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Time-dependent Chem-Simons solitons and their quantization
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Interaction with an external harmonic or magnetic field can be introduced into the planar, gauged,
nonlinear Schrodinger equation by a coordinate transformation. Correspondingly, the known vortex-
soliton solutions are transformed into periodic solutions in the presence of these external fields. This
shows that vortex solitons bind to the external fields and their binding energy may be quantized semi-
classically.

I. THE MODEL AND ITS SYMMETRIES 5H

D, =B,+id, 0=V —i A (1.2)

involve gauge potentials A "=( A, A) that satisfy the
equations of an Abelian Chem-Simons theory,

8—:VX A= ——p,1

K

E'= —8, A' —8, A =—e'Jj~,0 1 i' ~

K

(1.3a)

(1.3b)

The planar, gauged, nonlinear Schrodinger equation is
an interesting generalization to (2+ 1)-dimensional
space-time of the completely integrable (1+1)-
dimensional nonlinear Schrodinger equation. Moreover,
viewed as a quantum-field-theoretic Heisenberg equation
of motion, it arises when the nonrelativistic N-body
anyon system is second quantized. The equation for the
"matter" field g reads [1]

D'0 g(P*PW —.1

2'
The last nonlinear term corresponds in the second-
quantized N-body problem to a two-body 5-function at-
traction of strength g. The covariant derivatives

The vector potential A, which is included in the covari-
ant derivative, is not an independent variable but is ex-
pressed in terms of p as

A(t, r)= —f d r'Cx(r —r')p(t, r'),1

K
(1.9a)

(1.9b)

which can be easily shown to solve (1.3b).
Note that in the action formulation (1.6)—(1.8) the

gauge freedom of the system (1.1), (1.3) is fixed: the po-
tentials are uniquely prescribed by their integral repre-
sentations (1.9); equivalently V A=O and (1.9) imply
boundary conditions on the differential equations (1.3):
the potentials are regular at the origin while at a large
distance they satisfy

lim A (t, r)=0,
1' —+ QO

(l. loa)

where Cx(r)=(1/2m)V X ln r, so that A solves (1.3a). A
does not occur in L or H; it appears in the equation of
motion when A, present in H and given by (1.9a), is
varied with respect to g'. A arises as

where K is the coupling strength, while the matter density
and current j"= (p, j ) are given by lim rA'(t, r)= e'~r JN .

1

f~QO 2&K
(1.10b)

p=P*g, j= Im /*Drab .-=1 (1.4)

They obey a continuity equation, by virtue of (1.1) and
(1.3):

Here N = Jd r p is the "number", but it need not be an
integer.

The identity

a,p+V.~=o . (1.5)
~Dt/i~ = ~(D& —i@(tc)D2)g~ —e(tc)(Bp+m V X j)

The system (1.1), (1.3) arises from a Lagrangian and/or
Hamiltonian that can be written solely in terms of P:

L= Jd rig*8, Q H, — (1.6)

allows presenting the Hamiltonian (1.7) as

H= d r ~(D&
—ie(tt)Dzg~ ——g —

p2m ' 2 m/tci

2r D 2 g p2
2m 2

(1.12)

where e(tc)=tc/~tc~ and J d rVXj has been dropped

2524 1991 The American Physical Society



TIME-DEPENDENT CHERN-SIMONS SOLITONS AND THEIR. . . 2525

(with the hypothesis that j is sufficiently well behaved).
The system possesses a dynamical symmetry that per-

mits SO(2, 1) (conformal) redefinitions of the coordinates
[1]. The transformations comprise (i) time translation:
t~t —a, g(t, r)~g(t +a, r), generated by H; (ii) dilation:

D=tH —fd r j2

and (iii) a conformal redefinition of time:

1 1—~—+a, r~
t t ' 1+at '

(1.13)

exp
1 —at

imar t r
2(1 at) —1 at ' —1 at—

t~at, r~&a r, P(t, r)~(1/& a)P(t/a, r/&a ),
generated by

which satisfies

dt
(1.22)

Because of (1.5) and (1.18) the last equality holds even in
the absence of translation or Galileo invariance.

Since all the above generators are constant in time, it
follows from (1.13),(1.14) and (1.20) that on static solu-
tions, for which fd rr j, fd rr p, and fd rrp are
time independent, D, H and P vanish —in particular, as a
consequence of the SO(2, 1) symmetry, static solutions
must carry zero energy [2].

