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In a previous paper we pointed out that dual QCD in its original form violated unitarity. In this paper
we identify the cause for this violation and construct a new dual QCD Lagrangian which is unitary. We
have not yet been able to determine whether this new Lagrangian leads to confinement. Finally we point
out how our original dual QCD Lagrangian which successfully describes many of the aspects of the

physics of confinement can be regarded as a phenomenological Lagrangian which does not violate uni-

tarity at the classical or tree level.

I. INTRODUCTION V.D=O, VXH= BD
Bt

(1.2)

During the past few years we have been studying long-
distance Yang-Mills theory based on a Lagrangian X(C)
expressed in terms of dual potentials C„' [1,2]. This work
led to a concrete realization of the dual superconductor
picture of QCD [3]. As such it yielded many of the prop-
erties of a confining theory such as the existence of (a)
quantized vortices of confined color-electric fiux, (b) a
static potential between quarks similar to that between
monopoles in a superconductor, (c) a deconfinement tran-
sition, and a chiral-symmetry transition closely related to
it.

In order to write the long-distance Lagrangian X(C) in
local form it was necessary to introduce additional de-
grees of freedom described by an antisymmetric tensor
field F„', [where a is color index running from 1 to N —1

for SU(N)]. These fields played the role of scalar Higgs
fields in a relativistic superconductor, and were essential
in preventing electric-color flux from spreading out. But
because of the Lorentz metric, the part of X(C) arising
from the kinetic energy of the fields F„' contained terms
of the wrong sign [4]. The purpose of this paper is to in-
vestigate possible violations of unitarity that these terms
could produce [4].

In order to establish notation let us review the
definition of dual potentials in Abelian gauge theory,
describing a relativistic dielectric medium characterized
by a momentum-dependent dielectric constant e(q) and
magnetic permeability p(q ), where

V B=O, VXE=- BB
ai

and the constitutive equations are

D=eE, B=pH,

(1.3)

(1.4)

which relate the electric displacement vector D and the
magnetic H vector to E and B. We introduce dual poten-
tials C„ to solve Eqs. (1.2) by writing

D= —VXC,

H= — —VCD .ac
at

(1.5)

The field equations for C„are generated by the La-
grangian X' ', given by

X.' '= —
—,'G" p(q)G„ (1.7)

where

]
gr vP~ q2 (q)

P~ q2
(1.9)

This propagator describes exactly the same physics as the
ordinary A„propagator 5, where

6„.=—a„C.—a.C„.
In the Landau gauge the resulting C„propagator
h„=((C„,C )+) is

p(q)= 1

e(q)

VI Vv
gp~p~ q2&(q) pv q2

(1.10)

The equations of motion are the source-free Maxwell's
equations:

In Yang-Mills theory we know from Mandelstam's
work [5] that dual potentials can be defined and that the
Yang-Mills Lagrangian as a function of the dual variables
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where

g)v'a =5~ du'+gf, „„C"'" (1.12)

Here, g = 2m /e, where e is the ordinary Yang-Mills cou-
pling constant, so that a, =e /4m, and f,b, are the
SU(N) structure constants. In the non-Abelian case we
do not know the explicit form of the Yang-Mills La-
grangian as a function of the dual variables, but we are
interested in solving the theory only at long distances,
and for this purpose, we need find only the Lagrangian
X(C) describing the long-distance regime of Yang-Mills
theory in terms of dual variables.

Our ansatz for X{C) is the following. X(C) is the
minimal extension of the Abelian Lagrangian, Eq. (1.7),
with

Mp(q)= — +1,
q

(1.13)

which is invariant under non-Abelian gauge transforma-
tions. That is, X(C) is the minimal gauge-invariant ex-
tension of X' '(C) where

is invariant under a non-Abelian gauge transformation of
the dual potentials C"',

C"'~C"'+2K' 5cob(x ),

~c
)Mv 2 ~ 2 gpvM q

(1.15)

Thus the infrared singular properties b, "——M /(q )
corresponds to an infrared nonsingular b, Eq. (1.15).

The Lagrangian X' ' yields in the Landau gauge the
propagator Eq. (1.15) and describes the solution of the
approximate Dyson equation in terms of dual variables.
Since 6 is nonsingular at small q it can be used as the
starting point for calculating infrared contributions not
included in the truncated Schwinger-Dyson equations.
We assume that X(C), the minimal gauge-invariant ex-
tension of X' '(C) determines these leading infrared
corrections. We will now construct X(C) and find the
consequences of this assumption. As a first step will
show that X' '( C) possess a tensor gauge symmetry,
which plays an important role in constructing X{C).

behavior b, "-—M /(q ) as q ~0. (M is an undeter-
mined parameter having the dimension mass. ) Thus they

/M + as q ~0. Consequently
p~ —M /q + as q ~0. By choice of normaliza-
tion of the dual potential we then obtain Eq. (1.13) as the
leading infrared contribution to p(q) in this approxima-
tion. Inserting Eq. (1.13) into Eq. (1.9), we find that this
solution yields a Cp propagator 8 c., given by

r"'(C)= ——G G ——G~ G
1 M 1

4 pv g2 pv 4 pv (1.14) II. CONSTRUCTION OF L(C)

The form Eq. (1.13) for p(q ) was motivated by the results
of many authors [6], who showed that the simplest self-
consistent truncation of the Schwinger-Dyson equations
for the gluon propagator 6 leads to a 5" which has the

I

In order to write X' '(C), Eq. (1.14), in local form we
introduce an antisymmetric tensor field F„. (We omit
color indices since X' ' is just a sum of terms correspond-
ing to each of the colors. ) We integrate the identity

