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Starting from an earlier benchmark analytical calculation of the luminosity process
e+e ~e+e +(y) at the SLAC Linear Collider (SLC) and the CERN e+e collider LEP, we use the
methods of Yennie, Frautschi, and Suura to develop an analytical improved naive exponentiated formula
for this process. The formula is compared to our multiple-photon Monte Carlo event generator
BHLUMI (1.13) for the same process. We find agreement on the overall cross-section normalization be-
tween the exponentiated formula and BHLUMI below the 0.2% level. In this way, we obtain an important
cross-check on the normalization of our higher-order results in BHLUMI and we arrive at formulas which
represent the LEP/SLC luminosity process in the below l%%uo Z physics tests of the SU(2)I X U(1) theory
in complete analogy with the famous high-precision Z line-shape formulas for the e+e —+p+p pro-
cess discussed by Berends et ah. , for example.

I. INTRODUCTION

Currently, high-precision Z physics connotes to most
physicists the comparison of the cross sections and asym-
metries measured at the SLAC Linear Collider (SLC) and
CERN e e collider LEP with standard-model [1] pre-
dictions to higher and higher accuracy. Indeed,
numerous analysis of effects below the 1% level (and even
at the 0.1% level) exist [2]—there is the clear expectation
that if LEP (or SLC) collects enough Z 's, such analyses
can be used to determine possible extensions of the stan-
dard model if it should fail to conform with expectations
in Z physics below the 1% regime for example.

Indeed, the 1% regime, from a statistics standpoint,
has been surpassed at LEP, where at this time each ex-
periment has -200000 Z 's. Hence, current errors on
LEP observables are limited by the hardware systematic
errors, which we understand [3] will soon be -0.7%%uo, and
by the accuracy of the theoretical calculation of the lumi-
nosity process e+e ~e e +n(y), low-angle Bhabha
scattering with photon emission: 2m, /&s «6I &250
mrad, where f=e +,e, where OI is the c.m. -system
(c.m.s.) scattering angle of f, Vs is the c.m. s. total ener-
gy, and m, is the electron rest mass. Hence, the luminos-

ity process is mainly a pure QED effect and it can be cal-
culated in principle to any desired accuracy [4].

Indeed, in Ref. [5], we have used the Yennie-
Frautschi-Suura (YFS) theory [6] to introduce the
multiple-photon Monte Carlo event generator BHLUMI
explicitly for this purpose and we have checked it against
known exponential behavior and against [7] available ly
Monte Carlo simulations for both its normalization and
its I'~ spectrum, etc. , so that, indeed, we have argued that
its normalization is accurate to -0.7%%uo. This has been
already of some significance, since the difference between
BHLUMI and a correct 1y Monte Carlo simulation is an
estimate of the size of the higher-order corrections to the
luminosity process and corresponds to the theoretical un-
certainty in any experimental analysis which uses a
correct 1y Monte Carlo to simulate its detector response
to luminosity events and treats the higher-order effects as
an attendant uncertainty in that simulation. If the simu-
lation is itself based primarily on BHLUMI, the error on
the result due to theory is just the error on BHLUMI's nor-
malization. Hence, in this way Mark II, and later the
ALEPH and remaining LEP Collaborations, have been
able to quote 1 —2% systematic errors in their luminosi-
ties due to theory and, accordingly, upon using this result
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with an extensive study of the experimental systematic er-
rors, have made the important discovery that the number
of massless neutrino generations is 3. 1%%uo luminosity
simulations were adequate for this discovery.

LEP and SLC may now search for further restrictions
or extensions of the SU(2)L XXU(1) theory or for an im-
pressive confirmation of its suKciency at precision levels
below l%%uo. As a first step in this direction, the theoretical
errors on the luminosity simulations should be below or
at the level of —,

