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Electroweak three- and four-point functions with two external quark legs are evaluated in the presence
of arbitrarily momentum-dependent quark self-energy contributions of nonperturbative origin, such as
those arising from QCD vacuum condensates. Gauge-parameter independence of O(e') on-mass-shell

quark two-point functions is recovered in the presence of such self-energies, provided electroweak three-
and four-point functions retain consistency with the Ward identities arising from the Becchi-Rouet-
Stora-Tyutin symmetries of the electroweak Lagrangian. These identities necessarily lead to departures
from purely perturbative electroweak Feynman rules; four-point functions that to lowest order are en-

tirely one-particle reducible in perturbative electroweak theory are seen to acquire one-particle-
irreducible components of comparable magnitude in the presence of contributions to quark self-energies
external to electroweak theory. Such additional contributions to three- and four-point functions, re-

quired for the gauge-parameter independence of on-shell quark two-point functions, do not contribute to
Landau-gauge amplitudes. In the chiral limit, such self-energy contributions are also shown to induce
gauge-parameter-independent Yukawa couplings to on-shell quarks. In the limit of a vanishing Higgs-
field momentum, this Yukawa coupling is at most of order X'/Mz, where X is the scale of the nonper-
turbative dynamical quark mass.

I. INTRODUCTION

In calculating any electroweak process involving had-
rons, it is important to note that the underlying field
theory acting on basis quarks is not just SU(2)L XU(1)
but the full SU(3), XSU(2)L XU(l) gauge theory of the
standard model. Moreover, the full standard-model vac-
uum necessarily permits perturbative SU(2)L XU(l) in-
teractions to couple directly to nonperturbative vacuum
expectation values [e.g. , (OI:g(x)g(y):IO) ] that occur in
the presence of vacuum condensates [1]. Such nonpertur-
bative contributions to quark two-point functions (which
are believed to be responsible for constituent-quark
masses [2, 3]) certainly occur, but are not easily incor-
porated into electroweak calculations.

Suppose the quark two-point function acquires a mass
contribution X(p ) from sources external to perturbative
electroweak theory. Terms proportional to P in X are as-
sumed to have already been absorbed in wave-function
renormalization factors (Z2). Consequently, we will re-
gard X as a purely Dirac scalar contribution to the fer-
mion propagator:

S(p)=[mr —P —X(p )]

Such contributions in empirical hadronic electroweak
processes are expected to arise from QCD-vacuum con-
densates. For example, in the limit of Lagrangian chiral
symmetry (mL =0), the dimension-three QCD-vacuum
condensate (OI:g(0)g(0):IO) (—:(qq ) ) yields a self-
energy mass contribution [3, 4]
—&(p') = [g,'I & qq & I(3+a )]&(9p'+g,'am

I & qq & I
&p'),

(1.2)

where a is the QCD covariant-gauge parameter, and
where m[= —X(m )=Ig, (qq)/3I'~ ] is the gauge-
parameter-independent (GPI) mass [2, 4, 5], generated by
the chiral noninvariance of the QCD vacuum.

In the present paper, we will consider X(p ) to be an
arbitrary nonperturbative external contribution to the
Dirac-scalar portion of the quark self-energy. This con-
tribution is not expected to respect the SU(2)L X U(1)
symmetry of the electroweak Lagrangian [e.g. , the QCD
order-parameter (qq) is not invariant under SU(2)L-
symmetry transformations]. Hence, such external self-
energy contributions within electroweak field-theoretical
processes are expected to lead to calculational incon-
sistencies. Earlier work [6] has indeed shown that on-
shell electroweak-mediated self-energies in the presence
of a quark-condensing vacuum, such as that of QCD, ex-
hibit explicit dependence on electroweak gauge parame-
ters unless the quark mass is completely insensitive to the
( qq ) condensate, an assumption inconsistent with having
constituent-quark masses arise from the chiral noninvari-
ance of the QCD vacuum [7]. Since on-shell Feynman
amplitudes must be gauge-parameter independent for
those amplitudes to be meaningful, we can only conclude
that a naive application of electroweak Feynman rules is
incorrect in the presence of such externally generated
quark self-energies [6].

Our approach to the problem delineated above is to ob-
tain electroweak three- and four-point Green's functions
in the presence of nonperturbative fermion two-point-
function contributions external to SU(2)L XU(1) through
straightforward use of SU(2)I XU(1) Ward identities [8].
These Green's functions reduce to those obtained from
conventiona1 electroweak Feynman rules in the limit that
externally generated quark self-energy contributions van-
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ish. We then test our approach by examining the elec-
tro»~eak gauge-parameter dependence of on-shell self-
energy amplitudes generated in the presence of these ar-
bitrarily momentum-dependent external contributions
X(p ) to the quark inverse propagator, and, as an appli-
cation of some physical interest, we obtain from X(p ) a
(one-loop) induced Higgs coupling to quarks in the chiral
limit.

In Sec. II we derive and examine relevant Ward identi-
ties of spontaneously broken SU(2)i XU(1) gauge theory
in the presence of external contributions to quark self-
energies. By making use of the Becchi-Rouet-Stora-
Tyutin (BRST) invariances of the electroweak Lagrang-
ian, we rederive well-known Ward identities for self-
energy corrections to the three-point vertices it A it,
itrZQ, QR'g. We then employ these same methods to
demonstrate how four-point PAAf, gZZg, and gWWg
vertices, ordinarily one-point-reducible (1PR) quantities
to tree order, acquire one-point-irreducible (1PI) com-
ponents in the presence of external contributions to
quark self-energies. We also find that remaining four-
point functions involving two external quark lines (i.e.,
four-point couplings to scalar and ghost fields) can
remain 1PR quantities as long as the quark propagator
and PZP, itrWQ three-point functions include external
self-energy effects. The Ward identities we obtain are
shown to allow the retention of the usual Feynman rules
for Yukawa couplings.

In Sec. III we test the results of Sec. II by examining
the electroweak gauge-parameter independence of the
simplest possible on-mass-shell amplitude, the elec-
troweak contributions to the quark's two-point function
evaluated on the quark mass shell. The use of uncorrect-
ed (or the improper use of corrected) three- and four-
point functions in the presence of external quark self-
energies leads to a gauge-dependent on-shell amplitude.
We explicitly show that the three- and four-point func-
tions from Sec. II must be utilized in order to recover the
gauge-parameter independence expected for any on-
mass-shell Feynman amplitude.

