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Badiatively induced Chem-Sirnons terms on the torus
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A Chem-Simons term is induced by integrating over fermions in the effective action of a (2+1)-
dimensional field theory on a torus. It is shown that the Chem-Simons coeKcient is functionally
dependent on the nonintegrable phases of the torus as well as on the finite temperature and density.
In the non-Abelian case such nonintegrable phases inhibit the generation of a Chem-Simons term in
the most general case.

I. INTRODUCE'ION

In 2+1 dimensions, the properties of two-component
spin matrices are such that the discrete symmetries of
parity and time reversal are not respected by massive
Dirac fermions. In a gauge theory, this is refIected by
the appearence of a Chem-Simons term in the fermion
vacuum-polarization diagrams which contribute to the
eRective action. This radiatively induced Chem-Simons
term has been discussed in a number of papers [1,2] and
recently its coefficient has been shown to depend on the
thermodynamic variables: finite temperature and finite
density [3]. In this paper, the functional dependence
of the Chem-Simons coeKcient is considered on toroidal
spacetimes.

It has been emphasized, in a somewhat diAerent con-
nection that, on such a nonsimply connected spacetime,
a quantized gauge theory may be significantly afI'ected by
Wilson loops or nonintegrable phases, which wrap around
noncontractable closed loops. These may be thought of
as arising from background gauge fields which, although
locally pure gauge, are not globally so, The phenomenon
is much the same as that which is manifest in Wilczek's
flux-tube model of anyons [4] and the Aharanov-Bohm
effect [5]. It is of particular interest to consider what
eRect these nonintegrable phases might have on the in-
duced Chem-Simons term on a torus, which represents
the usual mathematical model of the periodic boundary
conditions of solid-state heterostructures. In a purely
classical theory, there is no way to determine the val-
ues of these nonintegrable phases; however, it is impor-
tant to realize [6—8] that they are determined dynamically
in the quantum theory by the minimizat, ion of the vac-
uum energy, so they are not really arbitrary at all. (This
phenomenon has been studied in the context of Chern-
Simons theory in Refs. [9—11].) There is still a. possibil-
ity of varying such phases by introducing nonzero field
strengths into the physical system, so it is worthwhile
knowing their efIect, quite apart from the obvious im-
portance of formulating the problem on the torus. From
the way the phases enter the problem, also from previ-
ous wisdom in connection with spontaneous symmetry
breaking, one would expect the coeKcient to depend on
each of the phases in a periodic way. A calculation of the
coefIicient, for the Abelian gauge theory, confirms this.

II. PERTURBATIVE FORMALISM

Consider the Dirac action in three-dimensional Eu-
clidean spacetime:

dV~ g(p" D„+m) g .

We may take the Dirac matrices to be p' = o' where
cr' are the Pauli matrices. The covariant derivative is
defined by D„=0„+gA&(z). The metric is simply b„
g and @ are two-component Dirac spinors. The Abelian
Chem-Simons action is defined by

Scs ———kg 2 pvA

2
dV A„cI,Ag .

Qn a multiply connected spacetime it is necessary to
consider the eA'ect of pure gauge contributions to A&,
thus we expand A& —+ A& + A&, where A& ——A'H', a
constant linear combination of the matrices which gener-
ate the Cartan subalgebra of the gauge group G. In order
to take account, of this pure gauge part, the simplest step
now is to gauge transform the action, so that A& is set to
zero. Because there are nonshrinkable closed curves, this
implies a modified boundary condition for the fields as
they wrap around each circle on the torus. For example
[12],

In the non-Abelian theory nonintegrable phases play
a much more important role for the quantum theory.
Specifically, the inclusion of nonintegrable phases leaves
some doubt as to whether a Chem-Simons term can be
induced at all. Field theory is greatly complicated if the
nonintegrable phases are not proportional to the iden-
tity matrix. If one performs the relevant calculations on
the torus, it may be seen that there are, as usual, extra
contributions to the vacuum-polarization graph in 2+1
dimensions, but that they are in fact not of the form of a
Chem-Simons term unless the phases map into the cen-
ter of the gauge group. Only in the Abelian limit is the
induced Chem-Simons term recovered, in general.