' of the experimental systematic errors:
since the latter are soon to be -0.7%, we need now to
determine the absolute normalization of BHLUMI to
-0.2% and/or to compute the higher-order corrections
to a correct 1y calculation to 0.2%. In this paper, we
will use the YFS based form of the method [8] of Tsai,
Jackson, and Scharre, and of Kuraev and Fadin (the
high-precision versions of this method are discussed by
Berends et al. [8] for the Z line shape) to achieve, using
our benchmark analytic work in Ref. [9] on
e+e ~e+e (y), an analytic representation of the cross
section in BHLUMI for e e ~e e + n(y), and, in so
doing, present strong evidence that the normalization of
BHLUMI is indeed accurate to 0.2%, as required by the
current LEP (SLC) data-experimental systematic error
scenario. In this way, we apply and introduce high-

precision improved naive exponentiation exponential for-
mulas for the SLC/LEP luminosity process in analogy
with the formulas discussed by Berends et al. in Ref. [8]
for e+e ~p+p .

Our work is organized as follows. In Sec. II, we review
the relevant aspects of the YFS theory and its realization
in BHLUMI. In Sec. III, we review the relevant aspects of
our benchmark calculation of e+e —+e+e + (y ) in
Ref. [9]. In Sec. IV, we combine the YFS theory with our
result in Ref. [9] to achieve an analytic representation of
the inclusive exponentiated cross section for
e+ e ~e+ e + n ( y ). Numerical comparison data are
illustrated in Sec. V. Section VI contains some summary
remarks.

II. YFS THEORY

In this section, we review the relevant aspects of the
methods of Yennie, Frautschi, and Suura [6] as they re-
late to low-angle Bhabha scattering in the SLC/LEP
luminosity regime. We begin with the basic YFS formu-
la.

Specifically, for the process illustrated in Fig. 1, we
have the YFS representation

oo

do vF s=e xp[2a(Re B+B)]f d y[1/(2~) ]exp[iy (p, +qi —
q2 p2)+D] ~o+ X t f II e 'P„dE~d P~

n=1 ' j=1 j

where X = [outgoing e, outgoing e+] so that Ez.=pz+qz and Pz. =p2+qz. (The kinematics is summarized in Fig.
1.) Here, we have defined the standard YFS functions

B= d4k

8~ k —m +isr

—2q, +k —2p, —k+ + . . .—2q].k+ jg k +2p].k + jg

d kD = f [e '~" 0(IC,„—k)]—S(k),
2

S(k)=— a q& p&
2

q .k p

with

max2aB(K,„)=f d k S(k)/(k +m )'~
e' e

Thus, m ~ is our standard photon mass infrared regulator.
It cannot be emphasized too much that (1) is independent
of K,„. The P„are then the usual YFS hard-photon re-
siduals [6] for the SLC/LEP luminosity process in Fig. 1.
Equation (1) will be the starting point of our analysis.

More precisely, in Ref. [5], we have realized Eq. (1) via
Monte Carlo methods in the FORTRAN program BHLUMI
so that we could achieve an event-by-event view of the
multiple-photon effects in Fig. 1 in the SLC/LEP lumi-
nosity regime in which the physical multiple-photon
four-vectors were among the final-particle four-vector list
for the respective events for the first time in radiative

q,
e. e

FIG. 1. Low-angle Bhabha scattering with n photon emis-
sion: e+e —+e e +n(y). Here, (p&, q&) are the incoming
(e+,e ) four-momenta, respectively, and (p~, q2) are the respec-
tive outgoing four-momenta. k; is the four-momentum of pho-
toni, i =1, . . . , n.



HIGH-PRECISION IMPROVED-ANALYTIC-EXPONENTIATION. . . 2671

corrections theory in event generators for Bhabha
scattering. Indeed, BHLUMI FORTRAN is in use at SLC
and LEP. What we wish to do in this paper is to develop
methods which will eventually allow us to check just how
accurate BHLUMI really is.