In Sec. IV we consider spontaneously broken
SU(2)J XU(1) field theory in the limit of Lagrangian
chiral symmetry, i.e., the limit in which there are no La-
grangian Yukawa couplings. We show that the four-
point functions of Sec. II imply that, even in the chiral
limit, a Yukawa coupling is induced if quark propagators
have Dirac-scalar components arising from sources exter-
nal to electroweak theory, such as the chiral-noninvariant
QCD vacuum. We demonstrate that this induced
Yukawa-interaction three-point function is gauge-

parameter independent when external quark lines are tak-
en to be on their mass shells. We then consider the
(current) quark mass induced by this Yukawa interaction,
and show that its magnitude is negligible (5 10 MeV).

Finally, we argue in Sec. V that three- and four-point
functions need not be corrected in the presence of arbi-
trary external contributions to quark self-energies as long
as calculations are performed in Landau gauge, as the
corrections such contributions impose upon three- and
four-point functions are annihilated by transverse projec-
tion operators. For practical purposes, this is the most
important consequence of the present work. It tells us
that for a physical (on-shell) amplitude, the result ob-
tained in a Landau-gauge calculation employing "naive"
Feynman rules (except for external contributions to the
quark propagator) is indeed the correct gauge-invariant
result. Similar conclusions have been reached in early
studies involving dynamical chiral-symmetry breaking
[9], corresponding to the chiral limit of our more general
treatment.

We wish to stress that the problems addressed in our
paper are not just of a formal nature, but carry important
physical implications. In the (semiperturbative) calcula-
tion of many electroweak processes involving quarks, the
dynamically induced (QCD) quark self-energy plays an
essential role, facilitating the avoidance of spurious in-
frared enhancements in some cases or unphysical helicity
suppressions in others. In the absence of a formalism of
the type presented here, reliable (i.e., gauge-parameter-
independent) predictions for such electroweak processes
are impossible unless the full SU(3), X SU(2)L X U(1)
theory, including nonperturbative quantum vacuum
effects, are treated in a complete and consistent fashion.
The results we present are also applicable to any chiral
gauge theory with externally induced chiral-symmetry
breaking.

II. EI.KCTR(OWEAK WARD IDENTITIES

For the quantum electrodynamics (QED) subgroup of
electroweak theory, the Ward identities relating three-
and four-point Green's functions to two-point fermion
Green's function are obtained by requiring invariance of
all renormalized Green's functions under the relevant
BRST transformations. For example, to obtain the rela-
tionship between the quark-antiquark-photon (P A g)
three-point function and the externally generated self-
energy in Eq. (1.1), we begin by requiring BRST invari-
ance of the corresponding three-point function involving
the photon's Faddeev-Popov ghost (c ",c ") [10j:

0=5 (f(x)c "(y)g(z) )
= —ileQ(P(x)c "(x)c "(y)P(z) ) +(X/a)(g(x)B" A„(y)g(z) )

+ileg(it(x)c "(z)c (y)g(z))+contributions from Z and 8' sectors

= —& Q(1(r( )g( )&& ( ) (y)&+(&/ )& &i)'j( )& (y)P( )&

+ileQ(g( )gx(z))(c (z)c "(y))+higher-order contributions in e and g . (2.1)

Note that the parameter A, in (2.1) is a Grassmann variable (a is the QED covariant-gauge parameter). In obtaining the
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final line of (2.1), we note that the lowest contributing order in electroweak couplings to (2.1) is insensitive to non-
Abelian contributions from the embedding of QED into SU(2)L XU(1). Application of the D Alembertian operator in
the y variable yields

(1/a) 8"& g(x) A (y)g(z) & =ieQ[& P(x)P(z) &5 (x —y) —
& g(x)g(z) &5"(z —y)]

+higher-order contributions in e and g .

If we define our momentum-space Green's functions to be related to coordinate-space Green's functions via

& P(x)g(z) & =(2') f d p f d"q e '~'e'~'G&&(q;p),

&g(x)A "(y)g(z)&=(2m) ' f d q f d k f d p e 'i'"e'"' e'i"G~&„&(q;k,p),

(2.2)

(2.3a)

(2.3b)

where momenta before the semicolon are outgoing and
momenta after the semicolon are incoming, we then find
that

( ik„k —/a)G~&~&(q;k, p ) =ieQ[G&&(q —k;p )

k b,"„(k)=ak'/k (2.6)

we then obtain the well-known relation between two- and
three-point functions that is upheld to all orders of QED
considered in isolation:

—G ~(q;p+k)] . (2.4) k I'- (q; k,p ) = —eQ [S '(q) —S '(p)] . (2.7)

Furthermore, if we define truncated momentum-space
Green's functions via

G&&(q
—k;p)—:S(p)5 (q —k —p),

Gqgq(q'k p ):$(q)kg (k)I ~
(q'k p )

XS(p)5 (q —k —p),

(2.5a)

(2.5b)

and make use of the Ward identity for the full photon
propagator

Fquation (2.7) demonstrates how an external
momentum-dependent contribution to the fermion propa-
gator (1.1) necessarily alters the oF-shell coupling of fer-
mions to photons. The contribution (2.7), of course, van-
ishes with vanishing photon momentum, consistent with
the definition of electric charge.

We now derive the QED Ward identity relating the
itjAAP four-point function to the two- and three-point
functions of (2.7) by considering the following BRST
variation:

0=5' ' &it(x)A„(y)c '(u)1t(z)&

= —ikeQ & g(x) A (y)Q(z) & & c (x)c (ic) &
—k& q(x)q(z) &(a, )„&c "(y)c "(w) &

+(A/ )8'&g( )A (y)A ( )g( )&+'X Q&Q( )A (y)Q( )&& ( ) ( )&

+higher-order contributions in e and g .

