONIC DEGREES
OF FREEDOM

Given our approximations, there is a state whose wave
function is

TABLE I. Transition matrix elements for the operator 8
between the state IND) and hybrid states. The full matrix ele-
ments are obtained by multiplying the entries in this table by a
factor of p05. In all cases A3/2 +3A1/2 characteristic of
magnetic dipole transition.

2

1+26

1/2

(4.1)

which is the orthogonal partner of the ground state of
Eq. (3.9). The corresponding magnetic moments for
these states are

States A 1/2

2
3

1+2
3

A 1/2

—2
9

1+2
—2

9

2Qg

3PO ~

PN' —8 p

r =+-'
2 2

(4.2)

2
9

1+2
9

2
9

1+2

Note that p ./p„. = —
—,
' for this state. Similarly, the state

(l~g &
—fil~e&)

1+5
(4.3)

is a partner of the b. resonance P33(1232), and has a mag-
netic moment of

because of the permutation symmetry. On substituting
the explicit expressions for IN0 ) and

I Ng ) into Eq.
(4.10), we find

c a++ = l (1+ l &')c 0 ~ (4.4)
&4N, le'EIN, &

We therefore take the linear combinations of the unmixed
hybrid states to be

(4.5)

(peale lyk ) +sG~
m3 COg

x'~) .

(4.11)

and

IN",J=
—,', —', ) = —(I Ng ) —

I Nx ) ),
IN",J =-,' &

= l4N, &,

(4.6)

(4.7)

(4.8)

[The other terms in Eq. (4.10) vanish because the wave
functions belong to different permutation symmetries. ]
Note that this matrix element is proportional to
(p le3 p ), and hence the fact that

&'N,
l
STEIN, & =0, (4 9)

which was first obtained by Barnes and Close in Ref. [4]
in their calculation of magnetic dipole transitions be-
tween these states. To make this result more transparent
one can write the matrix element of Eq. (4.9) explicitly as

JTE
( N 18 ~N )=(E0x ' i (r, X NO)j j . g

JTE
3 3=3 X i O3X

m 3 g

(4.10)

To study the transition properties of these states, we
give the matrix elements of the operator

JtE

j j
between the states INO) and INs) in Table I. It is in-
teresting to note that

(4.12)

for protons immediately gives the Barnes-Close selection
rule [Eq. (4.9)]. This also shows an equivalence between
the Barnes-Close selection rule and the Moorhouse selec-
tion rule [10] for P-wave baryons, which also follows
from Eq. (4.12). The Moorhouse selection rule, however,
is broken by relativistic effects, in particular by the
nonadditive term in Eq. (2.8). For this reason one might
also expect this to be the case for transitions between the
states INO) and ING), for which there should be two
transition operators: (1) the magnetic dipole transition
which is calculated by Barnes and Close [4], and (2) the
photon-gluon transition operator shown in Table I. The
relativistic corrections to the magnetic dipole transition
are well understood [8], but relativistic corrections to the
operator 8 require further investigation.

The photoproduction amplitudes are determined by
the electromagnetic current J; of Eq. (3.10). On substi-
tuting the explicit expression for A [Eq. (2.4)], we find
that the helicity amplitude can be written as
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JTE +
3

Az ——3v'm. kPo(X, J,A, e, cr~++2l &r~X
COg

ikz3
e ' NJ= —', k —1 (4.13)

where o.+ =o. +io. . The explicit expressions for helici-
ty amplitudes A& to O(5 ) for the states defined in Eqs.
(4.1)—(4.8) are given in Table II.

For the 6 resonance, the helicity amplitude A, /z is

e 2&x 1+ 3&'

2mq +(1+25 )(I+5 )
AI/p=

(1—6&') .
2p1q 3

Substitution of the mangetic moment of the proton,

(4.14)

A1/P 231/P (4.15)

This follows because the isospin (or fiavor) and spin
correlation in the state

l
N', J=

—,
'

& is the same as in the
nucleon, and therefore the ratio of magnetic moments
and the M1 transition amplitudes from p and n to the
partner states are the same. This also shows that it may
be premature to take the Barnes-Close selection rule as a
signature for the lowest hybrid baryon state, as it neglects
any mixing between the states

l Ng & and
l Xg &. (This

was justified in the bag model because the hybrid state
l Xs & has the lowest energy [3].) Equation (4.14) is con-
sistent with photoproduction data for the Roper reso-
nance P»(1440), which suggests that the Roper reso-
nance may be the proposed gluonic partner of the nu-
cleon.

