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We consider a model for the condensation of fermion pairs interacting through a generalized
Coulomb potential. The model gives a new outlook on chiral condensation and chiral-symmetry
breaking. For strong coupling, this model exhibits a new dynamical symmetry associated with
helicity conservation, allowing construction of a strong-coupling solution. The symmetry occurs
for confining as well as nonconfining potentials, and is independent of the number of colors. Near
the strong-coupling limit, for small fermion masses, the low-lying states are characterized by local
charge neutralization and correspond to a pseudoscalar collective excitation. The number of flavors
determines the symmetry group and also aftects details of the approach to the strong-coupling limit.

The model of fermions interacting through a gener-
alized Coulomb potential provides a convenient system
for investigating the condensation of fermion pairs and
breaking of chiral symmetry in QED and QCD. In the
continuum theory, this model has been studied using
variational methods applied in superconductivity theory
[I] and also using the Bethe-Salpeter equation [2]. One
question of interest is whether the existence and prop-
erties of any condensation depend on the momentum-
transfer dependence of the Coulomb potential, specifi-
cally, on whether it is confining or nonconfining. The
results have been somewhat equivocal and contradictory,
Lattice studies have also been carried out, especially for
strong-coupling QED [3] and also in QCD [4] with var-
ious approximations, with emphasis on determining the
existence and structure of phase transitions. These in-
vestigations also lead to somewhat uncertain results, be-
cause of finite-size effects and other lattice artifacts, and
because the massless limit is not accessible.

In our fermion-pair model we start from the contin-
uum theory and obtain a system with a finite number
of degrees of freedom by imposing a momentum cutoff
in a finite domain. Studies of the Coulomb-gauge pure-
glue theory show that the structure of the vacuum and
of low-lying states is dominated by the Coulomb inter-
action between color charges [5]. We incorporate this
feature of QCD by considering the fermions to interact
through a general nonretarded interaction in which the
fermion vertex includes the Dirac matrix y .

To construct our model, we use a variational formula-
tion that allows for an arbitrary distribution of fermion
pairs. The pairs are colorless and have zero net momen-
tum [6]. We shall show that in the massless limit the
Coulomb term in the Hamiltonian has a new symmetry
of dynamical origin. This is analogous to the dynamical
syrrunetry arising from the momentum-space structure
of the ordinary Coulomb potential, which leads to de-
generacies of the nonrelativistic hydrogen atom. In our
pair-interaction model, the symmetry is independent of
the momentum dependence and arises from helicity con-
servation. Exploitation of the helicity symmetry of our
pairing model leads to an exact solution for the lowest
multiplet of the symmetry group in the strong-coupling

limit p —+ oo, where p denotes the interaction strength.
This lowest multiplet consists of states with vanishing lo-
cal charge density. This new symmetry was not noticed
in our previous work [6] because of a mistaken term in
the Hamiltonian. For large coupling strengths there are
significant cancellations between large positive and neg-
ative terms that, were not taken into account correctly,
leading to incorrect numerical results in some cases.

For a finite number n of colors, we do not find any
qualitative change in the character of the solutions for
any finite value of the interaction constant p. In partic-
ular, there is no finite value p& at which pairs become
fully condensed or at which the chiral properties of the
solutions are altered. In our previous work [6] we found
that a condensation would occur for some critical finite
value y~ when n —+ oo. This shows that large-n results
are not a reliable guide. On the other hand, we do find
that if p ~ oo, chiral symmetry is "almost spontaneously
broken" in the sense that the low-lying states, in which
the charge is neutralized locally, correspond to collective
excitations associated with a pseudoscalar quantum of
mass M —gmip, where m is the fermion mass.

Our finite volume for discretizing the momentum p
is the unit hypersphere, in which we construct spinor
normal modes. The magnitude of momentum is p„
z + 2, where z is a positive integer restrict, ed to z ( A,
and the free-particle energy is E„= (m2 + p2) ~~. The
total degeneracy for each helicity h = +2 is v„= nA„,
where 4„=K(K+ I). At first, the ferrnions have a single
flavor.

