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We consider a theory of electrodynamics in three-dimensional space-time in the presence of the topo-
logical (Chem-Simons) interaction term (~/2)e"'~A„B A . It is appropriate to quantize electrodynamics
in the radiation gauge because in that gauge the states in the Hilbert space have positive-definite norms.
However, in that gauge the vector potential 3"cannot transform as a vector under the Lorentz group.
We show that the vector potential does transform covariantly as a representation of the Lorentz group,
but the representation is infinite dimensional and, surprisingly, the specific representation depends on the
value of the parameter ~.

I. INTRODUCTION

It was recognized first by Strocchi [1] that in quantum
electrodynamics the field A " cannot transform as a
Lorentz vector, as it does in classical electrodynamics.
One can understand this as follows: One chooses to
quantize electrodynamics in the radiation gauge to avoid
the appearance of negative norm states in the Hilbert
space. In this gauge the spatial part of the vector poten-
tial satisfies the condition of transversality:

V A=O.

Thus, the 3 field transforms in a peculiar way under
the Lorentz group. To obtain the 2 field in a new fraIne
of reference, we first transform A as if it were an ordinary
Lorentz vector, but we must follow this transformation
by retaining only the transverse parts of A and discard-
ing the longitudinal part of A. This transformation pro-
cedure ensures the transversality of the electric potential
in all frames of reference and it also explains why this
field is not a Lorentz vector.

The question of the covariance of the radiation gauge
in free four-dimensional quantum electrodynamics has
been investigated [2]. In Ref. [2] it was shown that in the
radiation gauge the 2 field transforms as a pair of
infinite-dimensional, irreducible representations of the
Lorentz group (one representation for each helicity state).
This study was followed by a number of others [3] and
various additional research was conducted with regard to
the transformation properties of interacting radiation
gauge fields [4], infinite-dimensional stress tensors [5,6],
and nonconserved charges [7].

The purpose of this paper is to examine the transfor-
mation law of the vector potential in (2+1)-dimensional
electrodynamics. T&~~ &&eorv is remarkable because,

while it exhibits gauge invariance, the presence of a so-
called topological (Chem-Simons) term in the Lagrangian
gives a mass to the photon field. We find that the 3 field
belongs to an infinite-dimensional representation of the
three-dimensional Lorentz group SO(2, 1) but that this
representation is not irreducible. Rather it belongs to a
remarkable class of representations known as noncom-
pletely reducible representations. Furthermore, we find
that the specific representation to which A belongs de-
pends on the value of the mass parameter ~. Ordinarily,
in a quantum field theory the fields transform according
to well-defined representations of the Lorentz group and
these representations are independent of the mass and
coupling constant parameters that specify the theory.
Here, we find that there are three regions in tc: (i) «=0,
(ii) 0 &«& ~, and (iii) «= ~. In each of these regions, A
transforms according to a dift'erent representation of the
group SO(2, 1).

We have organized our presentation as follows. In Sec.
II we give a brief and heuristic description of the repre-
sentations of the Lorentz group [both for SO(2, 1) and for
the more familiar case of SO(3, 1)] with special emphasis
on noncompletely reducible representations. Then in Sec.
III we review the properties of (2+1)-dimensional elec-
trodynamics in the presence of a topological term. In the
next two sections we determine the Lorentz transforma-
tion properties of the gauge field in (2+1)-dimensional
quantum electrodynamics: Section IV presents the spe-
cial case of the noninteracting theory (vanishing topologi-
cal mass); we show that this theory resembles an integr-
able theory in that it has an infinite number of local con-
servation laws of the form 0, U=V V. Finally, in Sec. V
we examine the general case of nonzero topological mass.
This theory also has an infinite number of conservation
laws, but these laws have a generalized form in which the
time derivative is replaced by a more complicated
differential operator.
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II. NONCOMPLETELY REDUCIBLE
REPRESENTATIONS

In the case of compact groups, once a representation
has been block triangularized, it can then always be block
diagonalized (decomposed into irreducible representa-
tions). The matrix that performs this block diagonaliza-
tion can be expressed as an integral over the group space.
This integral exists if the group is compact. However, for
the case of noncompact groups this integral does not
necessarily exist. Thus, noncompact groups can have
noncompletely reducible representations.