Indeed, we should first recall that, in BHLUMI, Eq. (1)
is realized for Po and P, : we stop the expansion in the
number of residuals of hard photons at one such residual.
Some readers [10] may think that we therefore do not
generate events with more than one hard photon. This is
not true. A quick look at Ref. [6] will show that the ex-
act O(o. ) cross section differs from the cross section in

BHLUMI for two photons by just /3z, the two-hard-photon
residual: (dP is the differential phase space element)

do. = [S(k, )S(k2)/30+S(k i )pi(k2 )

+S(k~)/3, (k, )+/32(k„k~)]e ' dP
O(a )

is the exact O(a ) two-photon emission cross section and
all of it except p2 is in BHLUMI. A similar remark holds
for do. ", the exact [O(o.")] n photon emission cross sec-
tion is approximated in BHLUMI by

der, "„„= S(k, ). . .S(k„)/3O+ g S(k, ). . .S(k, )S(k +, ). . .S(k„)/3, (k, ) dP
j=1 0(a")

Thus, any question about the accuracy of BHLUMI can be rigorously addressed by looking into the question of to what
part of the cross section the p„, n 2, contribute and, just as importantly, what are the possible numerical procedural
errors in the code itself, such as programming errors, etc.

We have developed recently a strategy for achieving such a test of BHLUMI (or any other low-angle Bhabha event gen-
erator). Specifically, our idea is to establish, for the luminosity regime, a base line analytic calculation at O(o. ), which is
known to be accurate to some level g «1. This base line has been established in Ref. [9] to the 0.02% technical pre-
cision level. [There is also an uncertainty of 0.02% for the respective scattering angles below 0.25 rad due to
suppressed interference e6'ects. Conservatively, we will quote the combined errors on our base-line formula for the
0 (a) cross section as 0.03% for such angles]. By looking into the extension of our analytical 0 (a) result to higher or-
ders by either leading-log methods [11]or by the YFS methods encoded in (1), we can then arrive at analytic expres-
sions which are clearly accurate for the respective luminosity regime at the 0. 1% level. Such expressions may then
be used to provide an independent check of BHLUMI. This we will now demonstrate in the next two sections. We turn
first to a brief review of our base-line result in the next section.

III. BASK-LINE 0 ( a ) LUMINOSITY CALCULATION

In this section we review our 0 (a ) analytic base-line calculation of the SLC/LEP luminosity process
e+e ~e+e +(y). We do this with an eye toward developing its improved naive exponentiated form in the next sec-
tion.

Specifically, in order to realize a 0.03% accurate analytical expression for the process e e —+e+e +(y) at c.m. s.
scattering angles 0„0, which lie in the regime 2m, /i s ((8& 0.25 rad, we may concentrate on the pure t-channel ex-

changes in Fig. 1 and we drop out up-down interferences (interference between radiative effects on the e (up) line and
those on the e (down) line). We have shown in Ref. [9] that these two approximations do not spoil the 0.03% accuracy
of our analytic O(a) result. We want to emphasize that, should we desire to probe the regime of accuracies below
0.03% for our analytic 0 (a) work, we can reinstate the terms which these two approximations have suppressed in a
straightforward way.

With the framework called out by 0.03% accuracy approximations, we get the 0 (a) cross section for process in Fig.
1 as (here, k, = k )

=1 '

o = (I+2P, In@+6, ft) XpO„„d42(pi+q~ p2 q2)+ (X~+Xi )0 fgSg 'gd@3(p&+q&, p2, qz, )
2$

where
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'+ 'XO=2e, s =2p1 q1t'
2a

t
'7T

t = —2p1.p2, u = 2p1 q2

3 2(x n—+Liz(s /~ t~ )+ln ln ———ln
1 1 2

2 3 2 $ u 2 s

e'
X1=

(k p, )(k p~)

6
X1=-

(k q, )(k qz)

s2+u2
1

s +u

2m1—

2m1—

k p1
k.p2

k.q1

k q2

S +Q
+ '

s +u
+

2m,' k.p,1—
kp,

2m, k q21—
/tf kq,

s1=2p2 q2, t1= 2q1 q2 u1 —2p2 q

and O„«=0(k —e&s /2) defines our upper bound on infrared soft photons in the laboratory c.m.s. system p, +q, =0
where e J, O. In (7), the idealized SLC/LEP trigger is

0,„, =0(0, —0;„)0(0~—9;„)0(0,„—9,)0(0,„—0~),

where 0&
—=g„gz ——0 . Our definition of the invariant phase space in (7) is the conventional one:

n n

d+„(P;p„.. . ,p„)=(2n) 5 P —g p; + dp /[(2~)'2p; ] (10)