We use a set of operators [6] M(K, h)t that contain
products of one fermion and one antifermion creation
operator. VVe have modified our previous definition by
inserting an extra factor ~v„ into M(z, h), and by chang-
ing the sign of M(z —) so that the parity operator 'P gives
PM(lc, h) = M(lc, —h)'P. Applied to the perturbative
vacuum, the operator M(r, h)t creates a pair in which
two particles with specific values of z and h have been
combined to give a total momentum of zero as well as no
net color. We consider linear combinations of the states

ski, . . . , k2A) = C;(k, )[M(~;, A, ;)t]"'/0),
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where the product extends over the 2A values of ~ and
h with x ( A. This defines a class of variational approx-
imations to the full Hamiltonian, because there are also
other states which are colorless and have a total momen-
tum of zero. However, in the strong-coupling limit, we

can show that inclusion of other states could not reduce
the Coulomb energy. As special cases, the basis (1) in-
cludes states that have an exponentiated form, which are
often used in superconductivity theory and which have

also been used in some previous work on this problem[1].
Between the states given by (1), the commutator is

[M(K) h) IM(A) I) ] = [~„—2N(r, h)]b„a'4i, (2)
where N is the number of pairs. For each pair of values
of z and h, the commutator algebra of M, M, and N is
closed.

The eA'ective Coulomb Hamiltonian for massless fer-
mions in this basis is [6]

Hc = y) A„), ( A), [N(~+)+ N(~ —)]

'[:N( +)N(A+): +:N(K —)N(A —):+M( +)t M(A+) + M( —)t M(&—)])
+ p ) B„g(Ap[nE„—N(r+) —N(r —)]

'[2N( +)N(A —) —M( +)tM(A )t ——M( +)M(&—)]j,

where np = g2nz/(27r)~ (the group dimensionality is nz)
and where the coeKcients for fermion scattering and pair-
creation terms are, respectively,

[(~ + A + 1)' —(I~ + I)'](» + 1)
xA —) K 4A 4 )

K

Here G~ is the generalized Coulomb potential for mo-
mentum transfer K, and 1 ( A' ( A. We assume that
GIr ) 0. In the sums, I~, lc, and A satisfy SU(2) trian-
gular and evenness conditions.

In the previous calculations [6], for e = A the terms

M(lc, h) M(A, h) were replaced by vgN(A, h). This is a
valid large-n approximation if N is kept fixed, and the
discussion of the n ~ oo limit in our previous work is
therefore correct, but for finite n it is inconsistent with
(2) and leads to incorrect results except for the "super-
confining" potential GI~ blri. We have also included in
Hc the constant term np P B„iAqA„ that arises from
fluctuations in the vacuum charge density. This does not
change the structure of the Hamiltonian, but the strong-
coupling properties are exhibited more clearly.

For massless fermions, helicity is conserved and Z =
P„[N(r+) —N(z —)] remains constant, so Z is a good
quantum number. The parity operation gives Z ~ —Z.
The Hamiltonian conserves parity, although the basis
states (1) do not separately have definite parities.

In the expression (3) for Hc, it is not obvious that
the SU(2) algebra of the operators M, M t, and N might
be useful for discussion of the consequences of helicity
conservation. We can obtain a more useful and transpar-
ent form for H~ if we introduce the "twisted Dirac sea"

~

—), which is the same as ~0) for the positive-helicity
states, but for negative helicity has all the negative-

energy states unfilled and all the positive-energy states
filled (for K ( A). Then the M(lc —), acting on

~

—),
create hole-antihole pairs. We can define a similar state
~+ ) by interchanging these assignments. The states

~

+ )
have Z = kQ, where fI = P„v„. Helicity conservation
ensures that the charge-density operator annihilates ~+ ),
so these states have zero total Coulomb energy.

To obtain angular momentum commutation relations
of standard form in which the state

~
+ ) appears as a

highest weight state, we write

N(~ )= s„——I,„, ,

M(K —) = I„
M(i~+) = I&„+,

N(r+) = s„+Ii„, ,

M(r )= I„+, —

M(r+) = Ii„
where the subscripts + on the I's and K's denote rais-
ing/lowering operators for spin s„= zv„, while the sub-
script z denotes the third component of angular momen-
tum. If we substitute these expressions into (3) and use
the commutation relations, terms linear in the operators
cancel. After some algebra, we obtain

Hc = 2yn i ) A„p [2s„sg —K„Kg —L„Lp]
r. (A

+2pn i ) B„g [s„sg —K„Lg]. (6)

In the sum involving A, the diagonal terms K = A have
also canceled.