A simple example of a noncompletely reducible repre-
sentation can be given for the one-dimensional transla-
tion group. Consider the set of 2 X 2 matrices of the form

M(Q)=
1 0
a 1

(2.1)

Clearly, these matrices form a two-dimensional triangular
representation of the translation group because they
satisfy the equation

M(a)M(b)=M(a+6) .

However, it is not possible to reduce this representation
to two one-dimensional representations because the
translation group is not compact.

Before examining the Lorentz group SO(2, 1), which is
relevant for our study of three-dimensional quantum elec-
trodynamics, let us first consider the more familiar exam-
ple of SO(3, 1), the homogeneous Lorentz group in four-
dimensional space-time. To characterize the irreducible
representations of SO(3, 1) it is first necessary to recall the
irreducible representations of the rotation group SO(3).
The irreducible representations of the rotation group are
all finite dimensional and act on a base space of sym-
metric, traceless tensors of the form

In this sequence all the spins occur consecutively: each
spin occurs once and only once; there are no degenerate
spins or spins missing from the sequence. If the sequence
of spins is finite the representation is said to be finite di-
mensional and if the sequence has no highest spin then
the representation is termed infinite dimensional. In the
notation [8] of Gel'fand, Minlos, and Shapiro 10 is the
lowest spin and, if the representation is finite dimensional
li is the highest spin plus one. The two numbers, (lo, li )

uniquely characterize all the irreducible representations
of the Lorentz group. If the representation is infinite di-
mensional lo is still the lowest spin in the representation
but l, is no longer an integer greater than Io, rather, it is
some other number, which can even be complex.

Here are some simple examples: A Lorentz scalar S
consists only of spin 0. The lowest spin is 0 and the
highest spin is also 0. This representation is labeled by
the pair of numbers (0,1). A Lorentz vector Vi' contains
two spin components, spin 0 and spin 1: [ V, V']. Thus,
the vector transforms as the (0,2) representation. A sym-
metric, traceless tensor T" contains spins 0, 1, and 2:
Too, T ', T" ,'6"T ——Thus, .it transforms as the (0,3)
representation of SO(3, 1). An antisymmetric tensor F"'
transforms as the direct sum of two representations, each
containing only spin 1: F ~+i@ 'F '. In general, if a rep-
resentation is finite dimensional, it contains exactly
l, —I 0 independent components.

In this paper we will consider the effect of infinitesimal
Lorentz transformations on a representation.
Infinitesimal Lorentz transformations are performed us-
ing the generators of the Lorentz group. These are six
generators of SO(3, 1), three rotations J"' and three
Lorentz boosts J ~ Given any single component of an ir-
reducible representation of SO(3, 1) it is possible to deter-
mine all of the others by performing infinitesimal trans-
formations as follows. Under an infinitesimal rotation
the components of a given spin representation of the rota-
tion group mix among themselves; under an infinitesimal
boost the different spin representations of the sequence in
(2.3) mix among themselves. For example, under the
boost J the components of a vector V" mix as follows:

(2.2)
Jok. yo

Jok. yj
.yk

yog jk
(2.4)

[lo] [lo+1] [lo+2]
(2.3)

where the indices a; take the values 1, 2, or 3. [For pur-
poses of brevity, from here on we will no longer distin-
guish between the representations of a group, which are
matrices, and the base space upon which these matrices
act, which is a tensor. For example, we will simply say
that the tensor in (2.2) is a spin-X representation of the
rotation group. Recall that this tensor has 2N+1 in-
dependent components. ]

We can now describe the irreducible representations of
SO(3, 1). Each irreducible representation @ of SO(3, 1)
consists of a sequence of irreducible representations of
the rotation group SO(3):

Thus, if we are given any component of the vector V" we
can fill out the entire representation by performing a se-
quence of infinitesimal boosts. [The situation is the same
for SO(2, 1) except that there are then two boost genera-
tors and one rotation generator. ]