In this paper some calculations of the Chem-Simons
coeKcient on the circle and the Euclidean three-torus
are discussed.
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g(z„+ L„)= e ' "W(L„)g(z„),

A„(z„+L„)= W(L„)A„(z„)W (L„), (4)

where I& is the toroidal circumference, b„an Abelian
phase, and W(L&) is the Wilson loop in the direction p of
the torus. The Wilson loop may be defined by W(L„) =
P exp(g $ A&dz") = e ', where 8 is a matrix-valued
constant. These boundary conditions become trivial in

I

1 2 „ „ d kg d k2 d k3 d k4

2 (2x) (2n.) (2x)s (2x)

the R" limit, i.e. , as the L„are sent to infinity. The
components of the momenta become k„= (27r/L„)(l„+
4+ e~).

The remaining gauge term @A„@can be treated as
an interaction. The only term in the perturbative ex-
pansion which can give rise to a Chem-Simons term is
that of order g . (It is not necessary to calculate the gs
contribution in the non-Abelian case for our purposes. )
Formally, it may be written

x ~[(~1+~3 ~4)++(~2 ~3+~4)~'lA (k )A (k )
(&"k + hami ( k + imi

P 1 P 2
kg g k2 g )

where n, P, p, o are spinor matrix indices, which run from
1 to 2.

In all cases except the most general non-Abelian case,
this expression may be simplified by integrating over one
spacetime volume dV and one momentum (e.g. , k4).
This results, formally, in a expression of the form [2]

I'g~ —-g dV dp dq e'~"+'l A„(p)A, (q) II""(p),12

dz
2

+m'(z)
—2

I

bined with the help of a Feynman parameter. After some
manipulation the coeFicient may be written

where

"""(»)= f ~~h'"I ~(v"1 ~

(6) where n = 2 (it is convenient to leave this general for the
evaluation). m~(z) = m~+ p~z(1 —z) involves the Feyn-
man parameter, which should not be ignored a priori.
This may be integrated using the standard techniques of
dimensional regularization:

(p"kg + im) [p'(k+ p), + im]pp
(k' + m~) [(k+ p)' + m']

and dp and dq are the momentum measures which are
to be specified for a given spacetime. Expanding this
quantity and noting that Tr(p"p y") = —2ie&"" in three
dimensions, a Chem-Simons term may be identified. The
aim here is to calculate this term for various theories on
toroidal spacetimes.

III. ABELIAN CASE: R' x 8'

Consider first the Abelian theory: here no major com-
plications arise. The simplest case is to take a spacetime
of the form R2 x Si, which includes the case of finite
temperature, then the denominators in (7) may be com-

I

d"k 1 ) [k +(2~/L) (I+6) +m (z)]
1=—oo

n

L(47r)-"/' q L )
where

S(n) = ) [(I+6)'+ v2]"/2

This surrnnation may be tackled by a technique used
by Ford [6], who has shown that

+oo

) (t+ b)~+ a2
~1/2(a2)1/2 —AI () 1)

+ 4 sin(n. A)
1

du(u2 —a') "Re
(exp[2vr(u+ ib)] —1) (12)

which is a finite result in our n —+ 2 limit. However,
there is still a pole in the integrand of (12). At n = 2,
(u —a )"/ is singular at u = ~a~. The sine function
is vanishing on the other hand, so there is no divergence.
Expanding around the simple pole at n = 2 and noting
that sin(xA)(u2 —a2) " 2n6(u —~a~) (the factor of ~
arises because the limit of the integral ends on the center

I

of tlie delta function) it is found that

vr
/' e l'l cos(27rb) —1

vl &
e4&l&l 2 cos(2vrb)e ~I~I+i

p
+

After some manipulation, the result for k is found to be
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v(z) 1 sinh[2trv(z)]
iv(z) i

4tr cosh[2tr v(z)] —cos(2trb)
m 1 sinh(~m)L)

(m( 4' cosh()m(L) + cosh(/tL)

where v(z) = m(z)L/2x B. y expanding around z = 0,
and dropping higher derivatives (which are not Chern-
Simons terms), it may be shown that the only contri-
bution to the coefficient is that which is obtained by ef-
fectively dropping z from the integrand. The Feynman
parameter integration is then trivial. When the circle
represents finite temperature and density we must choose
antisymmetric boundary conditions for the fermion. Set-
ting b =

2
—ipL/2' and L = P = 1/kT gives a suitable

analytic continuation of Ford's result, in the presence of
the chemical potential p. This gives

which may be verified numerically, since the summation
is absolutely convergent. This agrees with the result
found in Ref. [3].