We see that from (6) that H~ is invariant under the
infinitesimal rotations generated by the vector operator

= P„(K„+L„). Since J, = Z, we can consider 3
to be a "helicity-spin" operator. If the free-particle ener-
gies are neglected, the eigenstates of H~ form degenerate
multiplets having fixed values of J and diA'erent values
of Z . In the multiplet J = 0 in which the K„and L„
are maximally aligned, the summands in (6) all vanish,
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and the Coulomb energy is zero, as already noted for
Z = +Q. However, in states with J ( 0, at least one of
the summands will be positive, giving an energy of order

The Hamiltonian Hc, as well as J, also commutes with
an operator Q that satisfies Q = 1 and Q~ + ) =

~
+ ),

and that acting on the pair operators gives QK„= L„Q.
The parity operator is 'P = 7Z Q, where 7Z gives a 180'
rotation around the z axis of the helicity-spin space. The
intrinsic parity of a multiplet is therefore Po —(—1) Q,
where Q = +l.

For fixed 0 —J, the bracketed factors in Eq. (6) are
of order n, and the leading n-dependent factors cancel.
This gives a new large-n limit. The n ~ oo limit in
our previous study gave a stable ground st, ate only for
p ( y~, where y~ depended on A and on the form of
GR. The large-n behavior obtained here is different, in-
dicating that the n ~ oo and y ~ oo limits cannot be
interchanged.

We construct the free-particle energy term H~ of the
Hamiltonian using Dirac spinors for zero mass, even if
the mass is not zero, so that the Coulomb energy (6)
remains simple and helicity-nonconservation effects only
arise from the mass term H of H~ ——Ho + H& + H
The constant term Ho ——+„2v„E„is the energy of the
states

~

+ ). We also find

Hp ——) 2p„(I~ -, —I„,),

H = —) 2m(K„+I„)= —2mJ

Under Q, Hz is odd while H~ is even. The SU(2) he-
licity symmetry is broken by the kinetic energy term Hz
to the U(1) chiral symmetry. This is broken in turn by
H . Different values of Z are coupled by H, giving rise
to wave functions 4(Z). The overall parity of a state
is the product of Po and the parity of 4(Z). The en-
ergy H~ by itself can be diagonalized by rotations in the
z-z plane, applied separately for each K, giving energies
spaced by 2E„. These rotations give H& a much more
complicated form, which we have checked by direct calcu-
lation using finite-mass spinors. In this more usual basis,
the symmetry generator 3 is very complicated, and the
helicity-symmetry of H~ is not at all evident.

If p is very large, we can estimate the energy of the
lowest states by treating H~ as a perturbation. We first
consider the case m = 0, so Z is still a good quantum
number. For each Z, there is a lowest energy Ez, which
we can consider as an effective potential in the helicity
space. Only states with Q = —1 and J = 0 —1 are cou-
pled to the ground state by H&. The matrix elements are
proportional to [(Q2 —Z )/0] ~2, giving, for the lowest
energy, Ez —IIo —(0 —Z )/(pQ). If m ) 0, the
states with different Z are coupled by J, which acts as a
difference operator roughly proportional to O. Approxi-
mating Z as a continuous variable, we obtain a harmonic-
oscillator equation in Z. The frequency is u gm/y.
The ground state has even parity and the 4(Z) alternate
in parity, corresponding to a pseudoscalar quantum. For

the validity of this harmonic-oscillator approximation, we
need to require 1 « (Z ) « 0, which implies that0-' « m~ && 0'.