If we ignore the higher-order contributions to (2.8) and apply a D Alembertian operator in the variable w, we obtain

—I:I„B &g(x)A (y)A (ic)g(z)&=ieQ&g(x)A (y)g(z)&5 (x —w)+(8 ) [&P(x)g(z)&5'(y —ui)]
A

(2 8)

—ieQ&g(x)A„(y)g(z)&5 (z —w) .

The four-point function in (2.9) has a connected and a disconnected piece:

& g( ) A (y) A.( )it ( ) &
=

& g( ) A (y) A. ( ) iT( ) &, + & g( )P( ) & & A (y) A ( ) & .

(2.9)

(2.10)

Equation (2.9) can be used to generate a momentum-space Ward identity through use of (2.5), (2.10), and the
momentum-space connected Green's functions

& A "(y)A (u~)&=(2m. ) f d p f d q e '~'~e'~' G„"~(p;q),

G~~(p q) =—~~'(q)5'(p —q»
&g(x)A "(y)A (w)g(z) &, =(2') ' f d l f d k f d q f d p e ' ' e'"'~e'q e'~'G~&zz&('l;k, q,p),

and the truncated Green's function

G~&"„„&(1;k,q,p ) =$(l)b ~~(k)b, „(q)I &"„„&(l;k,qp)g, g „S(p)5 (I —k —
q

—p) .

(2.1 1)

(2.12)
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Upon substitution of (2.6) and (2.10)—(2.12) into (2.9), we obtain the following Ward identity [/ =k +q +p ]:

q I"-~„(/;k,q, p ) = —eQ [S '(/)S(/ —
q )I &„&(/

—q; k,p) 1—&~&(/;k, p +q)S(p +q)S '(p)].

In (2.13), we may use (2.7) to replace S '(/) and S '(p) with the expressions

(2.13)

—eQS '(/)=q, I &~&(/;q, / —q) —eQS '(/ —q)

eQS '(p)=eQS '(p+q)+q, l '-~ (p+q;q, /i),
(2.14)

so as to obtain

q I &„~&(/;k,qp)=q tI &„&(/;q, / q)S(/ —q)l &—~&(/
—q;k p)+I &„&(/;kp+q)S(p+q)l &„&(p+q;qp)J

+eQ[I &„&(/;k,p+q) —I &~&(/
—q;k, p)] . (2.15)

This last identity reveals the structure of the ttjAA1/
four-point function in the presence of external contribu-
tions to the quark self-energy. The curly bracketed term
on the right-hand side of (2.15) corresponds to the one-
point-reducible contributions one would obtain in field
theory from appropriately dressed three-point vertices
and two-point propagators arising from the QED La-
grangian. The final square-bracketed term on the right-
hand side of (2.15) can easily be shown to vanish in the
absence of external momentum-dependent contributions
to the fermion self-energy. However, in the presence of
an external momentum-dependent contribution to the
self-energy, as proposed in (1.1), the final term in (2.15)
corresponds to a distinct 1PI contribution to the truncat-
ed four-point Green s function, as indicated schematical-
ly in Fig. 1. This additional contribution is essential for
gauge-parameter independence of the on-shell quark
self-energy, as will be demonstrated in Sec. III.

In deriving Ward identities for Z- and 8'-coupled
Green's functions analogous to (2.7) and (2.15), one must
take into consideration nonvanishing Yukawa couplings
to the Higgs sector. Consequently both the physical
Higgs field (P) and unphysical scalar partners (y3, y —+

) to
the Z and 8'will appear in relevant Ward identities. As
in the previous section, we begin by requiring BRST in-
variance of an appropriately chosen three-point function:

eMz2
Cl up

2Mw+Mz Mw

~z —~~(+)—+ +2
mz2

emz2

b, „p,
=

4M &M' —M'

(2.17b)

(2.17c)

S(p+q) I P
+A+ +A+

Upon application of the operator ( ~+ctzMz) to both
sides of (2.16), we find in momentum space (to lowest or-
der in electroweak couplings) that

i I S~p+k) I
+A+ +A+

i A(a —by—, )( t/(x)c (x)c (y)t/(z) )

+A, ( t/(x) 8"Z„(y)+M y (y) t/(z) )
1

az

+iA, (t/j(x)c (z)c (y)ttj(z))(a+by, ), (2.16)

(r~«),"„;;=y&(a+ by, ),
dn

(2.17a)

where az is the ('t Hooft —Feynman) gauge parameter of
the Z, and where a and b characterize the tree-level Zqq
vertex [10]:

FICx. 1. 1PR and 1PI components of the 1(AAi/ truncated
momentum-space Green's function. Shaded circles represent
corrections to three-point vertices and the quark propagator fol-
lowing from inclusion of external nonperturbative contributions
to the quark self-energy.
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(ik )( k +azMz)G~&z&(q'k p)+Mz( k +azMz)G& &(q'k p)P Z Z QZ le z z z

=i(a b—y~)G& (q -—k;p) —iG -(q;p+k)(a+by5) .

To express (2.18) in terms of truncated Green's functions, we utilize (2.5), (2.12), and

G& &(q;k,p)=S(q)hr (k)I
& &(q;k,p)S(p)5 (q —k —p),

G~&z&(q'k p)=S(q)biz (k)g .I &z&(q'k p)S(p)5 (q k p)

(2.18)

(2.19a)

(2.19b)

( k +azMz~ )bx (k) = 1

k„b~z (k) =azk l(k azMz )

in order to obtain

ik I z&(q 'k'p )+MzI
& &(q 'k'p )
ttX34

=iS '(q)(a by 5 )
——i(a +b y 5 )S '(p } .

(2.20a)

(2.20b)

(2.21)

as well as the Z- and y3-propagator identities [following
from BRST invariance of (Z„(x)c (y) ), (g3(x)c (y) ) ]

Equation (2.21) is easily seen to be satisfied by the tree-
level vertices (Feynman rules) of SU(2)XU(l). We see
from (2.21), as in (2.7), that external contributions to the
fermion propagator (1.1) necessarily affect ll pZ and ggy3
three-point Green's functions.