IV. ABELIAN CASE: THREE-TORUS

On the three-torus, a similar result may be derived in
the Abelian case, to obtain the functional dependence in
terms of temperature, density and the two nonintegrable
phases in the spatial directions:

+~ + +
/ )2). ) . ) . ) . ~ ~ (l. + b.)' + '( )LiLzLs qL. )lo ——oo lq ——oo &q

———oo

—2

The summations required are of the form of those tackled in Refs. [11,13]. Although it is not possible to obtain a
functional result for the torus, the summation can be reexpressed in a slightly less meaningless form. The procedure
for evaluating the summations is sketched out below.

First we define a zeta function g(s), such that the coefficient is given by k = 2m((2) [see Eq. (2)]:

1
('(s) =

F(,)

where

(18)

Using the Poisson summation technique, it is straightforward to show that [13]

) t(2x/L-l (ra+bi ) it2wb —t L /4t

There are three such terms for the torus, thus it is possible to write

1(' s
(4tr) s/2I'(s)

Taking the limit 8 —+ 2 and noting the identity

oo
z" 'e P/* ~ cz = 2

(

—
) I~„(2+pp)

&~)

with y = m~, P = P i2L~/4 and v = z, the Chem-Simons coefficient may be written

1+
~

—
~ ) exp 27ri ) l b„~ QR(m, l, L)I~i/2[R(m, l, L)] (22)

where R (m, l, L) = m2(QLzo+ li Li + 12I ~&) and the notation l j 0 is used to mean that the zero mode l = (0, 0, 0)
is excluded. (In fact, it has been separated off by hand and is given in the first term, i.e., the leading 1.) The
expression for k can be rendered more familiar by noting that the Bessel function has a particularly simple form
I~ i/2(z) = gtr/2z e '. Thus the general form of the Chem-Simons coeflicient in this case is
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k&,„,—— 1+) exp 2ni) l,b, e I
I('o0+~ ~+~ ~)''

(23)

It is clear from the form of this expression that the limit Lp, Li, Lg ~ oo gives the correct result k = (m/~m() (I/4x)
in the infinite-volume limit. It is rather less clear that it reduces to expression (15) in the limit I i, Lq ~ oo with
bp ——

2
—ipL/2x, bi, b2 ——0. At first glance it would appear to give the wrong limit: as Li, I2 ~ oo the exponential

goes to zero and we are left with the infinite-volume limit result, which is wrong. However, this is incorrect, since
there is a set of modes in the summation for which li —

l2 —0 and lp takes all values except zero (which was separated
oK by hand). The calculation can now be performed for general bp by separating off these terms explicitly and taking
the infinite-volume limit for the two spacelike directions:

1 + 2 ) cos(27ribp)e ~" ' + 0
m 4ir

~
(24)

Now, using the fact that

) (2 bl) )m[Ll ) l(2+is —(m[L)

l=1 l=1

-t(a~~b+) ~)I,)
1=

1=1
(25)

vergent summations if p becomes large. Some manner
of regularization prescription is required first. A numer-
ical investigation is possible, but also difIicult owing to
slowness of convergence of the summation (16).