1 M 1
exp i ——G G" exp i —F +6 8 F" + G"

4 pv g2 4 pv pv g2 82
=exp i F G" +—F BF"M — 1—

pv 4 pv

(2.1)

over F„and evaluate the integral over the left-hand side
of Eq. (2.1) by translating variables:

(& p )(BPF r)
py

)(g~F pr) = r (z~pr&g F p
2

e a py

MGF ~F& + 2 pv8
(2.2)

to rewrite X' ' as

Since G„satisfies the kinematic identity F G" ——8 FPrd F ——G G"pv 2 p ay 4 pv (2.7)

(2.3)

(2.5)

Vr'e make use of our freedom to impose the constraint
(2.4) and the identity

we may with no loss of generality integrate only over

fields F„satisfying the same identity:

B~e F P=O . (2 4)
~p, vap

Using Eqs. (1.14) and (2.1) we can then replace X by(0)

the local Lagrangian

F G~ + Fa'F~" G,G—~ . ——1
pv 4 pv 4 pv

This Lagrangian is invariant under the Abelian vector
and tensor gauge transformations:

Bp5co( x),
5F p=e p 8 5A"(x),

(2.8)

{2.9)

where 5M(x ) and 5A (x) are parameters characterizing
the vector and tensor gauge transformations, respective-
ly. Equation (2.4) can be regarded as a gauge-fixing con-
dition. The second term in Eq. (2.7) is the Lagrangian for
a free antisymmetric tensor gauge field. It is known to
describe a massless scalar particle [7]. In the presence of
the coupling term (M!2)G„F"' in X' ', this massless
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scalar degree of freedom combines with the two trans-
verse C„degrees of freedom to produce a massive vector
particle, as expected from Eq. (1.15). We will verify this
below.

We can add to Eq. (2.7) any multiple of the last term of
Eq. (2.6) without changing the physics. Such an addition
becomes a gauge-fixing term which breaks the tensor
gauge invariance. The Lagrangian X' i, Eq. (2.5), which
was the starting point of our previous work is an example
of such a gauge-fixed Lagrangian. In this work we start
with the physically equivalent Abelian Lagrangian, Eq.
(2.7), in which the tensor gauge invariance is manifest.
This will enable us to extend (2.7) to an interacting La-
grangian X, which possesses a corresponding non-
Abelian symmetry, which was absent in our previous in-
teracting Lagrangian, obtained by extending the form,
Eq. (2.5), ofX( '

Equation (2.7) can be written in first-order form by in-
troducing a further auxiliary field Z":

F~ W +—M'Z~Z ——G~ G, (2.10)pv 2 p 4 pv

5C"'(x ) =2)~c' 5' (x),
5F„'„(x)=gf,b,F„5''(x),
5Z"'(x) =gf,b, Z"' 5''(x),

(2.18)

(2.19)

(2.20)

where 2)ic' is given by Eq. (1.12). For many purposes it
is convenient to consider C„' and Y„' as the independent
fields. Equations (2.15), (2.18), and (2.20) then give

5Y"'(x)=2)ii,' 5' (x),
where

~p, ab ap5ab+ gf Yp, d

(2.21)

(2.22)

Furthermore, the action is also invariant under the trans-
formation

variables F„' and Z'. Freedman and Townsend [8] first
wrote down a Lagrangian of the form of (2.17) and stud-
ied some of its properties at the classical level.

By construction X is invariant under the non-Abelian
vector gauge transformation:

where 5Fa ~o, ab5A«, b( (2.23)

w„.=a,(c.+z. ) —a.(c„+z„).
Varying Z" in Eq. (2.10) gives

Z = BFP1

(2.11)

(2.12)

~v, ab pr a x', b p&pv~~ r (2.24)

which is the necessary non-Abelian generalization of the
tensor gauge transformation. This invariance is a conse-
quence of the kinematic identity

Inserting Eq. (2.12) into Eq. (2.10) yields the original
second-order expression, Eq. (2.7), for X' '. This first-
order form of X' ' is also invariant under the gauge trans-
formations, Eqs. (2.8) and (2.9), provided that

5Z„=O . (2.13)

G„'„—:a„c;—a c„'+gf,b, c„"c;,
Y„' =C„'+Z„',
w„'. =a„Y; a,Y„'+gf.„Y'„Y—'. .

(2.14)

(2.15)

(2.16)

Now we use Eq. (2.10) to determine the interacting La-
grangian X by the requirement that X be invariant under
the non-Abelian gauge transformation, Eq. (1.11), of the
dual potentials C"'. However X' ' is also invariant un-
der the Abelian tensor gauge transformation, Eq. (2.9).
This guarantees that the field F„contains only one de-
gree of freedom. Correspondingly the Lagrangian X
must be invariant under a non-Abelian generalization of
Eq. (2.9) in order that no spurious degrees of freedom are
introduced by extending X' ' to X.

The minimal Lagrangian L, having the necessary sym-
metry, is readily constructed from Eqs. (2.10) and (2.11)
as follows: Define

in the Lagrangian X~ ' in the form (2.5). This led to a La-
grangian, which in this paper we denote by X„given by

Gag pv, a+ F& (A@2 ) Fpv, b Gpv, aga
1 2 p 4 pv C ab 4 pv

(2.26)

This Lagrangian is invariant under the vector gauge
transformations (2.18) and (2.19) but is not invariant un-
der any tensor gauge transformation. As a consequence
the fields F„' appear as physical degrees of freedom in

Eq. (2.26).
Had we made the minimal substitution, (2.25) in the

new form (2.10) of X' ' we would have an interacting La-
grangian, which although distinct from Eq. (2.26), is also
not invariant under a tensor gauge transformation. This
is because it lacks an essential term

gM-, b c

2 F„f,b,Z„Z', (2.27)

The action is invariant since the Lagrangian changes by a
perfect divergence under the transformation, Eq. (2.23).