To obtain Z-sector analogs of (2.15) relating four-point
Green's functions to two- and three-point Green's func-
tions, we follow the procedures delineated prior to (2.15)
to obtain the following Ward identity from BRST invari-
ance of the (g(x)Z„(y)c '(w)g(z) ) four-point Green's
function:

iq I ~&zz&(l 'k'q*p )+MzI ~&z &(1 k'q'p ) iS (l)(a by&)S(p +k )I ~&z&(p+k 'k'p)

ik"iI ~&z (1;k—,p+q)S(p+q)(a+by, )S '(p) — I &,&(1;k,q,p).

(2.22)

Similarly, one obtains from BRST invariance of (f(x)y3(w)c (y)g(z)) the momentum-space Ward identity

[1 —
q =p+k]:

z&(1;k,q,p)+Mzl (1;k,q, p—)=iS '(1)(a by5)S(l —q—)I — (1 —q;k, p}

0,'z Mz —k
+2b I gyes(l k +q p)

m,' —(k+q )'

—iI
&

&(1;k,p +q)S(p +q)(a +by, )S '(p)+MzI
&

&(l;k, q,p) . (2.23)

In obtaining (2.23) we have utilized both the tree-level relationship 2b ( P ) =Mz and the tree-level expression for the P
propagator, as is appropriate for the (lowest nontrivial) order of electroweak coupling in which we are working. Equa-
tions (2.22) and (2.23) can be employed to eliminate I — z, thereby yielding the relationship

X3ZQ'

q k„I" (1;k,q,p)+M-r (1;q,k,p)= -S'(1)(a —by )S(p+—k)k„r" (p+k;k, p)-
+k I ~&z&(l;k p+q)S(p+q)(a +by5)S '(p)+(k la )Iz&„&(1;k,q p)

+iS '(l)(a by~)S(l —k)MzI
& &(1

—k—;q,p)ttX34

We note from Bose symmetry that

uzi —e'2 2

+2bMz I &&&(1;k +q,p) iMzI
&

&(1;q—,p +k)

XS(p+k)(a+by5)S '(p)+MzI &„&(1;q,k,p) . (2.24)

q.k„I ~zz~(1; k, q p ) =k.q„I ~zz~(1; q, k,p ),
I

~ ~(l; , qpk) = I
~ ~(l; qk, )p.

(2.25a)

(2.25b)
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Moreover, careful consideration of the four-point gccg Green's function shows it to be invariant under exchange of "in-
bound" ghost momenta:

I ~„~(l;k,q,p)=I ~,~(/;q, k,p) . (2.25c)

This last property, directly follows from the momentum-exchange symmetry of the chic vertex, as can be verified by ex-
plicit construction of the (uncorrected)

/ccrc

four-point function from electroweak vertices [as in (2.27) below].
If we subtract from (2.24) the version of (2.24) we would have upon exchanging k and q, we can make use of (2.25)

and a judicious rearrangement of terms to obtain the identity

0= —S '(l)(a by5—)S(p +k)[k„I ~&z&(p +k;kp )+iMzI
& &(p +k 'k p)]A'3P

+[k„I~&z&(l;k,p+q)+iMzl
&

&(l;k,p+q)]S(p+q)(a+by, )S '(p)

+S '(l)(a b—y5)S(p +q)[iMzI (—p +q,' q, p) +q„ I"z(p +-q;q, p)]

—[iMzl &(—l'q p +k)+q I ~&z&(l;qp+k)]S(p+k)(a +by, )S '(p)

+ I = (l;k, q, p)+2bMz 2 2
I &&&(1;k+q,p) .

cKz
' m', —(k+q)' (2.26)

We now apply (2.21) to all square-bracketed terms in (2.26). The only surviving terms in (2.26) then yield the relation-
ship depicted graphically in Fig. 2:

2~uzMzI"= (l;k, q,p)= — I ~~~(l;k+q, p) .
m', —(k+q)' «~ ' (2.27)

The result (2.27) demonstrates the anticipated insensitivity of three- and four-point functions not involving fermions
to external fermion two-point function contributions, a property we have found consistently to be upheld. For example,
we see from (2.27) that, to lowest contributing order in electroweak couplings, the tree-level chic vertex ( 2ba, zMz) is-
impervious to external contributions to the fermion propagator. Such is not necessarily the case for three- and four-
point functions that do involve fermions; sensitivity of such vertices to external contributions to S [e.g. , X in (1.1)] is
evident in (2.21).

We now substitute (2.27) into both (2.22) and (2.23). We also use (2.21) to replace, respectively, factors of
iS '(l)(a by5) and —i (a +b—y, )S '(p) common to the right-hand sides of both (2.22) and (2.23) with

iq 1 jz~(l—;q,p +0)+MzI ~ ~(l;q,p +k)+i(a+by5)S '(p+k)A'34

and

iq„I ~z~(p+—q;q, p)+MzI — (p+q;q, p) iS '(p+q—)(a —by5) .A'30

The substitution into (2.22) yields the following result after some algebraic rearrangement:

i [q I ~zz~(l k'q, p)]+Mz t I ~z ~(l;k, q, p) j

i[q I &z&(l q p+k)S(p+k)1~&z&(p+k'k, p)+q I ~@z&(l;k p+q)S(p+q)I &z&(p+q q p)

+4bq"Mz(m~ —(k+q) ) 'I — (l;k+q, p)]

+Mz[l
& &(I q p+k)S(p+k)I ~&z&(p+k k p)+I'~&z&(1 k p+q)S(p+q)l

& &(p +'qq)p+i 2(b~k+2 q)

X(m
&
—(k +q)') 'I &&&(l'k +q p) ]+i(a+by5)1~&z&(p +k 'k p) il ~&z&(l 'k p +q)(a by&) (2.28)

In our arrangement of the right-hand side of (2.28), the terms enclosed by square brackets correspond to the 1PR con-
tributions to the QZZQ Green s function delineated in Fig. 3. Similarly, the terms in curly brackets correspond to the
1PR contributions to the QZy311 Green s function. The final unbracketed terms in (2.28) vanish at the tree level, but be-
come nonvanishing 1PI contribution in the presence of external contributions to the quark self-energy. By choosing
(2.28) and (2.15) to be consistent in the limit Mz ~0,a ~eg, b ~0[QZZQ~QA 3g], we find that (Fig. 3)

q„I ~&zz&(l;k, qp) =[q I &z&(l;q, p+k)S(p +k)I ~&z&(p+k;k, p)+I ~&z&(l;k,p +q)S(p+q)q I &z&(p +q, q p)
+I &&&(l'q+k p)[m& (q+k) ] (4bMzq")]

+I ~&z&(l k p+q)(a by&) (a+by5)I ~&z&(p+k'k'p) (2.29)
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~
I" s(p+k) I P

i/i / gi +/+ I 8(+ )I

FIG. 2. The Pc'c'g truncated momentum-space Green's
function to lowest contributing order (tree-order) in electroweak
coupling.