This then completely defines our calculational framework.
In Ref. [9] we have derived the following explicit analytic representation of the photon emission part of (7): Defining

g; = ( 1 —cos0; ) /2,

=p, (k, g)+p~(k, g),do

where g is either g, or gz and both are kept within the trigger region and where the p; are given by

2

p, (k, g, }= — 0(gl —g;„}0(g,„—g})[G(k,a„,g, ) —G(k, a[, , gl)]s
(12)

a =min
UP

(1—k)g,„
, 1+@/Qg, , a&,„=max

(1—k)

with

G(k, a, g, )=y(g„a) 0(a —a, ) ln
1+(1—k)

2k me

2( 1 k)
g( )

1

1+(1—k) (1 —g, )(1—k) a, (a —1)

+ln+(a —a I )+ln+(a I
—1)—0(1—a —k )

ln+(x) =sgn(x)ln~x~,

sg,
X ln

me

2(1—k) +ln 1 +ln+(a —1+k )
—in+i, (14)

1+(1—k) (1—g, )(a —1)

1+v(g, ) (2 —k)g,
v(gl) =

1+v(g, ) —k ' '
1 —k —(2—k)g',

—,
' [1+(1—g') ], a ( 1,

C

—,'(1+ I 1 —g/[I —k(1 —g)]] }, otherwise,

;„~=g(0,+;„~)and, similarly,
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p2(k, g2) = — 8(g2 —g;„)8(g,„—gz)[H(k, a„,gz) —II(k, a„„,g2)]s vr g~ 1 —k (17)

a =min
UP

(1—k)$2
, 1+k /Qg2, ai,„=max

min
I

(1—k) 2

kmax

,
1+(1—k)' « —ai, sk

2k Ale

2(1 —k) 1+ ln
1+(1—k) 1 k (1 —$2)a ' (a "—1)

(a i
—1)

+8(a —a i )ln + [ln+(a —a *, )+ln+(a *,
—1)]

(a —1)
r

—(1—k)8(1 —a —k ) ln
sk
Pl e

2(1 —k)
1+(1—k)

—(1 —k)8(1 —a —k )ln
1

(1—gz)k

1 —g'2k(2 —k)

—8(1—a —k )ln +(1—k) [ln+(a —1+k ) —In+k ]
k

(a —1)

(19)

(20)

—,'[1+(1—g) ], a (1,
y*(g,a)= ',

—,
'

I 1+[1—g(1 —k)/(1 —gk )] j, otherwise . (21)

We have shown in Ref. [9] that (11)—(21) agree with an exact 0 (a) Monte Carlo program of the OLDBAB type [12] to
0.03% in our luminosity regime. This O(a) Monte Carlo program is obtained from oLDLAB by modifying it to disen-
tangle up-down interference from the rest and to allow for weighted events and for negative weights (to remove depen-
dence on e). This provides a check on our analytic methods at O(a) and a check on our oLDLAB-type Monte Carlo
program.

Our objective now is to develop the improved naive exponentiation of (7) as its photon emission piece is represented
by (11). To this we now turn in the next section.

IV. YFS KXPONKNTIATION OF 0 (a) LOW-ANGLE
BHABHA SCATTERING

In this section we wish to develop the analogue for (7) and (11) of the methods of Tsai, Jackson, and Scharre, and of
Kuraev and Fadin, which were applied to e+e ~ff +(y) and e+e +ff +(2y) when f—Ae by many authors [13].
The methods realized in Ref. [8] by Tsai and Jackson and Scharre are known as naive exponentiation in the literature.
The improvements in the naive exponentiation procedure developed by Kuraev and Fadin, initially in response to fur-
ther work by Tsai [14], and further developed and applied by Berends et al. , and others [13] is known in the literature
as improved naive exponentiation. However, the sharp cutouts in (11) have made a naive adaptation of the work in Ref.
[13]to (7) and (11) invalid [15]. Here, we return to the basic rigorous YFS formula in (1) as it relates to (7) and (11).