The dynamical symmetry has another consequence
that is important for our analysis. Because of time
translation invariance, time can be separated in the
differential equation (1.1), (1.8). However, the higher
symmetry provides other coordinate systems in which
separation is possible. In particular upon defining [3]

generated by

K= —t H+2tD+ d r r p2

t2H+2—tD+ —,'M(r ), (1.14)

1 i moor t
P(t, r)= exp-

V I+cvt 2

X 4 —arctancot, r/+I+co t
1 2 2 (1.23)

where

(r') =—fd'rr'p,1

N
(1.15)

(1.16)

and substituting this in (1.1), one finds that %(T,R),
T:—tan 't—vt, R=r/"1/1+co t, satisfies

iDr+(T, R)= — D~ %(T,R) gp(T, R)%—(T,R)1

2m

The three generators close under commutation on the
SO(2, 1) Lie algebra, with

2

+ R %(TR), (1.24)

(H+to E)1

2' (1.17}

generating the compact SO(2) rotations. Here co is an ar-
bitrary parameter, but note from (1.14) that
2tvR =H +co K (at t =0) has the form of a "Hamiltoni-
an" for our system embedded in an external harmonic-
oscillator potential of strength k =mco . This fact will be
enlarged upon below.

Other symmetry generators of interest are the momen-
tum

52CilR
t Bz-4'= (1.25}

with A taken at T =0. Equations (1.24), (1.25) show that
the T coordinate can be separated.

where the gauge potentials, as well as the charge and
current densities are constructed as in (1.4) and (1.9) but
now from %. Note further that (1.24) may be presented
as

p=m f d'r j
and the angular momentum

J=m d2rrXj .

(1.18)

(1.19)

(1.20)

Also the system is invariant against Galileo boosts.

r~r+vt,
P( t, r )~exp [im ( v r —

—,
' v t ) ]g( t, r v t ) generated by-

B=tp —m f d rrp

II. SOLUTIONS

From (1.12) it is seen that nontrivial zero-energy solu-
tions exist only for g)1/mlitt~. Henceforth we take
g =1/m ~lr~; a choice which renders the static system ex-
plicitly integrable, and also is "natural" in the sense that
it possesses a hidden supersymmetry and corresponds to
a minimal magnetic interaction in a spinorial formulation
of the problem [1].

When the last term in (1.12) is absent, static and there-
fore zero-energy solutions require that g obey a self-dual
equation

We have introduced the center of mass

(r) =—f d'rrp1 (1.21)

[D, i e(x)D2]/=0, —Df.=i e(~)D Xf .

Upon defining

1/2e i 0

(2.1)

(2.2)
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we further find that p satisfies the Liouville equation
away from the zeros of p,

A&(&,r)= 2 (A (r&)+(v —ar) A(ri, )),1

(1 a—t)
2

V lnp= — p

all of whose solutions are known:

(2.3)

Ai, (t, r)= A(ri, ) .1

1 —at

(2.13a)

(2.13b)

(2 4) These formulas describe a geometric transformation rule:
With

1j= e(a)VXp,
2m

1

2ml~lP '

A =VQ —
—,
' e( v )V' X ln p .

(2.5)

(2.6a)

(2.6b)

Here f (z) is an arbitrary holomorphic function, so
chosen that p is nonsingular, thus describing vortex soli-
tons.

It also follows that

x"=(t,r) X"= , rb
1 —at

ax
A„b(x) 2 (ri, )

ax~
(2.14)

while the current j"= (p, j ) transforms in (2.12) as a con-
travariant density [as a consequence of the Chem-Simons
field-current identity j"=we" ~B 2&],

and A„ the covariant vector (3,—A), (2.13) may be
presented as

There is no equation for 0„' it is chosen to be a harmonic
function that ensures A to be nonsingular at the zeros of
p-

1 . Bx"
jg(x) =—j (r, )

Bx
(2.15)

J=~(~)N = —l~l@, (2 7)

From the previous general result about static solutions,
or by explicit calculation, we learn that H, P, and D van-
ish. The angular momentum is nonvanishing:

with b, =—det(c}x"/BX"). Note that f d r p&(t, r)
= f d rp(r) and thus remains unchanged.

Constants of motion take the following expressions.
Momentum and energy no longer vanish:

K= f d rr p(r)= ,'M(r ), — (2.8)

where 4 is the Aux, N—= f d r 8 Also for t.he conformal
and Galileo boost generators we obtain the expressions

Pb =Mv, ,

E& = ,'MU, +—,'Ma (—Ar)

(2.16)

B=—m f d rrp(r)= —M(r) . (2 9)

Pb

2M
+—'Ma (hr)

1
gi, (t, r) =

1 —at
i (mv /2a) —i [ma/2(1 —at) ](r—v/a)8 e garb J

The last two integrals cannot be evaluated without an ex-
plicit form for p, viz. for f in (2.4).

