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Color transparency and Landshoff multiple-scattering processes
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In the following, the leading and nonleading contributions to fixed angle hadron-hadron elastic
scattering are included in a qualitative analysis of T(s), the transparency of pX quasielastic scattering.
A simple model is given to predict the center-of-mass energies at which a target nuclei will become
transparent to hard- and triple- {Landshoff-) scattered protons.

I. INTRODUCTION

Color transparency is based on the concept that the
efFective size of the collection of quarks involved in an
elastic hadronic scattering process can be much smaller
than normal hadronic size consisting of typical distance
scales of —1 fm. Smaller objects have smaller color mo-
ments and are less likely to interact strongly with a back-
ground, hence, their efFective transparency. It has been
shown that the tightly bound part of the hadronic Pock
state contributes to the leading (in s) behavior of elastic
hadronic scattering [1,2], from which predictions of color
transparency in quasielastic processes naturally follow.

II. TWO LEADING ELASTIC PROCESSES

To leading order in Q, the wave functions of the exter-
nal hadrons in fixed angle (s /t —1, s —~ oo ) elastic
hadron-hadron scattering consist of the minimum num-
ber of constituent quarks; other contributions are either
nonleading or can be factorized out of the wave function.
Soft-gluon radiation can be factorized via the eikonal ap-
proximation, hard radiation costs negative powers of Q,
and problems with collinearities can be controlled [3].
Using these hadrons, there are two types of processes
that are important (leading or nearly leading in Q) contri-
butions to wide-angle elastic hadron-hadron scattering.
In purely hard, or single scattering [2,4], the hadrons and
the interaction region are effectively pointlike; that is,
have a typical distance scale O(1/Q). The other type,
Landshoff [5], or multiple scattering, has the hadrons
efFectively like pancakes —Lorentz flattened in the direc-
tion of motion. Before radiative corrections and conse-
quent Sudakov efFects, the radii of the pancakes are not
sma11 and unconstrained up to the typical hadronic scale,
rI, =1 fm. Since protons appear to prefer to exist as 1-fm
objects, with no other considerations one would assume
that LandshofF' protons are like typical high-momenta,
on-shell protons. The momentum exchange occurs along
a matchsticklike shape aligned out of the plane of scatter-
ing consisting of a minimum number of hard sub-
processes involving the constituent quarks. For example,
there would be three qq ~qq hard subprocesses in elastic
pp scattering.

When Sudakov effects are taken into account,

Landshoff protons become matchsticks themselves, their
length out of the scattering plane now scaling as a nega-
tive power of Q, Q for baryons. After this inclusion,
the power dependences of single and LandshofF scattering
are comparable. For example, if we write
do /dt (pp ~pp) oc s ", we have n„„„=10 and
nL,„d,hotr=9. 59 [1,2,4,6]. The Landshoff' contribution to
do /dt(pp~pp, O=rr/2) has been explicitly calculated
for two choices of hadronic wave function [7]. The re-
sults imply that the LandshofF' contribution is probably
smaller than the hard-scattering contribution for measur-
able s, s 8250 GeV, but is a significant fraction ( ~

5%%uo)

of the measured cross section for s ~ 20 GeV . That it is
smaller is not surprising; only a specialized subset of the
overall internal momenta space contributes to LandshofF'
scattering. For s ~ 400 GeV, there is a further complica-
tion that cutofF' dependences are large, implying that
end-point contributions (small x) are non-negligible. Un-
til a sensible phenomenology is developed, predictions of
the size of multiple-scattering amplitudes cannot be made
to a 50% accuracy at useful energies. In the following,
we will discuss qualitative difFerences between the two
processes in a nuclear background.

III. COLOR TRANSPARENCY

In the center-of-mass frame, the external particles are
Lorentz fIIattened. We have

~transverse ~h

~n ~ target ~h ~X
longitudinal

~ longitudinal

The transverse extent of the elastic-scattering process is
the relevant quantity for color transparency. If the
scattering process was hard, that is, the momenta transfer
occurred within a region of extent O(1/Q), where

Q=+2~pq„„k., ~), the outgoing quarks are initially
separated by transverse distances of O(l/Q), as shown
schematically in Figs. 1(a) and 1(b). For high enough Q,
the quarks traverse the nucleus as a tightly packed color
singlet much less likely to interact with the other nu-
cleons than a typical hadron. The collection of outgoing
quarks is more color transparent to the rest of the nu-
cleus. Somewhere outside the nucleus, the quarks reform
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FIG. 3. pp elastic scattering data taken from Ref. [10],with

R(s)=do/dt's= ~2X10 s' so ', where so=1 CieV The. fit is
also taken from Ref. [10].