By contrast we obtained our original form of X by
making the minimal substitution

(2.25)

Then

MF' 8'P '+ ZP'Z' ——O' GP ' .pv 2 p 4 pv (2.17)

which is present in (2.17).
Indeed if we write out the expression for 8'p' appear-

ing in (2.17) as

This Lagrangian describes long-distance Yang-Mills
theory in terms of dual potentials C„', and the auxiliary (2.28)

w„' =G„' +a z' —a+„'+gf, ,(c z'+z„c')
gfabc v &
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the first four terms in Eq. (2.28) are obtained by making
the minimal substitution in O'„,. The last term in Eq.
(2.28) when multiplied by F„', yields (2.27) which is
present in X and missing in X,.

III. THE HAMILTONIAN

Let us next turn to the Hamiltonian in order to eluci-
date some of the features of the theory described by X.
We will show that in the case g =0, X describes a system
of noninteracting vector particles of mass M.

It is convenient to use a three-dimensional notation for
the components of the tensor F„.We define vectors E '
and 8 as

and their variation in X leads to the equations of con-
straint

grab. H b+g)ab 8 b=0
C Y

W'=0 .

(3.9)

(3.10)

Varying C ' in X gives the equation

g)oabH b+g)abxD b M2Z a
C C (3.11)

where the variable Co appearing in Eq. (3.11) through
SIC' is determined from Eq. (3.7). Equation (3.11), which
is the dual of Ampere's law, shows that M Z' is the
monopole current density. Equations (3.7) and (3.11)
yield monopole current conservation:

M
Bk = MF0k 7 Ek = E'klm F(m2

(3.1) g)0abZ b +g)ab Zb .0C 0 C (3.12)

Ya(g)ab H b+g)ab 8 b)+W a.E a (3.3)

Choosing Y„' and C„' as the independent variables we can
write the integral ofX in Hamiltonian form:

f5 dx= f dx( —H' C' —8'.Y'—S), (3.2)

where the Hamiltonian density & is given by

a2 a2 2

(Z a —Za )+Za~ab. H b
0 0 C

Varying 8' in X gives

a++)abyOb () (3.13)

Equation (3.6), (3.11), and (3.13) are dynamical equations
for C', H ', and Y ', respectively, which are decoupled
from the equation for B'. The Lagrange multiplier field
Yo appearing in Eq. (3.13) is not determined by the dy-
namics. To specify the solution we must impose a gauge
condition. For example, we can choose

V C'=0. (3.14)
The fields D' and W' appearing in Eq. (3.3) are defined
as The equation for 8 ', obtained by varying Y ' in X, is

W '= —V X Y '+ f Y X Y—
2 abd 7

D'= —VXC'+ Lf C'xC"
abd

(3.4)

(3.5)

2) ' 8 +2)' XE =M Z ' . (3.15)

The Lagrange multiplier field E' appearing in Eq. (3.15)
is not fixed by the dynamics and we must impose further
gauge conditions. We can choose

i.e.,

~k = 2 &km ~mn a d Dk 2~km„G

VXB'=0.
Note Eqs. (3.7) and (3.9) yield

(3.16)

H ' = —C ' gP"Cob-
C 7 (3.6)

which is just the non-Abelian generalization of Eq. (1.6}.
Varying X with respect to Co with Yo fixed gives

Equation (3.5), defining the color-electric displacement
vector D ', is the non-Abelian generalization of Eq. (1.5).
Since —H ' is the momentum conjugate to C ', H ' must
be the color-magnetic H vector. We can see this explicit-
ly by varying X with respect to H '. This gives the equa-
tion of motion

XP .8"=—M Z' . (3.17)

Equations (3.15) and (3.17) are the dual Yang-Mills equa-
tions for the fields E' and B' with gauge potential Y„' in
the presence of a monopole current density M Z„'.

Let us now count the number of independent degrees
of freedom. For each color we started with six degrees of
freedom described by the six pairs of canonical variables
(C', H'), (Y',8'). We have one constraint in Eq. (3.9),
and three constraints in (3.10), only two of which are in-
dependent because of the identity

crab H b M2Za M2( ya Ca } (3.7) 2)r.W=O . (3.18}

Equation (3.7), which is the dual of Gauss' law, shows
that M Z0 is the monopole charge density. Using Eq.
(3.7) to eliminate the dependent variable Co in the Hamil-
tonian we obtain

c'
+ + + Z'

2M
—Y;(n;b.H b+u;b 8 ')+W'. E' . (3.8)

The variables Y0 and E' appear as Lagrange multipliers

aTThe constraints fix the transverse components Y ' of the
Y' in terms of their longitudinal components Y' . The
gauge conditions (3.16) eliminate the transverse com-
ponents of 8', while the constraints (3.9) eliniinate the

L
longitudinal components H' of H'. For each color we
are left with three pairs of independent canonical vari-

aT aT L L
ables (C', H' ) and (Y',8' ) corresponding to three
degrees of freedom for each color. For SU(N) we are
thus left with the three (N2 —1) independent degrees of
freedom necessary to describe (N 1) massive vector—
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TXY=O .

Then from Eqs. (3.5) and (3.19) we obtain

(3.19)

particles.
Now let us apply this discussion to the Abelian theory

described by X~ ', obtained by setting g =0 in X. In this
case the constraint (3.10) reduces to

IV. UNITARITY AND OTHER PROPERTIES OF L
In this section we discuss further properties, including

unitarity, of the interacting Lagrangian, Eq. (2.17),
describing long-range Yang-Mills theory in terms of dual
potentials. For the purposes of the remaining discussion,
it is convenient to use matrix notation: Let us use SU(N)
generators T„normalized so that

0=VXX. (3.20)
2 Tr T~ Tb 5ab (4.1)

Using Eq. (3.20) in Eq. (3.11) then gives

H+VX(VXZ)= —M Z .