The formula in (2.4) is a special case of a completely
general formula that applies to any quantum field in
four-dimensional space-time that transforms as an irre-
ducible representation of the Lorentz group SO(3, 1).
Given a field @(x)that transforms as the (lo, l& ) represen-
tation and whose spin content is displayed in (2.3), an
infinitesimal Lorentz boost (obtained by commuting the
field with the Lorentz boost operator) on any one of its
spin components Q,[,], . . . , (x}gives [6]

1 2 3
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1 (N+1 —/, )[(N+1) —io]
[Q[N] (x) Jok] (xkgo xogk)Q[N] (x) Q[N+1] ( )

l 2 N al a2 aN (N+1) 1a2 Nk

(N+ I, ) N

(2N + 1 )
~ a;kQa1a&a3 a, . a& (2N 1) ~ a;aJQa&a& "a, Q.. a&ki=1 ij =1

lWJ

(2.5)

where an index with a hat over it indicates that it is ab-
sent from the sequence of indices. The first term in (2.5)
is the orbital contribution rejecting the functional depen-
dence of the field on the spatial variable x„. Notice that
a Lorentz boost J " on Q[ ] gives the next higher spin
component Q

+' and the next lower spin component
Q[ '] in the sequence in (2.3). Thus, repeated applica-
tion of J "eventually fills out the entire sequence in (2.3).

Here is a simple example that indicates how repeated
infinitesimal Lorentz boosts can be used to generate the
full representation of the Lorentz group. Let x" be a null
vector. [A null vector is one that lies in the light cone
and whose components satisfy the constraint
(x ) =(x') .] Now we ask the question, how does 1/x
transform under the group SO(3, 1)? Clearly, 1/x is a
rotational scalar so it must be the spin-0 component of
some representation. The formula in (2.4) expresses the
effect of an infinitesimal Lorentz boost J on the com-
ponents of the vector x". Using this formula once gives

Jok. 1

x'
k

( 0)2
(2.6)

This identifies the spin-1 component of the representation
to which 1/x belongs. Next, we examine the effect of an
infinitesimal Lorentz boost on this spin-1 component; us-
ing (2.4) we obtain

Jok.
J

'
(xo)2

5J" x Jx—2„o (xo)3
. (2.7)

xJx 1 6J—2 —— (spin 2) .(x) 3x (2.8)

Note that the spin-0 part of (2.8) (apart from the nu
merical tensor 5~") is exactly the same as the spin-0 object
we began with in (2.6). Thus, the spin-0 component of
this representation is unique. We have also generated the
spin-2 component. If we continue this process, we find

The right-hand side of this formula contains both spin-0
and spin-2 representations of the rotation group SO(3).
Recalling that irreducible representations of the rotation
group must be totally symmetric and traceless, we
separate and identify the spin content of the terms on the
right-hand side of (2.7):

gjk j k
1 pj's—2 =— (spin 0)

x (x) 3x

that each spin component of the representation is unique
(occurs once and only once): When we examine the effect
of an infinitesimal transformation on the spin-N com-
ponent, we recover the spin-(N —1) component that we
already have found and a new spin-(N + 1) component.
Next, we compare (2.7) and (2.8) with the general formula
in (2.5) (without the orbital part) and identify the repre-
sentation: We have constructed the (0,0) irreducible rep-
resentation of the Lorentz group SO(3, 1). We can
represent the above process of using repeated
infinitesimal Lorentz boosts to generating all the com-
ponents of the representation schematically as follows:

Q [O]~Q [1]~Q[2]~Q [3].. . (2.9)

~here each arrow represents an infinitesimal Lorentz
boost.

Now let us reconsider the above example in three-
dimensional space-time. In descending from (3+1) di-
mensions to (2+ 1) dimensions none of the formalism we
have described so far needs to be changed. It is still true
that an irreducible representation of SO(2, 1) can be ex-
pressed as a sequence of irreducible representations of
SO(2), each of which is a symmetric, traceless tensor of
the form Q,[,], , The only changes are that now all

