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Time ordering, anomalies, and chiral gauge theories
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For chiral gauge theories, singularity of the time-ordered products results in some ambiguity spoiling
the Tomonaga-Schwinger equation; this is explicitly demonstrated in two- and four-dimensional Abelian
theories. The ambiguity can be eliminated by the requirement of gauge invariance and, thus, nonpolyno-
mially modifies the conventional quantization of chiral gauge theories. A correctly quantized theory
should suer no gauge anomalies, neither the perturbative "triangle" nor the nonperturbative Witten
anomalies.

The pioneering Adler-Bell-Jackiw axial anomalies [1]
and the subsequent anomalies of other symmetry have
had a decisive, crucial role in quantum field theories.
They simply are as fundamental as the symmetry princi-
ple concerned. The anomalous breaking of global axial
invariance has provided the answers to certain problems
of phenomenology (ranging from the neutral pion decay
to, possibly, the proton-spin structure). On the other
hand, when the symmetry in question is the local symme-
try of some gauge theory, anomalies entail disastrous
consequences and, in doing so, impose severe constraints.
The standard model of the electroweak interactions is an
example of this.

However, there are doubts about the validity of the
conventional quantization of anomalous chiral gauge
theories. These were raised in the context of a path in-
tegral in an ad hoc manner [2]. From the canonical
operatorial quantization, I have found an argument
against the widely accepted path integral and, equivalent-
ly, Feynman rules for chiral gauge theories [3]. The ar-
gument, however, is not illuminating in perturbation
theory as the eigenstates of the fuIl first-quantized Hamil-
tonian are required. The present work is the extension
into perturbation theory [4].

Consider the classical Lagrangian density of Abelian
chiral gauge theories [5], where only the left-handed
current is coupled to the gauge fields:

,'F —+—p(id+APL )p .

U(t, t, ) = iH, „,(t) U—(t, t, ),a
Bt

U(t„t, )=I,
where

H;„,(t) = fd x A„fy"PL f(x, t ),

(2)

(3)

and A„,f are the free field operato-rs. Normal ordering
with respect to the in-vacuum is implicit here. The S ma-
trix can then be obtained as the limit

S= lim lim U(t, to) .
t —moo t ~—oo0

(4)

The solution of (2) is found by iteration to be the Neu-
mann series

At this level it possesses the usual chiral gauge invari-
ance, but the quantum version is well known to suffer
from anomalies.

In the interaction picture the evolution operator of the
second-quantized states satisfies the Tomonaga-
Schwinger equation

U(t, to)=1+(i)f dt, H;„,(t, )+( i)'f dt, f —dt, H;„,(t, )H,„,(t2)
t0 t0

+( —i)'f dt, f dt, f dt, H,„,(t, )H,„,(t, )H,„,(t, )+ (5)

It is usually necessary to convert this into another form by the Dyson time-ordered product of operators, which can be
defined pairwise as [6]

"7[A(t, )B(t,)]=8(t, t, ) A(t, )B(t,)+8(t, —t,—)B(t, )A(t, )

=
—,'[A(t, ),B(t,)]+,'e(t, —t, )[A(t, )—,B(t, )] .

Consequently, the Feynman rules and/or the path integral are conventionally derived from the evolution operator

(6)
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2

U(t, to)=1+( i—)f dt, H,„,(t, )+ f dt, f dt, V[H', „,(t, )H,„,(t, )]
2I to to

3+, f dt, f dt, f dt, V[H,„,(t, )H,„,(t, )H,„,(t, )]+
t=7 exp i—f drH;„, (r)
0

(7)

and also from which the various derivations of anomalies
follow.

I now claim that the above step going from (5) to (7), is,
in general, ambiguous, because in (7) there are further
contributions relative to (5) when the time arguments of
the integrands coincide. This statement is more than the
usual statement of the indefiniteness of the time-ordered
product at equal times. Here I wish to draw attention to
the fact that the time-ordered products are highly singu-
lar at equal times. Consequently, the two expressions are
not equivalent, despite whatever redefinition one may em-
ploy for the time-ordered products at coinciding times.
That is, U is capable of producing anomalies, which can-
not be absorbed by local counterterms.

More precisely, it can be shown that U is not a solution
of (2) due to some ambiguity. Consider

then (2! is satisfied. Such ignorance is fatal if the in-
tegrand in (9) behaves singularly as a 5 function killing off
one integration, thus reducing the order O(e ) and con-
tributing to the right-hand side (RHS) of the differential
equation of (2).

The anticommutator in (6) does not contribute to (9),
but the commutator term does and is dominated by the
fermion currents. In two dimensions the diferent time-
commutator for free-field currents is known [7]:

[JL (x, t ),JL(x', t')] = 5(t —t'+x' —x ),0, , l a

gl JO
(10)

Expression (9) can now be evaluated by contour integra-
tion in momentum space with the use of, with g —+0+,

gU(t ) U(t+e to) U(l' to)= lim
Bt ~ 0 E'

if one ignores terms of apparent order e or higher such as
2

lim, f dti f dt2V'[H;„, (ti)H;„,(t~)], (9)

The result is that U now satisfies an equation similar to
(2), but with H;„, replaced by

H,„,~H, s =H;„,(t)+Q~(t ),
where, modulo local counterterms,

(12)

f dt Q, (t)= f dt dx(AO —A, )
4m

S=V'exp —i f dt(H;„, —Q2) (14)

The theory of c = 1 is now anomaly free; the anomalous
fermion current divergence is canceled by the relative
minus sign in (14). Gauge invariance has thus deter-
mined c.