For large y, and as we have also checked numerically
for smaller y, the effective potential Ez has a single min-
imum at Z = 0. The lowest-energy state (the vacuum) is
therefore always unique for any p. These results for the
single-fl. avor model imply that the vacuum is not parity
doubled when m = 0 and that there is no spontaneous
breaking of chiral symmetry for any finite strength of
the Coulomb potential. However, chiral symmetry is "al-
most spontaneously broken" in the sense that the effec-
tive potential becomes flat in the limit p ~ oo. Although
(Z) = 0, (Z ) becomes large in this limit when m ) 0.
There is also a pseudoscalar boson with a mass propor-
tional to i/m. In the low-lying states with multiple pseu-
doscalar particles, charges cancel locally on a distance
scale given by A in units of the hyperspherical radius.
In the higher states with energies of order p, however,
charges are separated by distances of the order of the
radius. The equal spacing of the harmonic-oscillator en-
ergies indicates that the pseudoscalar particle is weakly
interacting and the S-wave scattering length vanishes.
Note that these results did not depend on the confining
or nonconfining character of GIg, but only on the overall
strength being very large.

Other studies of similar or related models [1] that have
arrived at different conclusions about a chiral condensate
may have been affected by insufficiently accurate varia-
tional approximations or by some other numerical arti-
fact. The vanishing of the total Coulomb energy in the
lowest multiplet depends on exact cancellations, and nu-
merical calculations that are not able to exploit these
cancellations can be expected to give unreliable results.
In our previous work [6], we found that a standard vari-
ational approximation, which used an exponential form
for the wave function, was not accurate for small Z. Sim-
ilar difficulties may occur in the ladder approximation to
the Bethe-Salpeter equation [2].

As pointed out above, there are some states with a to-
tal momentum of zero which are omitted from our basis.
They could be constructed from pairs with a nonzero net
momentum. However, there can be no other states with
a lower Coulomb energy, because the Coulomb energy
operator is semidefinite positive. Furthermore, enlarging
the basis would not raise the minimum energies Ez. The
limiting Ez for y —+ oo might possibly be reduced fur-
ther if the kinetic energy could be lowered by inclusion
of more complicated states, although this seems unlikely.
The main effect of a larger basis would be that additional
states, corresponding to bosons with nonzero momenta,
would appear in the excitation spectrum. Unfortunately,
states with more complicated internal momentum distri-
butions bring in many new algebraic complications. An-
other source of additional configurations arises from the
flavor degree of freedom. We shall consider a model with
several flavors next, because it corresponds more closely
to the physical situation. This will also provide a simpli-
fied way to study the effect of additional states. If only
flavor-singlet pair configurations are considered, the re-
sults are not changed from those already obtained, except
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that the number of flavors also enters into the degeneracy
factors.

For f difFerent, flavors, operators that are bilinear in
fermion operators acquire two flavor indices. We tem-
porarily consider only a single value of momentum and

helicity. For M b and AI, b, the first index labels the fla-
vor of the fermion and the second labels the flavor of the
antifermion. We define operators n b for fermions and
n b for antifermions, where the first index labels a cre-
ation operator and the second an annihilation operator.
There are (2f)~ operators, of which the 2f diagonal op-
erators n, and n commute and satisfy the constraint
P(naa —n«) = 0, corresponding to the SU(2f) algebra.
Some of the commutation relations are

[ncd~ Mab] — ~ca Mdb &

[ncd~ nab] = Iidancb Iicbnad ~

Consider N, b = n b + nb, , the traceless combinations
N b

—6 bop/f, where Np ——p N, form the SU(f) alge-
bra. The flavor-singlet combinations Np, Mp —P Maa&

and Mp are equivalent to the previous SU(2) algebra.
~ ~

The Coulomb Hamiltonian has the same form as in (3),
except for sums over the favor indices:

Hc —p) A„q ~2Ag ) [n, (a, h) + n (K, h)] — ) .[:nab(&~h)nba(A& h): +:nai(& h) nba(A&h):]
a& abh

——) M, b(i~:, h)tM, b(A, h)