V. NON-ABELIAN CASE

these are geometric series which can be summed exactly:

2~~a —)m)r, ~
—(2~~a+) m) L,)+-

]. —e ~~~ )~) Q & —e ( ~'~+)~I ) (26)

cos(2irb)e lm1L —1
es ~m

~
L —2 cos(2ir b) emL + 1

Inserting this result back into Eq. (24) yields 14 exactly.
See also (13) for comparisoii. bp may then be contin-
ued to include finite density, etc. , as required. Note that
in the general torus case, it is not correct to substitute
bp =

z
—ipL/2' directly, since this gives explicitly di-

Finally, we come to the non-Abelian case. Here the
Chem-Simons term is no longer guaranteed unless the
generalized non-Abelian phase matrices lie in the center
of the gauge group (making them Abelian). When this is
the case, the Abelian expressions apply, up to a numerical
factor of dIr/N C2(—G~), where dIr is the dimension of
the matrix representation for @ and A&, N is the dimen-
sion of the group and Cq(G~) is the quadratic Casimir in-
variant in the representation GR. In general, however, it
is not possible to identify a term of the form e& "A&0 Ap.
The problem lies in the nature of the boundary condi-
tions for the momenta, as was noted in Ref. [12]. In the
Fourier transform we have, formally, for that part of F
which gives the Chem-Simons term,

I'cs = g d& dV dkidkpdksdkq exp(i[(ki + k3 k 4)z+ (k2 —ks+ k4)z ]) ~

/A„(ki)ks Ag(k2)r. """ml

(28)

In simply connected spacetirne, there are no 0 phases,
and one of the exponents may be identified as the Fourier
transform of a Dirac delta function in the momenta. This
implies a very important constraint on the four difI'erent
momentum variables. However, on the torus, no such
constraint is implied. The situation is most transparent
in the case of a single circle (R x Si). In this case we
have two freely translatable, continuous momenta and
one set of discrete eigenvalues. Making the eigenvalue
replacements in (28), and integrating over one spacetime
volume it is found that the integral which must be dealt
with is, in fact,

& 2vriI = dz exp
~

(li+ l2 —l3+ Oi+ 02 83)z
o L r

I= exp [2' i(Pi + 02 —Os)] —1

2vri l1+ l2 —l3+ O1+ O2 —O3
(30)

A delta function b(li+l2 —la) only results in the case when
0 = 0. The 0 matrix elements do not cancel each other
unless they lie in the center of the group. The integral
over one of the space coordinates does not therefore result
in a delta function, over all space and time components,
but instead in

I

where l1, l~, l3 are integers coming from the discrete na-
ture of the momentum in the Si dimension. 8„are just
the components of the diagonal 0 matrices, since any
Abelian phase 6 must cancel between the fermion lines,
by conservation of momentum at the vertices. Because
the calculation requires O1, O2, O3 to be general, evaluation
of the above integral I results in
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d kpdkydk2

+~
L 2m icy

2zi lg —l3 + /4 + eg

.*&" +" -"&.~ "."~„(~,)a„~,(~,)
[k + (27r/L) (I + 6+ Bg)'+ m ][M + (2x/I) (I + 6+ By) + m ]

(31)

By is a phase arising from a fermion boundary condition
and 8& is a phase arising from the boundary condition
for the gauge field. As 8 —+ 0 the usual results are ob-
tained. It is, of course, still possible to integrate over the
continuous momenta and obtain the usual constraint for
them. Vfe might also wonder whether any progress could
be made by attempting to perform the discrete summa-
tions: perhaps we might actually find the Chem-Simons
term concealed in this mess. However, an attempt to
perform the sums quickly lpads to the conclusion that
there is no term of the simple form of (2). Thus we are
forced to the conclusion that the presence of noninte-
grable phases actually inhibits the production of a CS
term in this general case.

It should be reemphasized that the actual values of
the O„matrices are determined dynamically by the min-
imization of the effective action, so it is not clear a priori
that their values should be other than zero at this stage.
The effects of nonintegrable phases on the torus have
been considered in a number of papers [13, 14], also in
connection with Chem-Simons theory[11]. In a wide class
of models it has been shown that this is indeed the case;
thus, there is at least a possibility that the Chem-Simons
term is absent from these. However, in reality these inves-
tigations are insufficient to determine its absence, since
they do not take account of nonzero field strength —a
rather diKcult problem on these spacetimes. To obtain
the full picture one must also know about the interac-
tion between such phases and real electric and magnetic
fields.