FIG. 3. 1PR and 1PI components of the gZZf truncated
momentum-space Green's function.

in which case the QZy31I Green's function is purely 1PR:

I ~&z &(I k q p) [I
& &(I qp+'k)S(p+k)l ~&z&(p+k'k p)+I ~&z&(I'k p+q)S(p+q)I

&
&(p+q'q p)

+I &&&(I;q+k,p)[m& —(q+k) ] '[2ib(k" +2q")] j . (2.30)

We note, however, that our decision to include the 1PI contributions proportional to b in the fZZf Green s function
(2.29) involves some arbitrariness, such contributions could have been partitioned differently without spoiling the
correspondence between the gZZP and tI A A g Green's functions in the b —+0 limit.

The corresponding substitutions of (2.27) and the above-described versions of (2.21) into (2.23) yield, after suitable
algebraic rearrangement,

i [q„r" —(I;k, q,-p)]+M [r (I;k-, q,p)]

i [q I &z&(l'q p+k)S(p+k)I
&

&(p+k'k p)A'30

+q r«(l;k, p+q)S(p+q)r'- &(p+q;q, p)+2ib(q +2k q)I. (I;k+q, p-)[m~& (k+q)2]—

+Mz[l
& &(I;q,p+k)S(p+k)l

&
&(p+k;k, p)+I

&
&(I;k,p+q)S(p+q)I

& &(p+q;q, p)

—(2bm&/Mz)I &&&(I;k+q,p)[m& —(k+q) ] ']+i(a+by5)I
& &(I

—q;k, p)A'3P

i I
&

&(I;k,p—+q)(a by5)+2bl —&&&(I;k+q,p) . (2.31)

The curly bracketed terms on both sides of (2.31) are equal. The terms within square brackets on the right-hand side of
(2.31) are the 1PR contributions to the gy3ysg Greens function delineated in Fig. 4. The remaining unbracketed terms
on the right-hand side of (2.31) separately vanish at the tree level. Sufficient freedom remains in our system to permit
the maintenance of the tree-level relationship between $$1I and gy3f vertices,

gyes(l k +q p) [ysI y q(I q k p)+ I
y q(l k p +q)yes] (2.32)

thereby retaining consistency with having P and y3 generated from the neutral component of the original scalar-field
blet. Application of (2.32) to the unbracketed terms in (2.31) yields cancellation of all such terms with the coefficient b
The remaining unbracketed a terms correspond to a possible 1PI contribution to the gy3y3g Green s function (Fig. 4):

I
&

&(I;k,q,p)=I
& &(I;q,p+k)S(p+k)I

&
&(p+k;k, p)+I

&
&(I;k,p+q)S(p+q)1

&
&(p+q;q, p)

(2bm y/Mz)[—m y (k +q) ] 'I ~~&(I—;k +q,p)+ [I
& &(I

—q;kp) I
@

&(I;k,p +q)]—.

(2.33)

Corresponding Ward identities for the W sector are listed below [i,I denote, respectively, the bottom and top
members of the SU(2)L fermion doublet]:

—ik„I ~ (q;k,p)+M~I (q;k, p)=(ig/2&— 2)[S; '(q)(1 —ys) —(1+y5)SI '(p)],
i 0;x e,

(2.34)
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rp —, +, -~ (1 ~k q p)=r], —,
— + (l;k q p)= —

2
I — (l;k+q p), (2.35)

— ~ (l k q p)+r" - — (l;k, q,p)]=q.[r- + (1;q,p+k)s, (p+k)r~ (p+k;k, p)f, W

+r~~ „,+~(l;k,p+q)S, (p+q)r'- (p+q;q, p)
i I

+2gM~g" [m', (—k+q)']-'r,—„(1;k+q,p)]

+(g/2 2)[1"- ~ (l;k,p+q)(l —y, )
I i

—(1+@,)1~ ~
(p+k;k, p)],

i I

I "- + (l;k, q,p)+I "- + „(l;k,q, p) =I — +„(l;q,p +k)S;(p +k)I"" (-p +k;k,p)
I i I

+I "- + (l;k,p+q)S, (p+q)I "- (p+q;q, p)x er

+ig(k+2q)"[m2& —(k+q) ] 'I
& &&

(l;k+q, p),

(2.36)

(2.37)

I — + (l;k, q,p)+I — + (l;k, q,p)=I
& +& (l;q,p+k)S;(p+k)I"- (p+k;k, p)~ x 0;x

+ I — + (l;k,p +q)S;(p +q)I — (p +q;q, p)x 0 i+ I

—2(gm~/2M~)[m~ —(k+q) ] 'r~
~~ (l;k+q, p) .

I I (2.38)

Our Anal comments in this section are interpretive. In
the presence of an external self-energy contribution to 5,
and Sz, we can retain a distinction between the pole of
the propagator (1.1) and the Lagrangian quark mass re-
sulting from Yukawa interactions with the vacuum ex-
pectation value (P). This latter mass characterizes the
lowest-order contribution to the three-point function

to lowest contributing order in the electroweak coupling.
If Eq. (2.32) is to be upheld, however, we see that I

&fx34
must also be una6'ected by externally generated mass con-
tributions to the self-energy. Moreover, the absence of
1PI contributions to (2.38) requires the following analog
to (2.32):

[r~ ~~ (l;k+q, p)]„„= 2m~b/Mz .—
I I

(2.39)
Qw

None of the identities we have derived relating three-
point functions to two-point functions precludes the
maintenance of (2.39) in the presence of self-energy mass
contributions external to SU(2)XU(l). In other words,
(2.39) is uncorrected by externally generated self-energies + ~l

d

d

C

(d)

d

k Q

d

lx, x
4'

d cl

(e)

Qw- w.

d d
(g)

C,C'

+
d

kQ Qq

r
=$=&~

I s(p+k) I . p
+x,M

i

~-4$ S
I S(p+q)
Ox, 1'

Iq

i

f9-~
p

qxP

Rq

i(

x+

FICx. 4. 1PR components of the Py,y, P truncated
momentum-space Green's function.