In four dimensions the term that may violate the
Tomonaga-Schwinger equation is, apart from (9),

X —(Ao —Ai)(x, t) . (13)
0 1

c in (13) is ambiguous, owing to the well-known nonasso-
ciativity of products of distributions [8]. This ambiguity
can also be seen in the contour integrals by taking the
limits of different i)s' of (11), corresponding to different
distributions in a product, via difFerent routes to 0+. In
general, the interchanging of the order of such limits
gives different results, hence the ambiguity.

c can be fixed by a gauge-invariance requirement, how-
ever. With the choice c =1, the integrand of the last ex-
pression under a gauge variation yields precisely the
anomaly term in the fermion current divergence [9]. In
this way the origin of gauge-symmetry anomalies is trans-
parent: The underlying theory of (7) is not gauge invari-
ant since it admits H,z, not H;„, as naively expected, for
its interaction sector. Also clarified is the connection be-
tween the Schwinger term in the current commutators
and the anomalous divergence.

It can be shown that (9) is the only term in (8) that pro-
duces extra contributions to the RHS of (2). Then the S
matrix which comes from an evolution operator that
satisfies (2) exactly is easily envisaged,

ipx —
q~p ~

1

2m'

1 1

2mi x+i g
L

X lY/

lim, f dt, f dt2 f dt3

X "T[H;„,(t, )H;„,(t, )H,„,(t, )], (15)

1 e /Px

8(x)= . dp
2&l p l 'g

from which, for example,

e(t t')5(t' —t+x' —x ) = — [5—(t —t')5(x —x')] .1 . . . 1

2 c)t ~x

whose naive order is O(e ). Explicit calculation, howev-
er, shows that it survives the limit, but is once again, am-
biguous. The singularity of the integrand of (15) now
comes from the triple commutators of the free-field fer-
mion currents at different times. This quantity is not
available in the literature. Nevertheless, by an indirect
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method the counterpart of Qz in four dimensions can be
derived, modulo local counterterms,

jdt Q4(t)=
~ f d x F„F"' A (x),C — ~a

(16)

of which the gauge transformation of the first term, with
c =1, corresponds to the well-studied expression of chiral
anomalies.

The derivation of (16) is facilitated by the Wick
theorem. The time ordering in (15) factorizes into boson
and fermion factors and is Wick expressed in normal-
ordered and propagator terms. Of these, the only terms
that survive the limit e~O are the c-number, highly
singular products of fermion propagators, that is, the tri-
angle diagrams. Closed expressions for these diagrams
have been obtained a long time ago [10];in using them we
have to appeal to the Bose symmetry of external legs to
fix the ambiguous accompanying numerical factors:

malizable, and unitary. I hope to present this result else-
where.

The adjective "anomaly-free" here is meant exclusively
for gauge symmetry, since the consideration above has no
effect on the existence of anomalies of rigid, ungauged
symmetry. (The Noether current of this latter kind of
symmetry, not being gauged, does not appear in the
second-quantized Hamiltonian and thus is not subjected
to the treatment above. )

I believe that these conclusions are applicable to not
only non-Abelian theories, but also other type of (non-
chiral) gauge anomalies.

In the path-integral representation of the vacuum-to-
vacuum amplitude corresponding to the S matrix (14),
the appearance of the Qz ~ terms apparently resembles
that of the Wess-Zumino (WZ) term advocated in [2], for
example, in the four-dimensional Abelian case:

+wz= ~ x F„F (18)
I

pvp(P ~P ) aPP (P P )
12~ p'+ iO+

+ symmetrization . (17)

But the two approaches are not equivalent. This point
can be seen by performing the integration over the WZ
field P(x ), forcing a constraint on the gauge fields:

The result (16) is also connected to the violation of
equal-time Jacobi identity of free-field fermion currents
[11];it is only another manifestation and a special case of
the triple commutators at different times which renders
(15) nonzero.

In summary, I have claimed that the anomalously bro-
ken local symmetry of a chiral gauge theory can be re-
stored thanks to an ambiguity of the time derivative of
the evolution operator for second-quantized states. The
ambiguity spoils the Tomonaga-Schwinger equation; con-
sequently, the conventional S matrix has to be modified.
The modification is nonlocal because of the appearance of
antiderivatives, but does not necessarily imply that the
spacelike separated operators no longer commute. The
enforcement of gauge invariance can then be called upon
to eliminate the ambiguity (because, after all, it can be
seen that the vacuum polarization and triangle diagrams,
which are the potential cause of current anomalous non-
conservation in two and four dimensions, respectively,
are also the ones giving rise to extra, but ambiguous, con-
tributions to the time derivative).

This work thus provides some motivation for the use of
nonlocal "counterterms, " which have been advocated in
an ad hoc manner before [12], to cancel the gauge
anomalies.

At least for Abelian theories, in four dimensions or
otherwise, I am convinced that chiral gauge theories
quantized in this way are consistent: anomaly free, renor-

wz F F Pv (19)
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In contradistinction, no such constraint is encountered
explicitly in the above.

Finally, with regard to the Witten anomalies [13] as in
the example of SU(2) theory, I suspect that there are no
such anomalies in the current quantization. I should
point out first that my arguments are entirely different
from those in Ref. [14]. Those authors criticize the
mathematical credibility of the anomaly derivation. I, on
the other hand, have no such criticism, but, instead,
doubt that Witten s path-integral starting point is the ap-
propriate one. My suspicion is based on arguments of,
apart from that of the Berry's phase approach [3], the
embedding of the SU(2)-Witten anomaly into the pertur-
bative "triangle" anomaly of some bigger group
G [&SU(2)] [15]. As the conventional path integral of
the latter theory should be rectified accordingly, its re-
striction to the SU(2) subgroup may not be the one that
was originally employed in [13].

Note added. Upon completing this work, in the litera-
ture search I came across Ref. [16] where some doubt
about the equivalence of (5) and (7) was also raised.
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