1 2 3 W

roman indices take the values 1 and 2 and we will call
Q[ ] a rank-N representation instead of a spin-N repre-
sentation of the rotation group. Equation (2.4), which de-
scribes the effect of an infinitesimal Lorentz boost on a
vector, remains unchanged, as do (2.6) and (2.7). Howev-
er, an interesting change occurs in the interpretation of
(2.7). The right-hand side is already symmetric and
traceless. Hence, it is not necessary to add and subtract a
term proportional to 6 . Apparently, an infinitesimal
Lorentz boost of the rank-1 component of the representa-
tion. produces a rank-2 component, but it does not repro-
duce the rank-0 component. We have a representation of
the SO(2, 1) Lorentz group which has one and only one
component of rank 0, rank 1, rank 2, and so on. Howev-
er, the representation is not irreducible because an
infinitesirnal Lorentz transformation will not reproduce
the rank-0 component from the other components; this
representation is block triangular and noncompletely re-
ducible, like that in (2.1). To represent the efFect of
infinitesimal Lorentz boosts on the components of this
representation we use a scheme similar to that in (2.9):
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g (o) g(&)~g(2)~g(3)~. . . (2.10)
V'. A=O (3.8)

III. ELECTRODYNAMICS IN 2+ 1 DIMENSIONS

Here is a brief review of electrodynamics in 2+ 1 di-
mensions [10]. The Lagrangian density describing this
theory is conventionally written in the form

F" F —+ e""—~A 8 A
1

4 pv 2 p v p

where the field strength is given by

F" =a"A —a A"

(3.1)

(3.2)

Note that if we begin with Q ( ), XWO, repeated
infinitesimal boosts fill out all of the components of the
representation except for Q ( ) because of the one-way ar-
row between Q and Q

' . Thus, the representation
whose rank-0 component is 1/x has a remarkable struc-
ture: It consists of an infinite-dimensional irreducible
representation whose lowest-rank component is N=1
with a rank-0 component glued indecomposably to it [9].
We will see later on that the vector potential in the radia-
tion gauge transforms as this representation when the
gauge mass parameter ~ is infinite.

Thus, from (3.3) and (3.6) we have

VA =aB
The v=i component of (3.5) gives

A;=sc A, ,

(3.9)

(3.10)

where =V —ao. This equation is a massive Klein-
Gordon equation, whose solutions evolve as free massive
fields whose mass is ~a. ~.

The energy-momentum tensor T" for this theory can
be expressed in terms of the field-strength tensor in the
usual way:

TPv FPaF v i PvF PFa 4& aP & (3.11)

where the metric is defined by g =diag[ —1, 1, 1]. Note
that T" has the same form as the conventional Maxwell
energy-momentum tensor because the Chem-Simons
term in the action is metric independent, and therefore
does not contribute to the energy-momentum tensor. By
virtue of the field equations in (3.5) the energy-
momentum tensor obeys a local conservation law:

The electric field is given by

E; =F;o=a; Ao —aoA;

and the magnetic field is given by

(3.3)

P"= jd x T "(x) (3.12)

a T" =0.
p

In terms of the metric tensor we define the generators of
translations

B=F, =a, A —a A, =e'~a;A (3.4)

To obtain the field equations from (3.1) we vary with
respect to the potential A to obtain

a F" +—e ~F =0.
p 2 aP (3.5)

The v=0 component of (3.5) gives

where e' is the antisymmetric symbol and e' = 1.
Throughout this paper Greek indices p, v. . . denote
space-time indices while Roman indices i,j, . . . denote
spatial indices.

The theory described by the Lagrangian density X in
(3.1) is the usual Maxwell theory of electrodynamics aug-
mented by a so-called topological mass term (the Chern-
Simons term) proportional to I~, a constant whose en-
gineering dimensions are those of a mass. This theory is
invariant under the local gauge transformation

:A„+a„w
because under this gauge transformation

=X+total derivative .

and the generators of the homogeneous Lorentz group
SO(2, 1)

J" = Id x(x "T x'T ") . — (3.13)

In the quantum theory the canonically conjugate fields
satisfy equal-time commutation relations

a-a
[A, (x),E, (y)]=i 5"— 5(x —y) . (3.14)

1

—.[A;(x),J "]=(x"~) —x ~)")A;(x)+ Ak

Using the commutation relation in (3.14) we can verify
that the operators J"' obey the Lie algebra of the SO(2, 1)
group. Indeed, one can verify that together the operators
I'P and J 1' generate the fu11 Poincare group in 2+1 di-
mensions.