FIG. 1. (a) The typical form of a single-scattering process for
baryons. Here dimensional counting rules are obeyed, for ex-
ample, da. /dt (pp;elastic) ~ s ' . (1) The interaction region pro-
portional of a single-scattering process. Each X signifies a hard

qq —+qq scattering.

sense, one would expect that T(s) should gradually in-
crease with increasing s towards 1.

Recent data [8] are shown in Fig. 2 for 8=sr/2 Apo. s-
sible oscillation is observed with rising s, which is similar
in position and shape to one observed in the pp elastic-
scattering cross section at 0=90 and shown in Fig. 3.
The transparency is decreasing for s ~ 9 GeV, indicating
that the most naive expectations of perturbative quantum
chromodynamics (PQCD) are thwarted and something
else is occurring. It has been postulated that differences
in transparency between single- and multiple-scattering

into a hadron.
A measurable quantity T (s), the transparency, is

defined by

1 (do /dt)(p 3 ~pp ( 2 —1) )
Z

(der�

/dt)(pp ~pp)
(2)

&in

where Z is the atomic number the target. In the follow-
ing, we shall work at m/2 center-of-mass scattering angle.
In the asymptotic limit, the escaping partons have
e6'ectively zero extent; hence, the perturbative prediction
is that T(s)—&ac as serac. If an experiment truly probes
the perturbative regime, that is, where the factorization
proofs of single- and multiple-scattering amplitudes make
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FICi. 2. Measured transparency as a function of scattering
angle as taken from Ref. [8].

FIG. 4. (a) The Landsho8' process for pp elastic scattering.
Though subject to Sudakov suppression, these are the leading-
order processes (in s) in wide-angle elastic hadron-hadron
scattering. For example, for pp scattering we have
da/dt o=s . (b) The interaction region of a Landsho6'-, or
triple-, scattering process. Each X signifies a hard qq~qq
scattering. In the case of baryon-baryon scattering, as shown
here, &=0.70. For mesons, ~=0.64.
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contributions and their availability for mutual interfer-
ence are the source of the structure in T(s) [9].

A picture of LandshoiF scattering is shown in Figs. 4(a)
and 4(b). Without the inclusion of radiative corrections,
the transverse separation of the scattering centers [b in
Figs. 4(a) and 4(b)] does not scale with Q. As Ralston and
Pire state [10], one could take this argument to its ex-
treme and "visualize the independent scattering of plane
waves occurring on opposite sides of the lab. " If an on-
coming proton quasielastically scatters o6'a proton in the
nucleus by a multiple-scattering process of this type, the
outgoing collection of quarks would have the transverse
separation typical of constituent quarks in a hadron, ha-
dronize within the nucleus, and have a mean free path
much shorter than the distance necessary to escape from
the nucleus without further interaction. Thus, the proton
would be "almost certain to collide by conventional soft
interactions" [11]and the contribution of LandshofF pro-
cesses would be filtered out of the elastic-scattering am-
plitude, leaving only the contributions of traditional
single-scattering processes transparent. This picture
would imply that, except collective nuclear e6'ects, the
structure observed in T(s) has its source only in the
structure of its denominator, which could be then
modeled as interference between single- and multiple-
scattering processes. That is, the transparency can be ap-
proximated in terms of single- and multiple-scattering
amplitudes by

single

I
~ single + ~ multiple I

In this way, the data can be explained. Multiply scat-
tered quarks are not as big as 1 fm, however, and this pic-
ture needs to be modified.

IV. INCLUSION QF SUDAKQV EFFECTS

Because Landshoff processes include nonsoft
transverse-momenta scales, Qt )O(Q ), they are suscep-
tible to gluon radiation and corresponding double, or Su-
dakov, logarithms [12] that efFectively push the indepen-
dent scatterings together, though not quite to a "point-
like" 1/Q separation. It has been shown [1] that the
transverse separation of the hard-scattering centers out of
the plane of scattering, b in Fig 4(a), scales as a function
of Q. What is meant by this statement is that the ampli-
tude for a multiple-scattering process is proportional to
an integral over b of a sharply peaked function; that is,
& ~ f db f (b, g). This result follows from factorization
and the application of the renormalization group to each
consequent part of the amplitude. Details are given in
Ref. [1]. As a function of b, f (b, Q) is roughly Gaussian
and peaked at the value b =AQc'D(g/AQcD), 0 (~ ( 1,
where ~baryon 0.70 and ~meson 0.64. The width of the
Gaussian is approximately —,

' lng for baryons and —,
' lng

for mesons. In the following, we set AQcD=0. 20 GeV. It
is the purpose of this paper to suggest the various regions
in Q and A where the diff'erent processes are transparent
and what signature might exist for each.

Roughly speaking, the scattered quarks can be con-
sidered reformed into an ordinary proton when their
transverse extent is the normal hadronic radius r&. If the
quarks are out of the nucleus by this time, then the recon-
stituted proton was transparent.