Adding Eqs. (3.6) and (3.13) gives

H=Z+ VZ

(3.21)

(3.22)

Z„=g Z„'T„ C„=g C„'T, ,

and define matrices Z„, C„,F„,and F„,6„,and 8'„,
by the equations

Equation (3.21) and (3.22) are two coupled equations for
Z and H. The dependent field Z is determined in terms
of H by Gauss' law, Eq. (3.7), which for g =0 assumes the
form

F„=gF„' T„Y„=C„+Zp,

G„„=B„C,—B„C„ig[C—„,C,],
W„=B Y,—B„Y„ig[—Y„,Y, ] .

(4.2)

Z
V.H
M

(3.23) Then the Lagrangian can be written as

(8 +M )Z=O . (3.24)

Taking the divergence of Eq. (3.22) gives the same equa-
tion for Zo. Thus the monopole current density Z" is a
free massive vector field.

Finally we evaluate the Hamiltonian H= fdx&(x)
Using Eq. (3.3) and the equations of motion, (3.21) and
(3.22), we obtain

Note that we have made no use of the gauge-fixing condi-
tions to obtain Eqs. (3.21) and (3.22). This is because we
have obtained an equation for Z" which transforms like a
current and not like a gauge field. Inserting the time
derivative of Eq. (3.22) into Eq. (3.21) and using the equa-
tion of continuity, Eq. (3.12), B„Z"=0, we obtain

M&=2tr F W" + Z Z ——G""G
PV P 4 )MV

(4.3)

The matrix form of the vector gauge transformations is

C„n-'C„n+ —'n-'a„n, (4.4)

Z„—+0 'Z„Q,
F„—+0 'F„Q,

(4.5)

(4.6)

where 0 is an SU(N) matrix. Note that under these
transformation s

H =Id x[ —Z"' '(x )coz'+ '(x )],
where

(3.25)

(3.26)

and hence

(4.7)

(4.8)

and

co= V —V'+M' (3.27)

Furthermore the action S= fdx X is invariant under the
tensor gauge transformation, which in matrix notation
takes the form

Equation (3.25) is the usual Hamiltonian for a system of
noninteracting vector particles of mass M. Furthermore,
the canonical commutation relations of C and H yield the
usual massive vector field commutation relations of Z„
and Z„. This demonstrates the result [8] that the cou-
pled Maxwell antisyrnmetric tensor Lagrangian, Eq.
(2.10), provides a gauge-invariant description of a massive
vector particle.

C„—+C„, Z„~Z„,
F p~F p+e ping)rr5A (x),

where

Xlr=B ig[Y, ] . —

Under the transformation (4.10),%~%+A where

(4.9)

(4.10)

(4.11)

5Ã=2tr [e p P)$5A (x)]W P =2tr — 5A (x)e p P)$(x)W P+dr e p 5A (x)W
M

(4.12)
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The first term in the right-hand side of Eq. (4.12) vanishes
identically while the second term gives no contribution to
the action.

Freedman and Townsend [8] showed that the self-
interacting antisymmetric tensor field Lagrangian ob-
tained by setting C„=0 in Eq. (4.3) is classically
equivalent to the nonlinear o. model. Later Slavnov and
Frolov [9] quantized this interacting antisymmetric ten-
sor theory and demonstrated that it was unitary. They
also proved its quantum-mechanical equivalence to the
nonlinear o model. Kimura [7] and Hata and Kugo [7]
had previously shown that when suitable gauge fixing and
ghost terms are added to the pure antisymrnetric tensor
Lagrangian, the tensor gauge symmetry is replaced by a
global Beechi-Rovet-Stora- Tyutin (BRST) invariance.
Clark, Lee, and Love [10] showed the Lagrangian in Eq.
(4.3) also possessed a BRST invariance. This guarantees
that the theory defined by the Lagrangian, Eq. (4.3), is
unitarity.

The Lagrangian (4.3) is nonrenormalizable. This
should produce no problems in applications of dual QCD
where we are restricted to low-momentum phenomena.

Next note that adding to X polynomials involving
products of traces of Z„,6 &

and their covariant deriva-
tives 2)~CZ and X)~CG & will yield a Lagrangian which
remains invariant under the transformations
(4.4)—(4. 10). The covariant derivative 2)~c can be writ-
ten as

IX=2 tr F W""+ Z~Z
pv 2

——G" G„+ [Z„,Z, ]
1

(4.17)

H 0 M&=2tr + + (Z +Z )
2 2 2

([Z" Z'] +2[Z Z"] )
16

(4.18)

The fields H and D appearing in Eq. (4.18) are just the
matrix forms of H' and D', Eqs. (3.5) and (3.6}. With
A, )0 the Hamiltonian is positive definite.

Next let us obtain the equations of motion generated
from (4.17). Varying F„,gives

WR =0,
while varying C„gives

2)~c G„, M2)~F„„—=O .

(4.19)

(4.20)

We chose V(Z„) to have the Skyrme form in order to
have a positive-definite Hamiltonian. The inclusion of
the additional term —V(Z„) in X, Eq. (4.17), does not
essentially change the construction of the Hamiltonian
density & carried out in Sec. III. We obtain

2) ~=CO" ig[C"—, ]=2)"),+ig[Z~, ] .

We can write 8'" as

W" =2)ICZ 2)CZ"—+G" ig[Z",—Z ] .