Specifically, our starting point will be the rigorous u:—1 —s /s distribution which follows from (1) via the methods in
Ref. [6]. We have from Ref. [6] that (1) implies

'1 y

do/du= Po F(y)+ F(y) f dk, kid—Qk P, (k, )
U k)

exp I 2a[ReB +B(u ) ] ] (22)

if we truncate at the first hard photon residual pi. Here, y =2p, and F(y ) is the famous YFS function

y r(1+@) ' (23)

where C=0.577215 6. . . =Euler's constant and I (z) is the usual gamma function. The respective zero and one hard-
photon residuals po and p, are already implied by (7) and (11) following their rigorous definitions in Ref. [6]. Thus, the
result (22) is indeed a proper starting point for the exponentiation of (7) and (11).
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More precisely, on substituting the implied values of Po and Pi from (7) and (ll) into (22), we get, with a little rear-
rangement, the basic formula of this paper:

r

da/(du dg)= I dk —— +— (I+AvFs) (1—k/u)r 'expI 2a[ ReB+ B( u)]], (24)F(y) U do. ~ da'0 y do 0

where AYFs=y in@+5,„f,—2a[ReB+B(e)], elO. Here, doo is the Born cross section in (7), and der/dk dg is just the
result (11). (The reader should note that due to the amplitude level realization of the YFS theory, the factors of ydao
have the implied g and k dependence as it would follow from der/dk dg. ) In order to complete the analytic discussion
we must now discuss the integral over dk in (24).

On substituting dcro/dg and

der�

/dk dg from (7) and (11) into (24), we find, to order (a/m )y, the result

4 2

, ~(k —k .)@4 ..—E)lpl'""(u k)+p2'"'(u k) l (25)
dud s

where we de6ne now the fundamental exponentiated distributions

p, '""(u,g) =O'"P(u, a„,g) —6'"~(u, a„,g')

with [a„,a„„]defined in (13),

6'"~(u, a, g) = 0(a —a, ) ln CG, (g, u, u', y) —C62(g, v, v', y)
Pal e

X(g, a)

(26)

1+(1—u) 1 1+(1—u)+9(a —a, ) ln 2+ [ln+(a —ai )+ln+(ai —1)]
(1—g)(l —v) a, (a —1)

—g(1 —a —u) CGi(g, u, O, y)ln ~
—CGq(g, v, O, y)

Ple
X(k a)

—6(1—a —u )
1+(1—u)

ln
2g

1 2+ 1+(1—u) [ln+(a —1+u ) —ln+(u)]
(1—g)(a —1)'

Xy(g, a )yu~ 'F(y )exp —y+ ( n /6 ')— ——
4

and the functions CG, given by

CGi(k v u' y)=f i(k v u' y) —f2(~ u u' y)+ —,'fi(k u u' y)

C62(g, u, u', y)=f, (g, u, u', y) f2(g, u, u', y )—
for u'=u(1 —g), where the f; are recorded in the Appendix, and

p2'" (u, g)= [H'""(u,a„,g) —H'"i'(u, ai, , g)]
1

V

with Ia„,ai, ] defined in (18),

(27)

(28)

(29)

r

H'" (u, a, g)= 0(a —a;)(1—u) ln CH, (g, u, u', y) —CH2(g, u, v', y)
Ple

X*(k a)

+g(a —a i ) ln +ln1 1

(1—g)a *, (a *,
—1)

1+ 1—+ [ln+(a —a *, )+ln+(a ', —1)]

1+(1—u)

(a —1)'

—8(1—a —u)(1 —u)[ln CGi(g, u, O, y) —C62(g, u, O, y)]/g*(g, a)
fPl e

—8(1—a —u ) (1—u)ln +ln1

(1—g)u (a —1)
1+(1—u)

2g

+(1—u)(ln+(a —1+v )—ln+u )
1+(1—u)

2p
(3O)

yves

'F(y )g*(g', a )exp —+ ( ~2/6 ')— ——
4
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and the functions CH, defined by

CH, (g, u, u', y)=f ', (g, v, v', y)+fz(g, u, u', y) +f3(g, u, u', y)

CH2 ( g', u, u, y ) —2f2 ( g, u, u ', y ) +f ', ( g, u, v ', y )
(31)

for u'=up, where f are recorded in the Appendix. This
completely specifies our YFS-based improved naive ex-
ponentiation of the base-line analytic representation of
the SLC/LEP luminosity cross section in (7) and (11).
Let us now discuss some of its properties relative to the
improved naive methods in Ref. [13].