If we call the momenta of one of the quarks after the
scattering p„, we have, from the uncertainty principle,

(4)

Ji 6
b AQCD

QCD

where U,
I" is a lightlike vector collinear to the ith hadron,

u " is the lightlike vector satisfying U; ~ U =1, and g"; is a
spacelike unit vector transverse to U; and U in the plane
of scattering. For example, if one labels the scattering
plane as the YZ plane, a hadron moving in the z direction
would have v„=(t+z)/&2, v„'=9 —z)/&2, and g„=y.

In the interaction region, momenta of O(g) span the
plane of scattering, allowing no extra logarithmic singu-
larities from momenta integrals over the plane of scatter-
ing to bring about Sudakov factors favoring regions in
momenta space where p, v,. or p, g; are not of 0 (1/Q) or
O(1), respectively. That is, p; v; and p, q,. cannot be
treated equivalently to p; .b; they are softer in the
leading-order process. The largest transverse-momenta
component for the leading contribution is out of the
plane of scattering, in the b direction. We have

&pT & =b/b «& IpTI & =&QCD(Q/AQCD) and

thad
AQCD AQCD

The time for a quark of forward momentum —Q to es-
cape the nucleus is given by

rlongitudinal 2~h ~ ~h
't P longltudlnal I

(7)

assuming that in the rest frame riongitudina
1.3

simple model will be that if t„„,(th, d, we have tran-
sparency, otherwise not. At a critical value of 3, we are
on the border between these two regions, t„„,=th, d,
and we have

A3.„;t(g)-
+QCD

' 3(2—~)
AQCD

&Zmh

3

Note that the sign of the power is positive with
3(2—~b„,„)=4.08. As Q increases, more of the Periodic

In Landsho6' processes, the various components of mo-
menta are characterized by their scaling properties with
respect to Q. For the ith hadron, we have

p; v Q,
p;.v; & 1/Q,
p. .q. cc ]



COLOR TRANSPARENCY AND LANDSHOFF MULTIPLE-. . . 2771

h

had
mh

2 3
QA, .„,,(Q )=
2m'

Table becomes transparent to multiple-scattering pro-
cesses.

For single-scattering processes, we calculate A„;,(Q )

in exactly the same manner. This process has picked out
the transversely tightly bound three-quark Fock state
with the transverse momenta soft, Qt-mh. The escape
time is unchanged from the triple-scattering case, but the
hadronization time is longer. We have

V. CALCULATION OF T~,nd, h~~(g)

We shall now calculate the asymptotic value of T(s),
defining asymptopia of wide-angle elastic hadronic
scattering as the region where triple scattering is dom-
inant. From Ref. [7], asymptopia starts at the order of
s-400 GeV .

To calculate T(s) assuming Landshoff-scattering pro-
cesses dominate, we use the leading-order factorized form
for these amplitudes given by Ref. [1]. We assume this
form for both pp and plV scattering, with the difference
between numerator and denominator the inclusion of a
cutoff for large b in the pX scattering to model the opaci-
ty of transversely large collections of quarks. We have

TLaadshpff(S) =

3
2

f d3x f db db HIJx(Q, x,. )UIJx(b, b )p (x, , 1/b)e
IJK =1

3

f d3x f db db HIJx(Q, x, )Ul~x(b, b)p„(x, , 1/b)e
IJK =1

(10)

where x; is the momenta fraction of the ith quark andli
d3x = dx, dxzdx35( 1 —x, —x2 —x3) The I, J, and K
are color Aow indices. UIJz is the contribution of soft-
gluon exchanges and the overall Dirac traces. HIJz is the
hard-scattering function, to lowest order it is the product
of three Born-scattering subdiagrams ~I""IIJ
The impact parameters b and b are shown in Fig. 4(b).

~unThe function e ' is the Sudakov factor, a result of ra-
diative corrections and their renormalization-group treat-
ment.

To approximate the above expression, we take the fol-
lowing steps.

(i) We make a change of variables to g= —lnbA and
g= —lnb A.

(ii) The soft-gluon-exchange function U ( g, g ) is to
lowest order in a, (Q ) independent of g and g and is tak-
en outside the g and g integrals.

(iii) From its evolution equation, we know the hadronic
wave function P (x;,g, g) has a very slowly varying
dependence in g and can be taken as a constant over a
wide range in this variable.

(iv) To leading order in lnQ/A, the Sudakov factor
does not depend on the color Bow,'that is,

Sioux =S+0 (ln lnQ/A).
(v) Many terms are identical in the numerator and

denominator of T(s), become multiplicative in this ap-
proximation, and cancel out.