Another question worthy of mention is the follow-
ing: how should one interpret the infinite-volume limit' ?

Clearly the effects of these phases should become negligi-
ble in this limit and there should be a Chem-Simons term
regardless of the initial topology. Indeed, this is certainly
the case, but the limit (at least mathematically) is not
a smooth one in this case. (The delta function is not a
smooth distribution. ) It is rather hard to imagine a set of
terms gradually approaching a Chem-Simons form in the
infinite-volume limit, but this is effectively the picture.

VI. DISCUSSION

The results summarized above show that the coeK-
cient k of the induced Chem-Simons term, in 2 + 1
toroidal dimensions is a function of both the thermo-
dynamic variables and the nonintegrable phases of the
torus k(b, O, p, L, m). If the nonintegrable phases com-
mute with the entire gauge group, this coeFicient is well
defined. In any other case, a coeKcient cannot; be eval-
uated since there is no identifiable Chem-Simons term
arising from loop corrections.

Since a Chem-Simons form is not guaranteed, an ob-
vious question is the following: if the extra terms which
arise in 2+ 1 dimensions are not a Chem-Simons term
then what are they'? This is particularly difBcult to an-
swer, owing to the diKculty of the calculations. It is
unlikely that any presentable analytical answer can be
found. However, if we restrict attention to the three-
torus at p = 0 a numerical analysis might feasibly be
carried out, to determine the behavior of such a system.

Since the question hinges on dynamical issues, one
should look at the vacuum structure of models on toroidal
backgrounds. Previous work carried out on the torus [13,
14] would seem to indicate that there is a wide range
of models in which one would not expect to find an in-
duced CS term, but these results can only serve as a
guide. It is essential to look at models in which the non-
integrable phases are nonzero in the presence of nonzero
field strength. Calculations of this kind are in progress
[15]. Another important question to answer is the follow-
ing: does the theory still become simply a massive gauge
theory, or is the behavior even more complicated in this
case?

It might be argued that loop corrections to the Chern-
Simons coef5cient should not play a role in Chem-Simons
theory at all [16]. One argument for this is the necessity
for k to be quantized in the non-Abelian case, in order to
have a gauge-invariant quantum theory. The procedure
of ignoring the loop corrections seems somewhat diFicult
to justify however. Had the coef5cient been a constant,
it would have been easy to absorb it into the definition of
the Chem-Simons action. Since it is a function, it is not
clear that the correction can be ignored. Lykken, Son-
nenschein, and gneiss have emphasized that the corrected
Chem-Simons coefBcient is in fact the physical value [17].
On the torus, at least, it may not affect the quantization
argument. In the Abelian theory there is no necessity for
quantization of the coeFicient, so there is no contradic-
tion. In the non-Abelian theory, there may be no cor-
rection anyway. In a recent paper [18, 19], Hosotani has
argued that, on the torus, time-dependent nonintegrable
phases could lead to a quantization of the Chem-Simons
coefFicient, even in the Abelian case, if gauge invariance
is to be respected. According to the calculations above,
these phases would also affect the value of the coeKcient,
correcting coef5cient with a function of time. This would
seem to suggest that the consistency of such an idea is a
nontrivial problem. Moreover if one is interested in mod-
els of anyonic superconductivity, formulated on a torus as
was passingly mentioned in [20], the nonintegrable phases
discussed here could well spoil the necessary cancellations
required to produce a pole in the current-current corre-
lation functions.
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Finally, if there is no induced Chem-Simons term for
a prescribed model, is it always appropriate to add the
Chem-Simons action in (2+ I)-dimensional field theory?
The behavior of a system under parity and time-reversal
transformations is of particular interest in theoretical
models of high-T, superconductors. Parity is not pre-
served in 2+1 dimensions regardless of whether a Chern-
Simons terms appears by radiative corrections, but many
models make explicit use of the Chem-Sirnons construc-

tion [17, 20, 21]. This feature may need to be reconsid-
ered in any non-Abelian generalizations of such theoreti-
cal models, should they become of interest. Some of these
issues will be considered in further work.
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