(4 1 3) Finally varying Z" yields

M2)" F +—M Z — =0 .5V
Y pv 5Z

(4.14) Subtracting Eq. (4.20) from Eq. (4.21) then gives

(4.21)

V(Z„)=——tr[Z„,Z ] (4.15)

Equations (4.13) and (4.14) can be used to eliminate XPz

and W" from any gauge-invariant additions to X.
We had previously constructed X as the minimal

gauge-invariant extension of the Abelian theory (2.7)
based on the M /(q ) propagator. X already contains
the dimension-4 operator G„G" . There are clearly oth-
er gauge-invariant dimension-4 operators, such as, for ex-
ample, W„„W" or [Z„,Z ] which we could have added
to X. We did not include these terms in Sec. II since
nothing essential would have changed at that point. Nev-
ertheless such terms do have effects which we will de-
scribe below. Note that we cannot add additional terms
involving the tensor field F &, since there are no other
forms involving F & which are invariant under the tensor
gauge transformation Eq. (4.10).

In this section we discuss only the minimal Lagrangian
(4.3), supplemented by a particular dimension-4 operator.
We add to (4.3} a term —V(Z„) where V(Z„) has the
Skyrme form [11]

2)" G =M~Z-
C pv v gzv

(4.22)

(4.23)

where U is an SU(N) matrix. We now use Eq. (4.23) to
eliminate Z„—:Y'„—C„ from the Lagrangian Eq. (4.17).
We have

Z =—Ua U-' —Cl
P g P P

Equation (4.22) is the covariant form of Eqs. (3.7} and
(3.11), modified to account for the addition of —V(Z„) to

Thus we see that M Z —5V/5Z is the monopole
charge density while M Z+ 5 V/5Z is the monopole
current density.

The Lagrangian (4.3} is equivalent to a gauged non-
linear o model [8,10]. To express the Lagrangian (4.17}
as a nonlinear cr model we first note that the general solu-
tion to the equation of motion, Eq. (4.19), is

Then making the replacement

X~X—V(Z„), (4 16) where

(D U)U—
g P (4.24)

we have D„U=B„U—igC„U . (4.25)
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Using Eqs. (4.17), (4.19), and (4.24) we obtain

X=2tr (D U)(D U) ——G" G,M 1
2 P P 4 P&

tr[(D„U)U ', (D U)U ']
8 4 P (4.26)

~ &g&g„,,=10.35 . (5.2)

It is these stable solutions (solitons) that could be
relevant to our work, and we now describe the work of
Ambjprn and Rubakov [12] who found these solitons and
studied their properties. They choose the gauge

U=1 . (5.3)
Equation (4.26) has the form of a gauged nonlinear o.
model supplemented by a gauged Skyrrne term.

We had seen for g=O and A, =O that the Lagrangian
(4.17) describes a system of N 1 no—ninteracting parti-
cles of mass M, which we call dual gluons. This nonin-
teracting dual theory is equivalent to an Abelian theory
having an infrared singular A„propagator Az, which
has the behavior 6„——M /(q ) asq ~0. As a conse-
quence it produces a linear potential between quarks.
However the electric-color Aux between the quarks
spreads out. There is no simple form for V(Z) which
confines this Aux at the classical level.

Then, from Eq. (4.23),

Y„=O,
or

C = —ZP P

Therefore we can eliminate C„ from the Hamiltonian
density &, Eq. (4.18). The fields D and H, Eqs. (3.5) and
(3.6) appearing in & are now functions of Z„. For static
Z„all terms in & containing Zo are quadratic and non-
negative. Hence stable static classical solution of the field
equations must have

V. STABLE SPHERICALLY SYMMETRIC
CLASSICAL SOLUTIONS

Z0=0 . (5.4)

The perturbation solution of the theory defined by
(4.17) describes a system of interacting dual gluons. To
have any possibility of describing confinement one must
study the Lagrangian (4.17) or, equivalently, (4.26) non-
perturbatively. This has been done to some extent by
Ambjdrn and Rubakov, [12], Eilam, Klabucar, and Stern
[13], and Brihaye and Kunz [14], who found stable static
spherically symmetric solutions of the classical equations
of motion generated by X for the case that the gauge
group is SU(2). We begin by classifying all the known
classical solutions [12—14], i.e., the unstable ones as well.
First note that for A, =O, Eq. (4.26) describes the limit of
the Higgs sector of the SU(2) piece of the standard model
as MH;, ~. For finite MH;, (12M~, this theory is
known to have an unstable spherically symmetric classi-
cal solution (the sphaleron). Yaffe [15] has shown that as
MH;, is increased new unstable solutions appear ("de-
formed sphalerons"), whose masses are less than that of
the sphaleron. In the limit MH;, ~~, described by the
Lagrangian (4.26) with A, =O, there then appear an infinite
sequence of unstable classical solutions [14], with masses
which approach the syhaleron mass from below. The
lowest mass in this sequence is finite.

For A,AO each of the X=O solutions develop into a
branch of solutions which vary smoothly with k for
values of A, less than some critical value. All these solu-
tions remain unstable except the branch of solutions that
begins at the lowest mass A, =O solution. In this case
solutions also continue to exist and to remain unstable as
A. is increased as long as the parameter g defined as

(5.1)

remains greater than g„;,= 10.35. There are no solutions
for g'(g'„;, . However for g&g„;, a new branch of solu-
tions develop which are stable and which have a lower
mass than the unstable branch for all values of g for
which they exist, i.e., for

D M=2 tr + — Z — [Z",Z']
2 2 16

(5.5)

where the color electric displacement vector D is given in
matrix form by

D=VXZ i [ZX,Z] . ——~ g
2

(5.6)

We introduce the following rescaled fields Z' andP
coordinates x„':

Mg
P ~g P (5.7)

Then

MD= D', (5.8)

where

D'=—V'XZ' —i —[Z'XZ'] .
2

We then obtain
4
&'(g),

where

(5.9)

(5.10)

I

u'(g)=2tr ~ +—Z' — [Z "Z']'
2 2 16

(5.1 1)

and g is defined in Eq. (5.1). The Hamiltonian II is given
by

(5.12)