FIG. 5. Purely perturbative electroweak contributions to the
d-quark two-point function in the absence of external nonper-
turbative contributions to the quark inverse propagator.
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I
& &&

(l;k+q, p)=( i—/2&2)[(1+y~)I — (p+k;k, p) —I"- (l;k,p+q)(1 —y~)] .
I I i+ I+ i

(2.40)

If I
&&&

is to be unaffected by external self-energy mass
contributions, (2.40) is upheld provided I —,I — + are

similarly unaffected. Moreover, the 1PI contributions to
(2.33), corresponding to those terms on the right-hand
side with coefFicient a, are also seen to vanish.

Thus external self-energy contributions, particularly
those originating from the coupling of electroweak in-
teractions to an SU(2) XU(1) noninvariant QCD vacuum,
are seen to modify only the it A 1l, /ZAN, gW /sub—set of
electroweak three-point functions. These modifications
are then seen to generate additional self-energy-sensitive
contributions to the itjA A p, 1lZZQ, 1l W W —

1l subset of
electroweak four-point functions that would not be ex-
pected from the purely 1PR contributions to those func-
tions anticipated from the Feynman rules.

III. ON-MASS SHELL GAUGE INDEPENDENCE OF
QUARK TWO-POINT FUNCTIONS

In any perturbative quantum field theory, gauge-
parameter independence of physical (i.e. , on-mass-shell)
Green's functions is essential for the gauge invariance of
physically measurable processes. This on-shell gauge-
parameter independence also characterizes two-point
functions. For example, the a ~ gauge parameter ofpure-
ly perturbatiue SU(2)L XU(1) theory enters the d-quark
two-point function through the o.'~ sensitive contribu-
tions of Fig. 5. The gauge-parameter dependence of Fig.
10's first two contributions (henceforth labeled b, , and
b, & ) can be ascertained by utilizing only the gauge-
parameter-sensitive piece of the 8' propagator
[(k k, /Mii ) /( k —a ti,Mii, ) ]; the remaining contribu-
tions 6,. —5 may be evaluated directly from

I

SU(2)I XU(1) electroweak Feynman rules [10].
It is then a straightforward exercise to show that the

a~ dependence of the purely perturbative d-quark two-
point function vanishes on the d-quark mass shell:

a
lim g 6;(p) =0 .

md ilaw
(3.1)

(A corresponding demonstration of the vanishing of a,
dependence on shell is presented in detail in Ref. [6].)

In the fInal line of Fig. 5, the ez-dependent contribu-
tions to the d-quark two-point function are shown to cor-
respond to the electro weak four-point functions
(dW+W d ), (dg+g d ), (dc +c d ) with external
8' g, and c lines respectively contracted into o, ~-
dependent propagators. These purely perturbative func-
tions are all 1PR, as is evident from severing the a~-
sensitive propagator lines in drawings a —g. In the pres-
ence of additional nonperturbative contributions to quark
self-energies, as denoted by X(p ) in (1.1), the same four-
point functions occurring in Fig. 5 acquire X-sensitive
contributions, as discussed in the previous section.
Indeed, the three gauge parameters of electroweak theory
enter quark self-energies through the a-sensitive contri-
butions of Fig. 6, the o,z-sensitive contributions of Fig. 7,
and the et'-sensitive contributions of Fig. 8. The (now
shaded) four-point function of Fig. 6 corresponds to tying
together the photon legs of Fig. 1; correspondingly, Fig. 7
constructed from looping the nonfermion legs of Figs. 2,
3, and 4.

For example, the u-sensitive contribution to Fig. 6
[generated through the (1 —a)k, k /(k ) portion of the
photon propagator] is proportional to

b6=(1 —ct)u(p) f I ~„„~(p;k,—k,p)u(p) .
(2 )4 (k2)2 QAAQ

Upon substitution of (2.13) into (3.2) we find that

(3.2)

b6=eQ(1 —a)j u(p)[S '(p)S(p+k)k, I ~„~(p+k, k,p) k, I ~~~(p;k, p——k)S(p k)S '(p)]u—(p) .
(2n) (k )

(3.3)

FICs. 6. a-sensitive contribution to the quark two-point func-
tion in the presence of external nonperturbative contributions to
the quark inverse propagator. The four-point function in the
figure is the same as that of Fig. l.

FIG. 7. o.z-sensitive contributions to the quark two-point
function in the presence of external nonperturbative contribu-
tions to the quark inverse propagator. The four-point functions
in the figure are those of Figs. 2, 3, and 4.
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g+
/

y, .—, /

FIG. 8. ca~-sensitive contributions to the quark two-point
function in the presence of external nonperturbative contribu-
tions to the quark inverse propagator.

On the quark-mass shell, S '(p)u(p) and u(p)S '(p) are
defined to be zero, provided the quark mass is identified
with the pole of the quark propagator (1.1):

2
po]e = L po]e (3.4)

Consequently, b,6=0; the QED four-point function we
obtained in Fig. 1 ensures the retention of an a-
independent quark two-point function.

%'e emphasize that this gauge parameter independence
relies upon the same QED Ward identity that yields the
1PI contribution discussed immediately after Eq. (2.15).
A potential source of confusion about the need for such
1PI contributions is the on-she11 a independence of the
contributions of Fig. 9, corresponding to purely 1PR con-
tributions to the (gAAg) four-point function. The a
independence of Fig. 9 considered on shell
[S '(p)ij/(p) =0] is easily verified through use of the
three-point function Ward-identity (2.7) and symmetric
integration ( fd k k„/k =0). Indeed, Fig. 9 is the ap-

propriate realization of Fig. 6 for purely perturbative
QED contributions to fermion two-point functions, since
the retention of a bare vertex is necessary to avoid double
counting the (overlapping) divergences of purely pertur-
bative amplitudes. However, such arguments are no

I

FIG. 9. Usual incorporation of perturbative vertex and prop-
agator corrections into radiative corrections to the fermion
two-point function.

longer appropriate for the nonperturbative corrections
external to electroweak theory (such as those arising from
the QCD vacuum) responsible for the X(p ) of (1.1).
Indeed, the Fig. 9 analogues (including scalar partners)
for o.'z z-sensitive contributions to quark two-point func-
tions do not exhibit gauge-parameter independence in the
presence of an externally generated X(p ); the on-shell
a ~ and az independence of quark two-point functions is
realized only through careful consideration of the four-
point functions of Figs. 7 and 8.