To determine whether the Roper resonance P»(1440)

p= (1——45 ),
2m'

into Eq. (4.14) gives the result quoted in Table II.
Notice that the helicity amplitudes for the partner

state of the nucleon defined in Eq. (4.1) satisfy the rela-
tion

is dominantly a hybrid or a radial excitation one should
compare its observed mass and couplings with the predic-
tions of the q quark potential model. The mass of this
state is a long-standing puzzle, as it lies below the P-wave
baryons. Although the potential model of Isgur and Karl
[11]attributes this low mass to an anharmonic perturba-
tion in the spin-independent potential, these corrections
are actually too large to be treated perturbatively.
Hefgaasen and Richard [12] have also shown that the po-
sition of the radial excitation of the nucleon should not
lie lower than the negative-parity baryon resonances in
the quark potential model for a wide range of plausible
potentials. The relativized model of Capstick and Isgur
[13]may be able to accommodate the light mass of Roper
as a conventional q state; however, an ad hoc 90-MeV
energy shift between the center gravities of N=1 and
N =2 states has to be made in order to fit overall data.
In Fig. 3, we show the different spectra expected for dom-
inantly q states and for states with gluonic degrees of
freedom. If the Roper resonance is indeed a radial exci-
tation of the nucleon, there should be a corresponding ra-
dial excitation state of the P33(1232) in the conventional

q spectrum [14]; the candidate state P33(1600) is indeed
found experimentally, but needs confirmation [the Parti-
cle Data Group (PDG) rate it 2e]. For the spectrum of
hybrid states, the pattern of levels would be different;
there should exist a P3I state below or near the resonance
P33(1600) and a P» above the Roper resonance. There is
some experimental evidence [15] that P»(1530) and
P,3(1540) resonances may exist. Experimental
clarification of the status of the P3i(1530) and Pi3(1540)
is crucial in confirming or refuting the Roper resonance
as a gluonic partner of the nucleon as these P» and P13
states do not emerge naturally in a q potential model.

TABLE II. Hybrid photoproduction amplitudes from nu-
cleon targets to 8(5 ). The full expressions are obtained by
multiplying the entries in this table by a factor of

p2/6 2
&mk p0e . In all cases, A3/2 +3A1/2.

P„(1440)

P (1600 )

P„(1Z3Z)

P„(iS40)

P„(1440)

P (1600 )

P, (1550 )

P3~{1232 )

States

F15

lzv'&

Izv' &

lx" &

lw&

4v'Z5

-', v'Z5

25

25

0
85

—&2(1+—'5 )

-,'~25

A 1/2

0

9 (+10—1 )5

9 (+10+ 1 )5

0
85

—2&2(1+—'5 )

-', ~&5

Pl, (938)
N

P„{938)

N

(a)

FIG. 3. The assignments for the P»(1440) and P33(1600)
"partners" of 1V and 6: (a) assuming that the Roper resonance is
the radial excitation of the nucleon, and the resonance
P33 ( 1600 ) is a radial excitation of 6( 1232 ); (b) the Roper reso-
nance as the gluonic partner of the nucleon. P31(1550) and
P13(1540) hybrids are also expected given this assignment.
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TABLE III. The experimental data and theoretical predictions for the photoproduction amplitudes
for some low-lying resonances. Calculations assuming both qqq assignments and admitting q G states
are presented. AK, is the result of Koniuk and Isgur, in which they included the QCD mixing eff'ects in
the nonrelativistic SHO quark model (see Ref. [21]). ALc is the result of Li and Close [22], in which
relativistic effects are consistently included in the potential quark model of Isgur and Karl. AG is the
result of the calculation in which the resonances are assumed to be the states with a gluonic degree of
freedom. The phase convention of Koniuk and Isgur [21] is used here. An asterisk denotes a resonance
which is not well established, and which has no natural qqq assignment. The experimental data is taken
from the Particle Data Crroup compilation (Ref. [15]).

State

P33( 1232)

P11(1440)

P31( 1550)
P,*,(1540)

P33 {1600)

P»(1710)

P13 ( 1720)

A fyz

Alit
Afr2
A 1/2
A f'rr.