The magnetic H vector Eq. (3.6) vanishes and & reduces
to
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where

H'(g):—fdx'&'(g) . (5.13)

M E'(g')
(5.14)

Ambjdrn and Rubakov [12] found such solitons Z&(x ')
for all g in the range ao &g&g'„;,. Thus the dual QCD
Lagrangian X has stable solutions when g /A, & g„;, with
a mass M given by Eq. (5.14). To see what these solutions
look like and to find E'(g), first consider the limit g~ ao.
Then the term gD ' dominates &'(g), Eq. (5.11), unless

D'=0 . (5.15)

Hence froin Eq. (5.9) in order to minimize H'(g) as
g~ ao, Z ' must be a pure gauge, i.e.,

Now let Z&(x') be a local minimum of H'(g), and let
E'(g) be the corresponding minimum value of the scaled
Hamiltonian H'(g). Then from Eq. (5.12) the mass M of
this solution is

Z(x) = &gZ&(M&gx) . (5.23)

tions for Z&(x') changes very smoothly from its limiting
value Eq. (5.21) as g is reduced. For example for
/=15, E'(g) is reduced by about 15% from its limiting
value Eq. (5.22) and the "winding number" n(Z') is re-
duced to 0.8 from its limiting value one. Of course, for
finite g, Z ' is no longer a pure gauge so n(Z ') has no to-
pological significance and these solutions are not topolog-
ically stable. The value of n(Z&), like that of E'(g'), gives
us a measure of how much the solution Z& changes with

Ambjdrn and Rubakov present curves for Z&(x') for
diff'erent values of g which show that for all values of g
for which stable solutions exist, i.e., for g satisfying Eq.
(5.2), Z&(x') remains qualitatively similar to its limiting
Skyrmion form Zs(x'). Indeed if we denote the soliton
size in dimensionless units by R'(g), then R'(g) is of the
order unity. (It increases somewhat less than 50%%uo as g
decreases from ao to g„;,=10.35.)

Expressing these results in terms of the unscaled vari-
ables Z(x) via Eq. (5.7), we obtain

Z'=iUp 'V'Up . (5.16)
Then Eqs. (5.21) and (5.23) give

The function Up is determined by substituting the form
(5.16) for Z into Eq. (5.11) and minimizing the Haniil-
tonian H', Eq. (5.13). Only the second and third terms in
Eq. (5.11) are nonvanishing and H' reduces to the
Skyrme Hamiltonian [11] for a nonlinear cr model field
Up without gauge interactions. The local minimum of H
then satisfies Skyrme's equation.

The solutions of Skyrme's equation are characterized
by their winding number n(Z ') given by

n ( Z '
)= dx ' TrZ '.

( Z ' X Z ' ),1

24m
(5.17)

where Z' has the form Eq. (5.16). The minimal energy
nontrivial solution Up of Skyrme's equation, called the
Skyrmion Us, is spherically syrnrnetric and has winding
number one. Then setting

Up= Us

in Eq. (5.16) gives

Zs(x')=iUs 'V'Us .

(5.18)

(5.19)

Ms =315

Hence

(5.20)

and

lim Z&(x ') =Zs(x ')
g'~ oo

(5.21)

lim E'(g)=Ms .
g'~ oo

(5.22)

Furthermore Ambjdrn and Rubakov find that their solu-

Equation (5.19) yields a Zs(x ') having a spherically sym-
metric structure mixing space and color variables like
that of a monopole potential. The corresponding value of
the energy E' is the Skyrmion mass Ms where, with our
dimensionless units,

lim Z(x) = &(Zs(M/&gx) .
g~ oo

(5.24)

Equation (5.14) and (5.22) then yield the following limit-
ing value for the corresponding soliton mass M:

M
im M=, Ms,

g~ oo g2
(5.25)

where Ms is the dimensionless Skyrmion mass (5.22).
Furthermore Eq. (5.24) gives a good qualitative descrip-
tion of the soliton field Z(x) and Eq. (5.25) gives the soli-
ton mass to within 20%%uo for all g& g„;,. From Eq. (5.24)
we see that radius R of the soliton is of the order

&X,

Mv'g Mg

and from Eq. (5.25) its mass M is of the order
1/2

M

(5.26)

(5.27)

From Eq. (5.27) we see that as A, —+0 for fixed g, the mass
M and the radius R of the soliton both vanish.

For small A, the mass M of the soliton becomes much
smaller than the elementary vector particle mass M. Al-
though not topologically stable except in the limit g~ ao,
these solitons have a monopolelike structure and are clas-
sically stable. They have small mass and we can specu-
late that they could condense in the vacuum so as to
change essentially the vacuum structure of the theory.
To see whether this could occur requires quantizing these
monopolelike solutions and determining nonperturbative-
ly their effect on the vacuum. We have not carried out
such a calculation. It is essential to do this since using
the perturbative vacuum leads to the existence of a physi-
cal dual gluon of mass M, which probably does not exist.

Finally it is clear that there are no classical Aux-tube
solutions based on the perturbative vacuum. To see this
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VI. PREVIOUS WORK ON DUAL QCD BASED ON
LAGRANGIAN L i

We now discuss the implications of the present work
on our original treatment of long-distance QCD based on
the Lagrangian X„Eq. (2.26). To obtain the final form
ofX, we must make two additions. First we make the re-
placement

X,+1(; (2)c),bf; =&, , (6.1)

where g;. and g; are a set of ghosts fields and the index i
runs from one to three. The functional integral over g;
and f; then cancels the determinant arising from the
functional integration over F„' in Eq. (2.1). Second we
replace

suppose there was a two-dimensional static configuration
Z (x) which minimized the Hamiltonian obtained from

Eq. (5.5). Then the configuration ZP=PZ (Px)
would yield a value H& of the Hamiltonian of the form
H&=aP +b where a and b are positive . Then
dH&ldP~& i)0, i.e., Z could not have minimized H
(this is just the usual Derrick scaling argument).