From the commutation relation in (3.14) and the for-
mula for the generators of the Lorentz group in (3.11)
and (3.13) we obtain the commutator of the gauge field A
and J . This commutator expresses the effect of an
infinitesimal Lorentz transformation on the gauge field:

T.E=&B . (3.6)

We now choose to work in the Coulomb gauge in which
A ' is transverse:

K ggk E ka a
p2 p2

(3.15)

In this gauge

(3.7) This is the formula that we will study for the remainder
of this paper. We will iterate this formula to determine
the Lorentz transformation properties of the gauge field.
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IV. LORENTZ TRANSFORMATION LAW
OF THE GAUGE FIELD: FREE-FIELD CASE

The problem addressed in this paper concerns the
Lorentz transformation properties of the gauge field A.
In this section we consider the special case for which
~=0. For this case the formula in (3.15) reduces to

[ A [1]( ) JOk] ( kQO Ogk) A [1]( )+ '
A 1]

l

We now follow the pattern of the simple example con-
sidered in Sec. II after (2.6). We take the last term in
(4.1) and decompose it into a rank-2 component and a
rank-0 component:

gapa,

,
' Af']= ,' A,[„'-]+,'~,„A ['], (4.3)

where the rank-2 component is

(4.4)

(4.1)

where we take the rank-1 part of the representation A,['
to be just the spatial part of the gauge field:

(4.2)

A [Pl~A [il~A [2]~A [3j~A [4j~. . . (4.1 1)

This formula has a strong resemblance to that in (2.10)
except that the one-way arrow between the A and A ['
points in the opposite direction. The presence of this
one-way arrow implies that the gauge field transforms as
a noncomp/etely reducible representation of the SO(2, 1)
Lorentz group. This noncompletely reducible representa-
tion consists of an infinite-component irreducible repre-
sentation (whose lowest rank is 1) glued indecomposably
to a scalar.

The components A [ ~ of this infinite-dimensional rep-
resentation are all fields satisfying the massless wave
equation:

transforms as

1
[ A [N] JOk] —

( kgO Ogk)A [N] + A [N+1]N
i a

1
aN'

I N 2 a
1 aNk

N—yn
i=i

N

(4. 10)
We can represent the infinitesimal transformation for-

mula in (4.10) pictorially as follows:

and the rank-0 component is
A[ ~=0. (4.12)

(4.5)

Note that this rank-0 component is not the same as A;
in the Coulomb gauge (3.9) implies that A =0 when
v=0.

The commutator of A [ with J is very simple: and

A [N+1] g A [xj
k al aNk p al . (N &0) (4.13)

These tensors are dependent fields except for A, '~= A, ,
which is the usual transverse spatial part of the gauge
field A". Each of the components is connected by a sim-
ple system of differential equations:

1
[ A [0] JOk] (& kgO xOgk) A [0]

l
(4.6) a„Af']=0. (4.14)

This formula implies that A is a Lorentz scalar; A
transforms irreducibly under the Lorentz group as a one-
component representation.

Next we find the commutator of A with J
1

[ A [2] JOk] —(& kQO x 0&)k) A [2]+A [3]
1

—S,„A,[']—S,„A,[']+a,, Af'],

where A [ ] is the rank-3 (symmetric and traceless) object

(4.7)

ijk 3q2 k

(4.&)

We may continue this process and iteratively generate
the rank-N component A [ ~ of the representation for
N =4, 5, 6, . . . . We find that, in general, under an
infinitesimal Lorentz transformation this infinite-
component gauge field

Equation (4.13) is an infinite system of conservation laws
that hold in all reference frames. Equation (4.14) states
that in every frame of reference A; is transverse. Equa-
tions (4.13) and (4.14) together should be thought of not
as an infinite system of partial difFerential equations but
rather as a single couariant equation expressing a local
conservation law for an infinite-dimensional representa-
tion (in the same sense that we regard B„J"=0 or
8 T" =0 as a single tensor equation).