+7) B„i fnbqA„— zA~ ) [n a(e, h) + na (e, h)] + —) n, b(e, h)n, b(A, h)—
ah abh

1——) [M,b(~+)tMb, (A —)t + M, b(i~:+)Mb, (A —)]n
ab

multiplets into SU(f) g SU(2) rnultiplets associates each
representation of SU(f) with many difl'erent values of J
in a complicated pattern. For second-order perturbations
of X, we need to consider 8 C X A with Q = —1,
where A is the adjoint representation of SU(2f). Explicit
general results are known to us only for f = 2. The
representation j contains the SU(2) x SU(2) multiplet
(I, J) once, provided 2A —I —J is a non-negative even
integer [7], and it can be shown that for I + J ( 20, the
multiplicity of (I, J) in 8 = [20, 2Q —1, 1] is 2 —6Jp-
brp —62ri r+d. Some additional general observations can
also be made. We denote by S and A the singlet and
adjoint representations of SU(f). For J = fQ, only S
occurs, and only in X. For J = fQ —1, application of
the step operators shows that ~ contains only A. In 8,
we find both S and A with J = f0—1. For. smaller J, we
expect additional multiplets and additional occurrences
of 9 and A, as seen for f = 2. In j there are f(f —1)
states having maximal charges that are related to

~
6 )

by Weyl reflections. These belong to a representation C
of SU(f) found in jwith J = 0 but not occurring in 8
and therefore unperturbed in second order.

The shape of the eA'ective energy functions Ez for var-
ious flavor multiplets cannot be determined without de-
tailed calculations. The Ez become matrices that, de-
scribe the coupling, via intermediates in 8, of the various
J values found in T. The perturbation matrix elements
are proportional to (J2 —Z2)r~2 for b,J = 1, but for
AJ = 0 they are proportional to Z. This is consistent

Hc = 2pn ) A„g [2fs„sp —K„Kp —L„Z),]
e&A

+27n ) B„), [fs„si —K„Zg].

The (4f2 —1)-dimensional vectors K„and l:„are the
generators of SU(2f) in the representatian [(2s„)I].The
A term cancels for ic = A because the Casimir operator
equals [7] fs„(s„+f) with our normalization. The free-
particle energy is similar in form to (7). The term Hz
breaks the full SU(2f) symmetry to SU(f) SU(f).

The Coulomb energy vanishes in the fully aligned mul-
tiplet . As indicated above, if we were to consider only
pair operators which involved flavor singlets, we would
find a helicity-spin multiplet J = fQ with zero Coulomb
energy. By including more general pair operators, we ob-
tain a zero-energy multiplet from a larger group, which
contains many more states.

The approach to the strong-coupling limit for f ) 1 is
much more complicated than for f = 1 and depends an
the flavor multiplet. In general, the resolutian of SU(2f)

We now introduce the twisted sea through the replace-

ments n, b &
nAb~b + n, b for h = + &, and M, b

~ Mb,
for negative helicity. The twisted sea

~
+ ) is a highest

weight state in the SU(2f) representation P correspond-
ing to the tableau [(20)~] and has helicity Z = ffI We.
obtain a Coulomb Harniltonian which is similar t,o (6):
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with the parity rule. In general, the low-dimension mul-
tiplets will have many closely spaced diagonal Eg values,
all coupled by H~, giving many low-lying excited states.
We expect the lowest flavor singlet to be a scalar and the
lowest A-flavored state to be a pseudoscalar, as they will
be associated with even functions of Z. The lowest singlet
excitation is probably pseudoscalar, and other low-lying
states may correspond to combinations of pseudoscalar
quanta.

The picture of chiral-symmetry breaking suggested by
our pair interaction model is different from the usual pic-
ture. There is no finite value p& at which the structure of
low-lying states changes abruptly. Instead, a weakly in-
teracting low-lying pseudoscalar excitation is developed
gradually as an asymptotic phenomenon in the strong-
coupling regime. The existence of this excitation does not
depend on whether the interaction is confining or noncon-
fining, but only on the strength being large. However,
a natural candidate interaction that meets our require-
ments is provided by a QCD potential that becomes large
for small momenta; that is, Glt. increases more rapidly

than 1./I&s for Ix ( A, where A is the scale parameter for
QCD. The light pseudoscalar particle that emerges in this
model is constructed to have no net charge, but charges
are also canceled locally within it. In other states, which
lie very high, charges are separated.

The group theory of the new dynamical symmetry
present in our model has been essential for our discussion.
It has allowed us to derive in a simple way the qualitative
properties of the single-flavor version of the model. |A'ith
several Havors, the symmetry group is richer and more
complicated. To determine the relations among excita-
tion energies, extensive numerical calculations will be re-
quired, but further use of group-theoretical methods can
simplify these calculations.
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