The appropriate Ward identities for the four-point
functions of Fig. 7 are Eqs. (2.27), (2.29), and (2.33), with
I

&&&
and I

& &
constrained to their tree-level values

Wx34

2m „b /—Mz, 2i m „by, /—Mz, respectively, for up-
quarks, as discussed at the end of Sec. II. The gauge-
parameter-dependent part of the Fig. 7 amplitude ( b, 7 ) is
obtained through explicit use of the o.z dependent por-
tion of the Z propagator [(k k, /Mz)/(k —azMz)] for
connecting the external Z lines in Fig. 3, as well as the y3
and c propagators [ —1/(k —azMz)] for connecting
the scalar-partner and ghost external lines occurring in
Figs. 2 and 4:

d4k
&,=j. . . , u(p)I , [ k.r;-,(—p; k,p+k)—S(p+k)k„r~„(p+k;k, p)(2~) (azMz —k )Mz

+k„I ~ ~(p;k, p —k)S(p —k)( —k )I
~ ~(p

—k; —k,p)

+( —2m„b/Mz )(1/m
&

)( 4bMzk )+k—„I~&z&(p;k, p —k)(a —by5)

—(a + b y 5 )k„I ~&z&(p +k; k,p) ]

+ —,'[( 2im„by, )—S(p +k)( —2im„by, )

+( 2im„by5)S(p——k)( —2im„by5) —(2bm ~& )(1/m
&

)( 2m„b )]—
+( 1)[( 2bazMz /m

&
)( —2 mb ) ] uI(p)

in which case

d4k
u(p) ~

(2~) M

—4m„b
2Pl y

.u(p) (3.5)

a
A, =O

Baz
(3.6)

In obtaining the last line of (3.5), we have used repeatedly the three-point function Ward identity (2.21) as well as the
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on-shell u(p )S '(p) =S '(p)u(p) =0 constraints discussed above.
The on-shell o, ~-independence of Fig. 8 is obtained through analogous use of o, ~-sensitive four-point functions:

u p —k k I"- + p k, —kp+I"- + p k, —kpd k
(2m. ) (a~M~ —k )M~

+Mz [r~... ~(p'k kp—)+re, ,.~(p k kp—))

—M~ [I = (p;k, —k p)+I — (p;k, kp—)]Ju(p) . (3.7)

One finds from (2.35), (2.36), and (2.38), as well as from
judicious application of (2.34) that (8/Ba~)b, s=0 when
the u(p)S '(p)=S '(p)u(p)=0 mass-shell condition is
imposed.

Thus, we find that the one-loop corrections to quark
two-point functions are gauge-parameter independent,
both the purely perturbative spontaneously broken
SU(2) X U(1) theory and for that same theory augmented
with arbitrarily momentum-dependent self-energy contri-
butions X(p ) of nonperturbative origin. We stress that
gauge-parameter independence in the latter case would
not have occurred had the 1PI contributions to (2.15),

(2.29), and (2.36) been omitted; such contributions, of
course, vanish if X(p ) =0.

IV. INDUCED YUKAWA INTERACTIONS IN THE
CHIRAL LIMIT

In the chiral-symmetry limit of the electroweak La-
grangian, primitive Yukawa couplings of P and y3 scalar
fields necessarily vanish with the vanishing of the La-
grangian quark mass. Consequently, the lowest-order in-
duced Yukawa interaction in the chiral limit arises from
the graphs of Fig. 10. The contribution to this amplitude
from internal Z lines is given by

u(p+q)I &&&(p+q;qp)u (p)=2bMz f,u(p+q)I ~&zz&(p+q;k+q, —k,p)
i (2~)

g, —(1—az )k,k, /(k —azMz )

k —Mz

g„,—(1—az)(k„+q„)(k,+q, )/[(k+q )
—azMz]

(k +q) —Mz
u(p) . (4.1)

The portion of this expression involving the gauge parameter az necessarily contains factors of either
k I ~&zz&(p+q;k+q, —k,p) or (k+q)„I ~&zz&(p+q;k+q, —k,p) as coefficients of az-sensitive quantities. These fac-
tors can be evaluated through use of (2.22), which in the chiral limit simplifies to

ik I ~&zz&(p +q
' k +q, —k,p) = iS '(p +q)(a by, )S(p +—k +q) I ~&z&(p +k +q

' k +q p )

iI ~z~(p+q k+q p k)S(p k)(a +bye)S (p) (4.2)

q I

+4 q I

+4

FIG. 10. Induced Yukawa interaction in the chiral limit of
electroweak theory.

We then see from (4.1) that the right-hand side of (4.2)
vanishes between u(p+q) and u(p) on-shell external-
fermion spinors, as u(p+q)S '(p+q) and S '(p)u(p)
both equal zero for on-shell momenta. A similar argu-

ment can be presented for the o.~ independence of the in-
duced Higgs coupling.