F2
2 g O1=

4
(6.6)

M is the mass of the dual gluon in the perturbative
vacuum and M, is the contribution to the gluon mass via
the Higgs mechanism in the nonperturbative vacuum
(Fo„,&0) Furt. hermore since the "Higgs fields" lie in
the adjoint representation, there exist two-dimensional
static solutions of the equations of motion generated by
X, corresponding to vortex tubes of quantized color elec-
tric Aux. The Aux tube is confined by the magnetic pres-
sure" produced by the nonvanishing vacuum expectation
value Bo of 8'. The vacuum expectation value of E'
vanishes. Thus

ways occurs at a nonvanishing value Fo„,, of F„, and
there is always spontaneous symmetry breaking. If
p (0, then F—o =2(B' —E' ))0 and the QCD vacu-
um is magnetic. Let us call M the mass of the gluon.
Then as a consequence of spontaneous symmetry break-
ing (Fo„,&0) the gluon mass M is given by

M =M+M (6.5)

where [4]

X,~X,—W(F, P, P) —=X, , (6.2) —F —28 (6.7)
where W is a fourth-order polynomial in F„,P, , and itj, .
The polynomial W is the counter term necessary for re-
normalization. The Lagrangian X i is renormalizable, un-
like X. W has the form

2N-W= —~ F + W(F)
2 4

+terms involving f; and P;, (6.3)

where

F 2 Fag pva — 2(B a2 E a2)
P (6.4)

and W&(F) is a quartic function of F„' . The parameters
p and I, determine the strength of the counterterms.
The color-magnetic field 8' and the color-electric field
E' are defined by Eq. (3.1). The variables E' and B' ap-
pearing in X, are independent of the dual potentials C„'
and serve as a convenient relabeling of the components of
F„' . With the identification, Eq. (3.1), the equations of
motion obtained by varying F„ in the noninteracting La-
grangian become the constitutive relations, Eq. (1.4),
where e=p '=8 /M. For this reason we denote E' and8' as color-electric and -magnetic fields. These variables
appear automatically in X„via Eq. (2.1), as auxiliary
fields necessary to render the Lagrangian local.

The structure of 8 is compatible with the vector gauge
symmetry of X,. Note such a counterterm could not ap-
pear as a nonminimal addition to the Lagrangian X, Eq.
(2.17), because W is not invariant under the tensor gauge
symmetry, Eq. (2.23). On the other hand, since Xi is not
invariant under this transformation, the term 8'is com-
patible with the invariances of X,. The F„' then play the
role of Higgs fields, and 8' that of a Higgs potential.
Since )i, )0 (because of stability) the minimum of W al-

This Aux tube then produces a linear potential between
quarks just as the magnetic vortices in a superconductor
produce a linear potential between monopoles.

The Aux tube solution becomes particularly simple if
we let M ~0. In this case the gluon mass M is given by

2F2 g 28a2
M =—

4 2
(6.8)

The mass M of the dual gluon arises entirely from the
nonvanishing vacuum expectation of the color magnetic
field, just as the photon mass in a relativistic supercon-
ductor arises from the nonvanishing vacuum expectation
value of the Higgs field. Furthermore in the limit M —+0,
the color-electric fields E' decouple from the Aux tube
equations, and hence E' vanishes everywhere, not only
asymptotically. The string tension is of order —Fo and is
insensitive to the value of M. All our results in dual
QCD are likewise insensitive to the value of M and we
have carried out all our calculations with X, setting
M =0.

At first sight it might seem surprising that one can take
the limit M —+0 without losing all the physics of the
M /(q ) propagator from which we started. However,
the role that this propagator plays in obtaining Xi is two-
fold. First of all it necessitates the introduction of the
auxiliary fields F, via Eq. (2.1). This then leads to the
equivalent local Abelian Lagrangian Eq. (2.5). Second
the (M/2)F„„G" interaction between the fields F„and
C„ in Eq. (2.5) gives a mass M to the C field. If we let
M —+0 at this stage we lose all the physics we started
with. However once the interactions are introduced so
that the Lagrangian Eq. (2.5) is replaced by Xi, Eqs.
(2.26) and (6.2), then F& obtains a nonvanishing vacuum
expectation value. This leads to a nonzero gluon mass,
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Eq. (6.8), even as M~O. Thus the essential physics of
the M /(q ) propagator, which is the existence of a
massive dual gluon, is left intact if M~O after the in-
teractions have been introduced. Furthermore this situa-
tion is analogous to superconductivity in that the mass of
the gluon would be determined solely by the Higgs mech-
anism.

There are also fundamental reasons why we consider
only the case M=O. This is because X, with MAO
violates unitarity already at the tree level in CC scatter-
ing. The reason is as follows: Because of the Lorentz
metric, the kinetic energy term in Xi involving the fields
F„' has the wrong sign for the fields E'. As a conse-
quence there is a unitarity violating pole with a negative
residue in any amplitude (such as CC scattering) which
can couple to an intermediate E' state. The CCE cou-
pling comes from the term ,'MF„' G—""in X„which con-
tains the interaction gMf, b, F„' C C '. This coupling
vanishes when M —+0. There is then no unitarity-
violating contribution to CC scattering. The same is true
for any amplitude at the tree level in the M =0 theory.
However we will see that in the nonperturbative vacuum
where 80%0, this result does not extend to loop graphs.
X, therefore leads to unitarity violations in higher-order
processes. However these unitarity violations occur at a
level beyond any of our applications. Xi with M =0 pro-
vides a phenomenological description of long-distance
QCD compatible with tree-level unitarity. From now on
when we refer to X„we imply also that M =0.