Afr2
A 1/2

Ali2
A 3/2
A 1/2

Afrz
A 1/2

A(r2
A 1/2

A(n
A 3/2

—103
—179
—24

16

—16
—46
—47
—21

—133
57
46

—10

ACL

—93
—160
—80

60

—33
—64
—16
—23

—112
24
55

—15

—98
—170
—61

41
25
19
15
35
25

—7
—12
—44

0
15

—21
26

—36

A exp

—141+5
—258+22
—69+7
37+29
16+16

—14+28
?

9+27
?

—20+29
1+22
5+16

—5+23
52+39
—2+26
—35+24
—43+94

In Table III we quote our numerical estimates of the
photoproduction amplitudes of Table II in a simple-
harmonic-oscillator (SHO) basis and compare to the data.
The mixing parameter 5 is chosen to be —0.35 to fit the
observed Roper amplitudes (5=0.72+a, /2 is cornpara-
ble in the bag model [4]; note that the 5 in Ref. [4] is
defined with a sign opposite to our convention). An SHO
parameter of a=0.25 GeV is used, which is known to
give reasonable results for the static properties of baryon
resonances [16]. This estimate also shows that the data
for the P3, (1530) are consistent with a hybrid assignment
for this resonance. One should also note, however, that
the P33 ( 1600) photoproduction amplitudes are prob-
lematical in both models; the constraint

A3n =+3A in (4.16)

predicted by both q and by hybrid assignments is not
satisfied by the data, but it can be accommodated by the
result of hybrid assignment. Clearly, more precise exper-
imental data will help to establish the nature of the
P33 ( 1600).

If the Roper resonance is indeed the gluonic partner of
the nucleon, a natural question is where the actual radial
excitation lies. The photoproduction amplitudes suggest
that the Pii(1710) is a possible candidate. Adopting the
formalism and parameters used in Ref. [8], the radial
photoproduction amplitudes including relativistic effects

2
3

a
1/2 9

2

1 k
2 m

forn .

2 k 1 k
3 mq 36mq

2
k

2

for p,
(4.17)

For the P»(1710) this gives

(4.18)
25 for p,
—19 for n

if the P»(1710) is the radial excitation. Comparison

with the data in Table III shows that this is in better
agreement with experiment than other assignments and
also solves the sign problem encountered if we identify
the Roper with the radial excitation [17]. However, the
mixing between q and q 6 basis states may well be large
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for the P»(1710), so this conclusion should be regarded
as tentative.

V. DISCUSSIGN AND CQNCI. USIQNS

Our approach to the accommodation of the gluonic de-
gree of freedom in spectroscopy provides a framework
which retains the successes of the q quark model in
describing the static properties of baryons, in particular
the magnetic moments. The presence of the gluonic de-
grees of freedom may solve the long-standing puzzle of
the Roper resonance. We have shown that photoproduc-
tion data for the Roper resonance is consistent with an
assignment as a gluonic partner of the nucleon. Further
studies both in theory and experiment are needed, howev-
er. An experimental confirmation of the P»(1550) and

P i3( 1540) will be crucial in confirming this hybrid baryon
assignment. A study of strong decays of gluonic states
will also be very important. There has been some investi-
gation of the pion decay of q G states [18] in the bag
model, which concluded that their decay width should be
large. However, there are two subprocesses which will
contribute to these decays; specifically (1) the process
q —+qqq, which has been studied phenomenologically,
and (2) the process q G~qqq, which has not been inves-
tigated in any detail in the quark model. Further studies
of these decay amplitudes may help us to understand the
role of gluonic degrees of freedom in baryon spectrosco-
py. The absence of evidence for the P3, (1550) in vrN

scattering should be understood in such an investigation.
The gluonic degrees of freedom may provide an ex-

planation of the observation that the spin content of nu-
cleons is not carried dominantly by valence quarks.
However, the correction to the electromagnetic current
due to the radiation of polarized gluons must be con-
sidered, just as in polarized deep-inelastic scattering. As
we have shown in Secs. II and III, this gives an O(a, )

correction to the nucleon magnetic moments. New ques-
tions raised by the presence of gluons in nucleon wave
functions include the problem of how to satisfy the
Drell-Hearn-Gerasimov [19] sum rule, assuming the total
spin is not carried by three valence quarks in the nucleon.
To answer this question, one has to derive the photon-
gluon transition operator at order O(1/m ), which will
also contribute to the study of relativistic corrections to
hybrid-baryon photoproduction. This investigation is in
progress.