First, our formulas (25) allows us to make an angular
cut in g, whereas the results in Ref [1.3] for e e ~ff
are already integrated over angles. Second, the result has
a sharp structure in g, u space, just like the base-line O(a)
result as we have illustrated in Ref. [9]. Finally, we note
that the YFS function F(y) multiplies the entire result.
This is very important and has been a point of constant
debate. The reason is that the typical value of y for the
SLC/LEP luminosity regime is -0.0965 so that F(y ) is
1 —m y /12+ . =1—0.73X10 and represents a
~eduction in the cross section by -0.'73% due to the
competition of multiple soft photons for their respective
phase space. F(y) does not exist at O(a). We already
have observed this effect in BHLUMI and in YSF2 [16] and
we wish to emphasize that no high-precision calculation
can leave it out without creating an uncertainty —1% in
the respective result.

The result (25) may now be compared with our YFS
Monte Carlo event generator BHLUMI (1.12) to check its
normalization and its various distributions. The com-
plete set of comparisons will be taken up elsewhere [17].
Here, we focus on the overall normalization of BHLUMI;
this we do in the next section.

V. COMPARISON WITH BHLUMI

In this section, we discuss the comparison of (25) and
BHLUMr. Specifically, we focus on two views of this
overall normalization: a wide view and a narrow view. In
the wide view, our first check, we consider the symmetric
cut scenario of Ref. [18], with &s =92 GeV (Here,
XMIv7s is the usual minimum energy fraction. ):

cut A

min[p 2 /( &s /2)&@ p /( Vs /2) ] XMIvts =0.5

v =1—(pz+qz) /s ~ u,„=0.5,

10 mrad ~ 0 ~ 100 mrad, 0=0„t9

(32)

+MIVIS

v „=0.5,
1.745 mrad~0~8. 727 mrad, 0=0„0, .

(33)

In this way, we get a narrow and a wide view of the
overall normalization of BHLUMI (1.12).

Our results are as follows:

at &s =92 GeV whereas in the second check, we look
into the relatively small angular interval

cut B

o. , exp. analytic (nb)
o., BHLUMI (1.13) (nb)

cut A

1182.849+0. 172
1182.368+0.559

cut B

37636.10+5.081
37652.49+21.06

Here, exp. analytic refers to the result (25). We see that our YFS-based exponentiated result agrees with BHLUMI at the
—0.041%+0.050% level in the wide-type scenario of Bardin et al. and at the 0.044%+0.058% level in the view pro-
vided by cut B. We thus conclude that the overall normalization of BHLUMI is accurate at the & 0.2% level when we al-
low for possible 0.03% uncertainty in the base-line result in (7) and (11).

In order to complete our assessment of the accuracy of BHLUMI, we should estimate the size of the contribution of p2
to the respective cross sections for cut A and cut B. This we do using crossing from the leading-log formula [16] for
Dz ', the completely differential 2-photon emission formula for initial-state radiation in e+e ~ff+(2y), f&e.
Specifically, we may cross to either emission from the electron line or emission from the positron line and we may note
that, due our use of crossing, we get from D2 ' an estimate of the final-state effects as well. This crossed form of D2 '

may now be used to determine P2; the latter we introduce into our YFS formula (1) and arrive at the respective contri-
bution to our YFS-based improved naive exponentiation. %'e get the estimate, for the e+ line,

do /dkdg'~&, , = [yF(y )/v]exp[2a[ReB+B(v)] [ 3 —2u+ ————u ln
v y 7 3 1 do'p

dg
(34)

We emphasize that, for consistency, Po and 13& must be computed to O(a ) also at the leading-log level; the latter results
can also be obtained from Ref. [16] via crossing in our approximation of no up-down interference. On computing the
respective contributions to the cut A and cut B cross sections, we find

o, exp. analytic, second order, (nb)

cut A

1181.780+0. 175

cut B

37612.33+5.303
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Thus, we see that, to second order in P„, there is a
-0. 1%%uo effect that enters the cross section compared
with the results to first order in P„. This still allows us to
quote that the normalization of BHLUMI for low-angle
e+e —+e+e +n(y) is indeed accurate to -0.2%, con-
servatively. As a consequence, the limiting factor in the
error in the luminosity at LEP is now the experimental
systematic error -0.7—1%, independent of whether one
uses BHLUMI or our recent YFS exponentiated leading-
log approach [11]to the SLC/LEP luminosity problem.