%'e note that our application of the on-shell condition
S '(p)u (p) =0 corresponds in the chiral limit to having a
dynamical quark mass m defined by the quark propagator
pole obtained after setting the Lagrangian mass mL in
(3.4) equal to zero. The fermion masses generated
through the usual electroweak Yukawa interactions may
be regarded as arising from the zero-momentum-transfer
Yukawa coupling of the vacuum expectation value (P)
to a massless fermion. In the limit of Lagrangian chiral
symmetry, in which Lagrangian Yukawa couplings van-
ish, any induced Yukawa interaction (such as in Fig. 10)
necessarily will permit the occurrence of a mass via this
zero-momentum-transfer-induced coupling of a massless
fermion to ( P ):
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u (p)I g&&(p;O, p)u (p) —= 2—b(m '" )/Mz

d k=(2bMz) f u(p)[I ~&zz&(p k' k'p)g„ /(k Mz) ]u(p)
i(2m )

d4k
+(gMii, /2) f u(p)I [I" +-~(p;k, —O,p)+I ~~~ ~+~(p;O, k,—p))

i(2m )

Xg„ /(k —Mii ) ]u (p) . (4.3)

Let us consider the first integral on the right-hand side of (4.3), corresponding to the first graph of Fig. 10. The four-
point function in this integrand may be obtained directly from (2.29) taken in the I &&&=0 chiral limit, and is given ex-

plicitly in the next section. Moreover, the three-point functions in (2.29) can be evaluated through incorporation of
(1.1) into (2.21):

I ~z~(p+k;k, p)=y"(a by—,)+, [X((p+k)')(a —by, ) —(a +by, )X(p')] . (4.4)

Such substitutions yield the following expression for the Z sector's contribution to the induced fermion Yukawa
(current) mass (m '" —=mz~ +m g ):

—2b(mz )/Mz= bMz . 4u(p) y"(a by&) —
2 2 z y„(a by&—)

d~k „—P —@+X[(p+k) ]
i(27r) (p+k) —X ((p+k) )

+X +k+ IX(p )(a by ) (—a+by —)X[(p+k) ]I

X IX[(p+k) ](a by5) —(a—+by~)X(p )]

+ I(a +b )X(p ) (a b )X[(p+k) ]] u(p)/(k Mz)
1

(4.5)

To evaluate (4.5), we first assume that the external self-energy X(k' ) falls sufficiently quickly with k' that integrals of
the form fd O'X(k' )F(k') can be neglected relative to X(p )f d O' F(k'). We utilize the expansion
[O' —X (k' )] '=1/k' +(1/k' )X (k' )(1/k' )+ . . and then note that the nonleading terms in the expansion,
upon integration over k', are suppressed relative to the leading term by factors of X /Mz. Consequently, we find that
the leading contributions to mz" are given by

4
1

2b(mz" )—/Mz=4bMzu(p) (a +b )X(p ) f i(2') k' (O' —Mz)

u(p)+O(X /Mz) .

d k'(a by~)y k'(a+by5—)

i(2') k' [(k' —p) —Mz] (k' —p)
d k'(a +b y 5 )y "(—y k')y„(a by 5

)—
i(2~) k' [(k' —p) —Mz]

(4.6)

The contribution of the first and third integral in (4.6)
cancels upon utilization of the on-shell condition
S '(p)u(p)=0 to replace Pu(p) (from evaluation of the
third integral) with —X(p )u(p). The second integral
yields a contribution that is of order X /Mz in magni-
tude. Thus we find that the mass generated in the chiral
limit by the induced Yukawa interaction of Fig. 10 s Z-
exchange graph is (at most) of order mz = ~X~ /
Mz 510 MeV where ~X~ is assumed comparable to a
dynamical quark mass [see (3.4)] of order 300 MeV aris-
ing from the chiral noninvariance of the QCD vacuum
[2). The mass mg induced via Fig. 10's JY exchange can
also be shown to be characterized by a comparable small

upper bound. This result, in and of itself, is disappoint-
ing; it might have been interesting had there been a
causal connection demonstrated between the relatively
small ( —5 MeV) up- and down-quark current masses and
the m„„,&/3 dynamical mass scale characterizing quark
masses in static hadron processes.

As a final comment, it should be noted that the in-
duced Yukawa interaction in Fig. 10 is relevant for the
decay of the physical Higgs field P into uu and dd pairs,
provided the Higgs field line [assigned zero momentum in
(4.3)] is placed on shell. Such a calculation would depend
on the actual structure of X(p ) and is presently under in-

vestigation.
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V. SIGNIFICANCE OF LANDAU GAUGE

The incorporation of quark propagators with external
mass-self-energy contributions into electroweak theory
can be facilitated through consideration of the actual

three- and four-point functions that satisfy appropriate
Ward identities. The ( lbZQ) three-point function for ex-
ample is given by (4.4); the (gZZg) four-point function
(Fig. 3) consistent with (2.29), (4.4), and Bose symmetry is
given by

I "-zz (p+k+q;k, q,p ) =y (a by—&)S(p +k)y"(a by—5)+y"(a by—&)S(p +q)y (a by—~)

(4bMzg" )
m', —(k+q)'

+
2 ( [X[(p+k+q) ](a by5—) —(a +bye)X[(p+k )2]]S(p +k)y"(a by5)—

+y"(~ —bye)S(p +q) I X[(p +q)'l(a —by5) —(a +by5)X(p')] )

+
2 (y (a by5)S—(p+k)tX[(p+k) ](a —bye) —(a +by5)X(p )]

+ [X[(p+k+q) ](a by&) ——(a +by5)X[(p +q ) ]]S(p+q)y'(a —by&))

q k"+
2 (IX[(p+k+q) ](a bye) ——(a+by5)X[(p+k) ]IS(p+k)

X IX[(p+k) ](a bye) (—a+by~—)X(p )I

+ [X[(p+k+q) ](a by5) (a—+by5—)X[(p+q) ]]S(p+q)
X [X[(p+q) ](a by~) —(a +—by) X(p )I

+(a —by5) X[(p+k+q) ]+(a+by5) X(p )

—(a b)IX[(p+—q) ]+X[(p+k) ]I ) .

Although other kinematic structures may also be con-
sistent with (2.21) and (2.29), those chosen for (4.4) and
(5.1) are seen to have all vertex X dependence in terms
that are annihilated by transverse projection operators.
In other words, all X-dependent departures from tree-
level vertices (including the 1PI contribution to Fig. 3)
are seen to Vanish in a Landau-gauge calculation. This
result, which is anticipated in a calculation coupling the
nonperturbative (0~:g(x)f(y): 0) vacuum expectation
value to b,S= 1 processes [11], implies that a Landau

gauge calculation with naive electroweak Feynman rules
will yield the "correct" (i.e. , gauge-invariant) result, even
when quark propagators S(p) contain externally generat-
ed self-energies of nonperturbative origin, as in (1.1).
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