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Further remarks on quantization of massive chiral electrodynamics in four dimensions
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We show that our conclusions about the consistency of massive chiral electrodynamics in four dimen-

sions were based on the use of a peculiar, although popular, expression of the chiral triangle amplitude
for massless fermions, viz. , a Bose-symmetric sum of Dolgov-Zakharov poles. If the Feynman triangular
amplitude is instead computed by means of standard ultraviolet regulators, no decoupling of the unphys-
ical degree of freedom occurs, thereby jeopardizing perturbative unitarity. Our present analysis raises
severe doubts about the possibility of a consistent treatment of anomalous theories in a perturbative con-
text.
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PL being the left projection operator (I+ys)/2, g a
Dirac spinor, A„ the Proca potential, F„ the related
field tensor, and g an auxiliary field [2].

At the classical level the fermionic left current

Jg' =iefy"Pt g (2)

is conserved, the field A„ is transverse 0"A„=O and the
ghost field g completely decoupled. At the quantum level
the left current is no longer conserved, owing to the
chiral anomaly

e
B„Jg= F„F"

48m
(3)

and a problem arises concerning g, which interacts with
A„via the chiral anomaly [see Eq. (3)].

Nevertheless, in the generating functional

W[J ]=A' ' f dA„dgdgdii

X exp i f d x(XO+J"A„), (4)

J„being an external source, we can perform the integra-

In Ref. [1] we proposed a model in which a massive
Abelian vector field interacts with a chiral left spinorial
current in the usual four-dimensional Minkowski space-
time. The model is described by the Lagrangian density
(the treatment we report here is simpler than the one in
Ref. [1], although completely equivalent from a physical
viewpoint)

Xo= — F„F"'+P—(J+ie APL )P
1

tion over the g field and get

W=A' ' f dA„dgdf

X exp i f d x[%0(A„)+J"A„)], (5)

where A „is defined as (g„—i) B,B ) A .
Then our previous conclusion about consistency was

based on the claim [3] that the one-loop chiral triangle
amplitude in a theory with massless fermions is given by
the Bose-symmetric combination of Dolgov-Zakharov
(DZ) poles [4], viz. ,
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Were this the case, the surviving transverse sector of
our model would be both perturbatively renormalized
and unitary. As a matter of fact the propagator of A„ is
well behaved in the ultraviolet region on the basis of
power counting. From its expression

k k 1D i IJ

k'+I, e k' —I'+is '

one realizes that its pole at k =I describes the three
physical degrees of freedom of a Prom field. Of course,
at variance with the Proca propagator, D exhibits also
an unphysical pole at k =0, which is the relic of the g
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field. This is the price one has to pay for having good ul-
traviolet behavior. Nevertheless the DZ expression (6) is
purely longitudinal and therefore cannot couple to A„.
Qf course 3„does couple to nonanomalous diagrams; in
them however current conservation occurs so that Proca
and "transverse" propagators both lead to the same S-
matrix elements [2].

This brought us to the conclusion that our model was
indeed perturbatively renormalizable and unitary.

Unfortunately the chiral triangle amplitude
T „(k„kz,k3), when computed with standard ultravio-

I

let regulators, has an expression quite different from the
one in Eq. (6). To avoid fermion mass terms we have re-
peated the one-loop calculation in the case of massless
fermions, using dimensional regularization and the
Breitenlohner-Maison [5] recipe for handling y5, with the
result [the same technique applied to the axial-vector-
vector amplitude exactly reproduces, in the massless fer-
mion limit, the Rosenberg [6] expression, obtained by
means of Pauli-Villars regulators; this expression differs
from the chiral amplitude of Eq. (8) by the addition of the
monomial (e /12m. )e, &„(k~ kq) —]

3 3

T „(k),k2, k3 ) = e „[(k) k2 )k3I—„+(k2—k3 )k,I„„+(k3—k; )k~I ]+— e(, k/ k~k3 I
3 3

+ e~, k(k3k, I„„+ 2e~,„krak)k2pI
4m. 4m. p X3X)

the integrals I,I,and I being defined as
I 2 2 3 3 1

5(1—x, —x2 —x3)dx, dx2dx3

0 k ]xpx3 k2x]x3 k3xfx2

We notice that T „depends explicitly on two different
tensorial structures; only on the submanifold
k f =k2 =k3 is the expression (6) recovered [7]. No DZ
pole is present for general kinematical configurations;
T exhibits quite involved analyticity properties in the

cTpp 2 2 2complex variables k„k2, and k3, as is expected on gen-
eral grounds. No cancellation can henceforth occur of
the unphysical pole entering the transverse D„propaga-
tor, which couples in the transverse sector of the model
and jeopardizes perturbative unitary.

In conclusion we point out that our present analysis
raises severe doubts on the possibility of a consistent
treatment of anomalous theories in a perturbative context
even in the presence of gauge group functional integra-
tion and/or addition of Wess-Zumino terms. As a matter
of fact, if in Eq. (4) we perform the gauge transformation
3„—+3„—B„O, keeping the "gauge-fixing" term mqBA
unchanged, and thereby integrate over the group variable
8 [8], we recover the unitary Proca propagator, but re-
normalization is lost.

We thank A. A. Slavnov for correspondence and useful
discussions. One of us (A.A. ) is grateful to R. Jackiw for
a stimulating conversation.
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