The presence of gluonic degrees of freedom also pro-
vides challenges in the study of baryon spectroscopy. If
the gluons play an explicit role in the formation of reso-
nances, the eAect of the quark-gluon interaction on the
spectrum of excited baryon resonances should be investi-
gated more fully. The reassignments of some resonances
wi11 certainly require changes in Atted Hamiltonian pa-
rameters in ihe q sector, and o6er the possibility that
positive and negative parity can be treated in an unified
way.
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APPENDIX: THE CAI.CUI.ATION OF MATRIX
KI.KMKNTS

As the wave function of three quarks must be totally
antisymmetric, the transition matrix element for the
operator 8=+J0~ can be written as

&xlelx&=3&+le, lx& .

FOI' tllc opcIatol 81=eicr3, wc llavc

( N J=—'e o' X J=—')
gP 2 3 3 gt

IW'&+&&'I IW'&)

«&x', Gl;Ix', G &+ &x', Gl;lx', G»,

(Al)

J
X

j&

)Q(2J'+ 1)(2j,+ 1)(—1)

J' k'
&j II& (1)llj' &,

j& J2

where Ri, (1)
k (which is 1

is the tensor operator in space j, with rank
for the o spin operator) and [, "

] is the
J) ~1~21

coem. cient, we then have

= —
—,'(&y I., ly &+(y l., y ) )

'1

, (&x~l~;Ix )+&&'l~;l~'&) .
. 2 2

The Racah coefficient [20] [',~z,'zz', ] equals —,', »d as

&y'lq"'ly') =0 (p), —,
' (II),

&P'Iq"'I&& =-', (p), —
—,
' (n),

&x'
I

'Ix' (A8)

where the spin-1 gluon is coupled to the spins of the three
valence quarks and gives total spin —,

' for this quark-gluon
system. One can then write the matrix element
&x', Gl;lx', G &-

&x', GI~3lx', G &
= &-,' —,

' 10I-,' —,
' &&x', GII~3llx', G &,

(A3)

where ( J, J„JzJ2, l
J J, ) = ( —,

'
—,
' 1 Ol —,

'
—,
' ) is a Clebsch-

Gordan coefficient and &y~ GIII73lly G( is the reduced
matrix element of o.3. Using the formula

(j,j,Jllz„(l)llj', j,'J )
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&xinl~3lxin& = —
l

we obtain

(A9)

where the tensor Tg ( k i, k2 ) is defined as

Tt~g(k„k2)= g Rk (l)Sk (2)(k, q, k2 q2IIC Q),

for p,
g& 2 3 3 g& or@.

Similarly,

(4X J= 'I e, ~-'I'Iti„J =

(Ala) and

J J' K

(A18)

and

IW&+&Pl
1

J

I
&x'll~3llx &

—
(3 310I3 3)

2 2 2 2

which gives

for p('~ J=-'Ie ~'I'X J=-')='
, 0 for@ . (A13)

is an SU(2) 9-j coefficient, we find

('x„J=-,' Ii(~, x JTE) Ix, &

1 1 1
v'6=, & ~

—,
'

—,
' 1 (&y Ie, ly~&&x~l~;lx~)

1 0 1

—
& P'le3 ly'& &x'l~lfx'& ),

(A19)

For the matrix element ( Xg,J = ,'Ie3o3I Ng—,J =
—,'), we

have where

&'X,J =-'Ie, ~', I'X, ,J =-,' &
=

Defining the tensor Tj~ by

for p,
—,4, for n . (A14)

1 1

1, I 1

1 0 1

T,~=y(i~ ll —~IIM)~ J" (A15)
Hence we conclude

03=i(o3XJ3 )'=&2Tio .

Using the formula

(j,j,JI I T (k, , k, ) I Ij',J,'J )

J J' K
=&(2J'+ l)(2K+ I) .j, j', k,

J2
[

x +2ji + I &ji IIRk, I Iji &v'2j2+ I & j2 llsk, llji &

(A17)

—5 for p&'x,J= 'I;(~ xJ")'lx &-=.
g 2 3 3 0

27

For the operator e3.J3, we find

('x„J=-,' I~,.J", Ix, &

The other matrix elements summarized in Tables I and II
follow similarly.
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