V. LORENTZ TRANSFORMATION LAW
OF THE GAUGE FIELD: GENERAL CASE

In this section we repeat the calculation of the previous
section for the case in which the Lagrangian (3.10) has a
topological mass (Chem-Simons) term with ~%0. We be-
gin the analysis by reexpressing the terms on the right-
hand side of the commutator in (3.15) so that they are
symmetric and traceless tensors:

1
[A [1] JOk] (xkgO XOgk)A [1]+ 1 A [2]

1

A=(A[ ], A['], A[ ], A[ ], . . . ) (4.9) (5.1)
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where the tensors Al ] C[ ) and 2( I are givenby

a,Bp

v2

CI'i= a,
v2

(5.2)

(5.3)

Kg [2]= (a g [&]+a g [&])+ 2
' j g g (5 4)v' ' ' ' ' v' v'

—[~ ['] J'"]=(x"a'—x'a") ~ ' + ~ [']
l

+(5,j Aj"—5/„A,"]—5,„A,"])

+(~ij~kl 8jk~il ~ik~jl) l

sphere

(5.5)

Next we examine the behavior of A under an
infinitesimal Lorentz transformation:

Notice the surprising result that there are two rank-0 ten-
sors in the infinitesimal Lorentz transformation law in
(5.1); one of these tensors multiplies the numerical tensor
5;k and the other multiplies E;k. and

Cr'j= a a ~'~+ a a
1 V2 0 l V2

(5.6)

2
1', —2, (a, a, ~&']+a,a„~,[']+a„a,~,['])——' 1 —2, (s„~&']+a,„~J']+a„,~,['])

Ica; aj.ak ao+8 ' ', a —2, (n„a„+s,„a,. +s„,a, )a~ .
v6 v4 7J k (5.7)

Notice that we have recovered the original one-index ten-
sor A ~' but that we have discovered a second one-index
tensor C~'~.

Now we examine the transformation properties of the
two zero-index tensors 2 ~ and C

1—[c,"' J'"]=(~"a'—~'a")c;" +c("
l

where C is a rank-two tensor of the form

(5.10)

and

1—[~[']J'"]=(x"a'—x'a")~[0]+~ C[']
l

1 [C[0] Jok] —
( kao oak)C[0]+ ] Cp]

l

(5.8)

(5.9)

C[2]=
V

3—2 (a ~[']+a ~['])

+2 2 —$," a()B .
V4 V2

(5.11)

Note that the right-hand sides of (5.8) and (5.9) contain
the one-index tensor C ' that we have already identified;
thus, we have an indication that the process of repeated
commutation with J is closing on itself. The presence
of a tensorial term in addition to an orbital term on the
right-hand side of (5.8) implies that A [ ] is not a scalar.
Recall that in the free-field (i'd=0) case [see (4.6)] the
zero-rank component A is a scalar. Thus, the massive
case i~XO is a significant change from the massless case.

Next, we determine the transformation properties of
CI:&l,

We now have found two rank-two tensors in the represen-
tation, A~ ~ and C~ j.

Finally, let us look at the transformation properties of
C (2l.

1 [C[2] Jok] (&kao &oak)C[2]+ 3 C[3]
l

(5.12)

where

4 KBp K Bp

v' v' k l J 4

2 4
+4 3 —4v' v'

v2
a, a, a„a — (s,ja„+sj„a,+s„,a, )aJ k 4

(5.13)

Apparently, there are two rank-three components in the representation, A and C
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By iterating this process of repeated commutation we can identify the representation to which the vector potential in
the Coulomb gauge belongs. This representation has a rather unusual structure in that it is double valued: There are
two rank-zero components 3 and C, two rank-one components, 3 ' and C ', two rank-two components, A

and C, and so on. Here are the general formulas for the transformation properties of this double-valued representa-
tion:

N

( g [N] gOk j (xkgO XOgk) g [N] + g (N+I] ~ g g [N —1] + C[h' —i]
1 N a

1 aN 2 a
1

- aNk ~ ka,.i=1

g [N —1] + 2 C[N —1]
g ' Q. a. '''aNk N ai '''8

~
' 8 ~

' gNk
(5.14a)

where C.'"! . =e. ,C)."].. .. , and
1 2 N

t ( [iv] JOk] (x kgo &Ogk)C[N] + C[& i]
l 1 N

X —1

N

N N

i &j

(5.14b)

and

g g [N] =K2g [N]
al '' aN al '''aN (5.15a)