Next note that the only coupling of the space-time in-
dices pv of F„ to a Lorentz tensor is via the
(M/2)F„'„G"" term in X,. Since M =0, this term is ab-
sent. X, becomes invariant under Lorentz transforma-
tions of the coordinates x„and potentials C„without
transforming the F„' . (This means that F„ transforms
like a scalar under Lorentz transformations, in which
case the physical interpretation of F„as electric and
magnetic fields cannot be maintained. ) Thus the nonper-
turbative vacuum with B '= Bo and E '=0 does not spon-
taneously break Lorentz invariance as it would if M did
not vanish.

Now we turn to the question of the unitarity of X,
beyond the tree approximation. It can be shown that
since M =0, X, possesses a BRST symmetry which mixes
the F„ fields and the g,. and g,. fields introduced in Eq.
(6.1). As a consequence of this symmetry the contribu-
tion arising from F„ internal lines cancels a correspond-
ing contribution from g; lines provided that the vacuum
is perturbative, i.e., FO„=O. In this case the theory is
unitarity but uninteresting. On the other hand if
Fo„AO, as it is in the nonperturbative vacuum, then
there is no such cancellation between F„and
intermediate-state contributions. This is due to the fact
that the vacuum is no longer invariant under the BRST
transformation mentioned above and hence unitarity is
violated.

Thus at this stage our understanding of the physics of
confinement comes from the phenomenological Lagrang-
ian X,. This description is Lorentz invariant and there
are no violations of unitarity at the level where the appli-

The value of —Fo is determined from string tension ~.
The fit of Ref. [4] gives

—FO=2BO =~=(427 MeV) (6.10)

Equations (6.8), (6.9), and (6.10) then give the following
value of the gluon mass Mg.

M =604 MeV . (6.11)

The gluon mass M~ determines the scale of dual QCD.
Energies less than M gave the important contributions
in all our applications of dual QCD such as the calcula-
tion of chiral-symmetry-breaking phenomena and the
deconfining transitions [17]. However the domain of ap-
plicability of dual QCD cannot be extended up to and
beyond M, since it would then predict the existence of
an octet of strongly interacting particles at a mass of
about 0.6 GeV for which there is no evidence.

VII. CONCLUSION

Finally we raise the general question of how closely the
mechanism of confinement should correspond to the dual
of the mechanism of superconductivity. To clarify this
problem let us recall the original arguments of 't Hooft
and Mandelstam. 't Hooft [3] defined a dual Wilson loop
and proved that it satisfied a perimeter law if the original
Wilson loop satisfied an area law. Mandelstam then used
the dual Wilson loop to define dual potentials C„which
are related to the dual Wilson loop in the same way that
the original Yang-Mills potentials A„are related to the
ordinary Wilson loop. We then have two alternatives in a
confining theory.

(a) The propagator for the dual potential is that of a
weakly coupled massive particle. Then the dual Wilson
loop would satisfy a perimeter law. In this case one
would expect that the long-distance part of the dual La-
grangian is a simple function of the dual potentials,
which are weakly coupled at long distances. The descrip-
tion of dual QCD by the Lagrangian X& is the concrete
realization of this picture. It leads the simple dual super-
conducting picture of confinement in which the dual pho-
ton acquires a mass via a dual Higgs mechanism, but its
predictions are limited to energies below the mass of the

cations are made. Furthermore, Xi provides a specific
link between long-distance Yang-Mills theory and dual
superconductivity. We conclude by making a few corn-
ments on this relation.

In the Abelian Higgs model description of supercon-
ductivity the photon becomes massive and there is a
linear potential between monopoles. In dual QED de-
scribed by X, the dual gluon develops a mass
—(g /2)BO and there is a linear potential between
quarks. Recall that g is the inverse of the Yang-Mills
coupling constant. Its value can be estimated from the
I/R contribution to the phenomenologically determined
potential between heavy quarks [16]. The fit of Ref. [16]
gives

(6.9)
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dual gluon. This version bears some similarity to the
Landau-Ginzburg treatment of superconductivity in
which the role of the Higgs field was recognized before its
dynamical origin was understood.

(b) In the second alternative the perimeter law for the
dual Wilson loop must arise from a more complicated
mechanism. In this case there are two possibilities.

(i) The dual Lagrangian is a simple function of the dual
potentials, but the solution is nonperturbative so that the
physical spectrum bears little resemblence to the pertur-
bative spectrum. The unitary dual Lagrangian X that we
have constructed in this paper could be a concrete reali-
zation of this possibility. The perturbative solution of the
theory described by X consists of interacting massive vec-
tor mesons and there is no evidence for confinement.
However the theory possesses stable classical solutions
which could have small mass and affect the vacuum
structure. The result could be a physical spectrum which
is essentially different from the perturbative spectrum
and the physical vacuum could have confining properties.
In the absence of a concrete calculation, this remains
speculation. The other possibility is the following.

(ii) The dual potentials defined indirectly by Mandel-
stam are extremely complicated objects and that there is
no simple Lagrangian describing long-distance Yang-
Mills theory in terms of local dual fields. This is the al-

ternative to the hypothesis that all our work has been
based on.

To summarize, we know that X, describes many as-
pects of the physics of confinement. The formation of
quantized color electric Aux tubes with the usual phe-
nomenological applications all occur naturally at the
classical level. Since the Lagrangian X is obtained more
directly from the M /(q ) dynamics of the Dyson equa-
tions, it is perhaps more fundamental. Nevertheless at
the classical level there is no sign of any behavior that
might be associated with a dual superconductor. On the
other hand it possesses a rich spectrum of solutions
which could in principle be ingredients for constructing a
physical vacuum state. The value of X for understanding
confinement depends upon the success of this construc-
tion.
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