What remains is the ratio of fdic dg exp( —S) over
different ranges in integration:

f'"" 'dydee
T(s)= (1 1)

d e
0

+a 3 [(0—esp)'+ C—Psp)'] (12)

where 1/Qa3 is the width of the Gaussian, e, and is

given by

1 ~ ~I'a3-
ag'

r lnQ/A

+0(( lnQ/A), [( lnQ/A) (ln lnQ/A)] ') . (l3)

Some details of this calculation are given in Refs. [1] and

[7]. We then have
4

Landshoff'( S )
1 —erf(+a3(g ' .3 esp. 3))

1 —erf( —Qa 3 psP. 3 )
(14)

where erf(x) is the error function.
Values for TL,„d,h,tt(s) for Z = 13, an aluminum target,

are shown in Fig. 5. The rise of T from 0 to 1 is slow
with rising energy and is over many decades of s. This
rise is centered at the expected value of lns/so=15
(so= 1 GeV ) where we have g„;t=gsP. Note that, from
Eqs. (6) and (8), we have

k3;crit= ~2
in(3/2A '

mh /A),

g, .„,,= 1n(3/2A '~ m„/A) .
(15)

This expression can be well approximated by saddle-point
(SP) techniques with

So(esp esp.
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FIG. 5. The asymptotic PQCD prediction for the transparen-
cy: the transparency of Landshoff-scattered protons.

This is shown for an aluminum target in Fig. 6 for vari-
ous choices of C. We would predict from this rough cal-
culation that the next generation of experiments would
observe a rise in T(s) as the truly perturbative com-
ponent would begin to contribute. While this analysis
sheds no light on the currently observed features in the
transparency, from the observed departure from the
Crlauber region and the decrease in T(s) for incident mo-
menta greater than 8 GeV, we would claim that PQCD
has not really yet been tested, that the region of applica-
bility of current perturbative calculations has not been
reached. This does not preclude future improvements in
calculational technique and factorization, including a sys-
tematic treatment of small-x effects. In elastic and quasi-
elastic wide-angle hadronic scattering, the contribution of
the internal momenta region where transverse and hard
scales are comparable may prove to be large and its cal-
culation necessary for a more useful description of these
processes.

The purely PQCD calculation of the transparency of
the Landsho6' processes gives T =0 for any foreseeably
measurable center-of-mass energy in agreement with the
postulate of Ralston and Pire. That is to say, while the
transverse size of the LandshofF' scattered proton de-
creases with rising Q, it decreases too slowly to forestall
hadronization within the nucleus. For currently avail-
able center-of-mass energies, this calculation implies that
the nucleus is an efficient filter of multiply scattered ob-
jects.

For purely hard-scattering processes, we have b = 1/Q.
We find that lnQ /A: g 'i. i esp. i at lns /s&& =4, which is
at approximately the high end of the current experimen-
tal data. If we assume b, b (b, we have hg ( l. If, analo-
gously to the Landshoff case, we assume a Gaussian dis-
tribution in g with the maximal transverse width of
a i = C, C = 1 of the hard-scattered quarks, we can esti-
mate T„„si,(s). Similarly, we have

r

«f( +ri i ( 0 .~; i esp; i ) )

1 —erf( —Qaigsp i)

1.0

0.8—

0.7

0.5

VI. CONCLUSION

We would conclude that any structure of a perturba-
tive nature that will be observed in T(s) will be a
reAection of structure in pp elastic scattering. It has been
shown that the coefficient of the energy-dependent phase
in the I.andshoff amplitude relative to the single-
scattering amplitude is too small to explain the oscilla-
tions in the data for pp elastic scattering at fixed angle [7].
However, interference oscillations would still be predict-
ed, though the results of Ref. [7] imply they would be of a
much longer efFective period in ln lns, the PQCD predic-
tion of the relative phase being exp(i0. 5 ln 1ns) rather
than exp(i50 ln lns). If, as Brodsky and de Teramond
suggest [13], one interprets the observed oscillations as
two J=I.=S= I, B =2 resonance structures, the slowly
varying oscillations should be observable at center-of-
mass energies just larger than currently observed, away
from these resonances. Even if oscillations of the form
exp(i50 ln ln s) should be found to persist with rising s,
the superposition of the PQCD component on this struc-
ture should still be observable since the amplitude of the
PQCD oscillations are larger, a result that becomes more
firm as s increases into the truly perturbative range
s &400 GeV .

At small angles, scattering occurs along a line rather
than a plane and two transverse directions b exist. If
after asymptotic factorization, one found the dominant
contributions to come multiple scattering and
b =O(Q ), the small-angle power law would be repro-
duced. Because there ~ould be no Sudakov suppression,
there would be neither an energy-dependent phase nor an
interference pattern for smaller scattering angles.
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00
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FIG. 6. A prediction of the transparency of hard-scattered
protons.
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