Figure 1 displays these infinitesimal transformation
laws schematically. Figure 1 is a generalization of the di-
agram in (4.11), which describes the special case ~=0.
Observe from the position of the one-way arrows that we
have found an infinite-dimensional irreducible representa-
tion consisting of the components C ', C
C[,C[, . . . . The remaining tensor components are
glued indecomposably to this irreducible representation,
thereby forming the peculiar double-valued indecompos-
able representation shown in Fig. 1.

The fields A[ ] and C[ ] satisfy field equations. We
discuss these equations below. First, each component of
the representation satisfies a massive Klein-Gordon wave
equation:

a w[']=o. (5.16a)

This equation states that A; ' = A, is a transverse field.
The companion condition on C ' is

K
8 C[']= a .

1
(5.16b)

Equation (4.13) generalizes in an interesting way; the usu-
al time derivative Bo must be replaced by a slightly more
complicated structure,

D,"=5;.Bo+~@, (5.17)

nonzero ~.
The divergence conditions (4.13) and (4.14) generalize

to the case of nonzero a as follows. First, (4.14) remains
unchanged:

aC[ "] =~'C["] (5.15b)
which we call a generalized time derivative. In terms of
this generalized time derivative we have

Equations (5.15) are the analogs of (4.12) for the case of i ia&
=D, ; 2;[, '. ], (N ) 1) (5.18a)

gto3 pter] .. ., gt~l., -, g[3l -, : g[4t

and

B;C[ ] =D, ;C;[, '. ], (N )1), (5.18b)

g[&I : : g[2l ; ; g[3l ; ; g[4l

FKJ. 1. A map of the infinite-dimensional representation of
the Lorentz group to which the gauge field in (2+ 1)-
dimensional quantum electrodynamics belongs. The arrows in-

dicate how the components of this representation behave under
an infinitesimal Lorentz transformation. The precise transfor-
mation properties of this representation are described in (5.14).
From this figure one can see that in the Coulomb gauge the
gauge field transforms as a double-valued, noncompletely reduc-
ible representation of SO(2, 1).

which are the analogs of (4.13).
The generalized time derivative D; can be used to in-

terchange the roles of the A and C fields:

and

[N] K [N]
Cg g p Dg p Apg g

1 N P 1 2, N
(5.19a)

[N] [N]~a . . a Dpg Cpa a
1 N g 1 2 N

(5.19b)

Equatioll (5.19) expresses clearly the beha»«« the
theory in the limit of large and small rc. Apparently, as
&~0 (5.19) implies that the C fields disappear and only
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the 2 fields survive. This is how our results reduce to the
massless case discussed in Sec. IV. As sc~ao the A fields
disappear and only the C fields survive. In this limit, Fig.
1 simplifies to

J q2
(5.21d)

and generalized symmetric gradient equations (valid for
N~ 1),

C[o]~C[&]~C[2] C[2] (5.20)

This is exactly the same indecomposable representation
we saw in (2.10). Observe that the gauge field transforms
as one of three possible representations depending on the
value of ~: When ~=0 the gauge field transforms as in
(4.11), when a.= ~ the gauge field transforms as in (5.20),
and for intermediate values of ~, 0&~& ao, the gauge
field transforms as in Fig. 1. Thus, we have discovered
the surprising result that in this theory the Lorentz trans-
formation properties of the field depend on the value of
the mass parameter ~. To be more precise, we observe
that it is not exactly the representation that changes with
v but rather the glue holding together the components of
the indecomposable representation that depends on the
parameter ~. Thus, as ~ vanishes or becomes infinite the
top and bottom rows of Fig. 1 become unglued with the
top row surviving in the former case and the bottom row
surviving in the latter [11].

In addition to the generalized divergence equations in
(5.16) and (5.18) there are generalized curl equations,

&+1D & [x+&]
&~2 ' ' ' ~X+ l

N+1
C[+]

t2~+ 1i=1

N + 1 [~+~]
I'~2 ' ~&+ l
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