VI. CIONCLUSIONS

We have developed in this paper the first, rigorous im-
proved naive exponentiation formula for the luminosity
process e+e —+e+e +n(y) at SLC and LEP in the Z
region. We have used the formula to check the normali-
zation of our YFS Monte Carlo event generator BHLUMI
for this process to the -0.2% level of precision. (Here,
the word precision refers to the technical precision rela-
tive to such issues as bugs in the code, pseudorandom
number effects, rounding errors on the computer, etc. ,
and to the physical precision of the specific process which
BHLUMI calculates for the type cuts of Bardin et al. dis-
cussed in the text. The complete luminosity calculation
which deals with what is left out here, i.e., pairs,
calorimetric cuts, etc. , will appear elsewhere [17].)

The discussion here, in addition to testing BHLUMI, has
also provided a new semianalytical formula for the lumi-
nosity cross section which is based on the rigorous YFS
theory so that it can be systematically improved to arbi-
trary precision. It is not based on nonrigorous recipes

I

such as those given in Refs. [2] and [10] for Bhabha
scattering. This new formula was essential to achieving
the type of precise test that we have realized for BHLUMI
in the text. We look forward with excitement to the fur-
ther unravelings that Z physics in the attendant below
l%%uo regime may produce.
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APPENDIX

In this appendix we record the YFS-based improved
naive exponentiation functions f; and f,' defined in the
text.

Specifically, from the results (11)and (24) we get, to or-
der y relative 0 (a),

f, (g, ,u'u, )y= [1+(1—g) ](1+bvFs)+
2y "

y 1—
—g+ —'g 1+

2 1 —
U

I 1+y ln(1 —v')

—y Li2[ —u'/(1 —v')] j+(g /2)
1 —v' 1 —U'

(Al)

f2(g, u, u', y)= [1+(1—g) ]+, [
—g+g /[2(1 —v')]I Iu'+yln(1 —u') —y Liz[ —v'/(1 —u')]I

2y y(1 —u')

+ vu'g
1 y y ln(1 —u')

2y(1 —u') 1 —v' v'(1 —v') (A2)

2

f3((,u, u, y)=
2r

1+ 1—
1 —v'

2

2r +2r 2g
(1—u')

y ln(1 —v') 2

, Liz[ —v'/(1 —u')]

+
(1—u')

2—y+y ln(1 —u') —,ln(1 —u') —y Li~[ —v'/(1 —v')]

f', (g, u, u', y)= [1+(1—g) ][(1+6v„s)/(1 u) uJ, —(v, y—)
—uS z(u, y)] — J,(u', y)2r r (A3)

+ [(g—1/g) J', (v', y)+(1 —1/g)(g —1)J 2(v', y)],r
f2(g, v, v', y )= J,(u, y) — J,(v', y)+ 2 ~(v', y),v vg, ug(g —1)

4r ' 4r
and

f3(k u v' y)=
2

&—2(u y) —
2 1

[&—i(v y) —&—i(u' y)l+

(A4)

(A5)

(A6)
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where we have defined the dilogarithm function as usual

Liz(x) = —I ln(1 —y)
x dp

0

and where, in addition, we have introduced

, (v, y) =
I 1+y ln(1 —u) —y Liz[ —v/(1 —u)]],1

(A7)

(A8)

1J z(u, y)= I 1 —vy+y ln(1 —v) —y ln(1 —u) —y Liz[ —v/(1 —u)]I
(1—v)

The equations (Al) —(A9) then completely specify f, and f,'. This completes our Appendix.
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