The only time-dependent solutions to (1.1) that are
known at present are Galileo or conformal boosts of the
static solutions [1]. Thus, when P(r) is a static solution
to (1.1), the following time-dependent function also solves
that equation J& = (r) XMv, +e(~)N

=(r) XPi, +e(~)N . (2.18)

Here v, =v —a (r) and (Ar) —= (r ) —(r) . With a pure
galileo boost (a =0), we see that the soliton moves as a
particle with mass M, while a conformal boost (a%0)
shifts the velocity, v~v„and shows that there is inter-
nal structure since (b,r) %0. The angular momentum is
also boosted:

(2 10) The dilation generator reads

rb = r —vt
1 —at

(2.11) DI, = —
—,
' (r).Pi, + —,'Ma(b. r)2 (2.19)

1
pb(t, r)=,p(r&),

(1 at)— (2.12a)

1
jb(r,r)=, (j(rb)+(v )ar( pb)r)

(1 at)— (2.12b)

The subscript 6 denotes quantities that are boosted from
their static forms. For this solution, the gauge potentials
as well as the charge and current densities can be related
to the time-independent expressions by substituting (2.10)
into (1.4) and (1.9):

while the conformal and Galileo generators retain their
previous, static forms (2.8) and (2.9). [In the Lie algebra
these two generators commute. ]

Up to now, the discussion has not relied on the explicit
form of the solution (2.4). But to give definite values to
the various dynamical quantities we must calculate
N—:fd rp, (r)—:(1/N) fd rrp and (r ) =(1/
N) fd r r p. Since an integral over the plane is involved,
there is also the question of convergence. As we shall see,
p decreases as r or faster for large r, so only (r ) is
alllicted by a possible divergence. (At finite r, p is regular).
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p(r) = 4 ~In'
rp

rp+ (2.20)

which behaves at large r as r " . An explicit evalua-
tion gives

X=4~n /~/

(r)=0,
(2.21)

(2.22)

( z) 2 rrln
sin~in (2.23)

Note that ( r ) diverges for n = 1 where p decreases atr, converges for n ) 1 since p decreases faster than r
and approaches ro as n~oo. The solution (2.20) de-
scribes n vortex solitons, superimposed on each other at
the origin, with identical scales (ro) and no relative
phases. The general n-vortex solution makes use of
f (z)= g,",c;l(z —z; ) and describes n vortices at loca-
tion r;, with different scales and phases coded in the c s.
One still finds N as in (2.21), (r) =(lln) g,".

,r;, where
z, =x, +iy;, but (r ) diverges for generic parameters be-
cause at large distances f (z) behaves as g,".

,c;Iz, i.e.,
like the one-soliton solution with p falling as r . Con-
vergence requires that all single soliton-vortices "screen"
each other, in the sense that their scales and phases sum
to zero, $; c;=0. [There may be double- or higher-pole
contributions to f (z), describing superimposed solitons,
but these do not interfere with convergence of (r )]. In
the general case ( r ) cannot be expressed in terms of glo-
bal data, but we can assert that an unscreened single vor-
tex soliton acquires infinite energy when conformally
boosted.

III. EXTERNAL HARMONIC FORCE

Analysis of the N-body anyon problem is frequently
carried out in the presence of external harmonic forces.
This is done so that the continuous anyon energy spec-
trum may be discretized, and level filling can be discussed
[4]. When the quantum-mechanical problem is second
quantized one obtains the field-theoretic Lagrangian and
Hamiltonian

The general rotationally symmetric solution is obtained
by choosing f (z) =(zo/z)", n =1,2, . . . . Then [I]

—2
n

We have included the nonlinearity (5- function interac-
tion in the quantum-mechanical problem) with the pre-
ferred coupling strength, and the subscript co indicates
quantities in the harmonic-oscillator well of strength
k=mco . Gauge potentials as well as the charge and
current densities are constructed as before, but now from

A. Classical Periodic Solutions

f„(t,r)= exp i —cur tancot g(T, r„), (3.4)
1 . m

cos cot

1T=—tancot, r —=r/cosset .
CO

(3.5)

[The transformation in Eq. (3.3) is the inverse of that in
(1.23), with T, R renamed at t, r.]

Further it follows that

p„(t,r)=, p(T, r ),1

cos'cot

1j„(t,r) =
3 ( j(T,r„)—cur sin cotp(T, r„)),

cos cut

3 „(t, r ) = 2 ( 3 ( T, r ) to sin cot r A( T, r —
) ),.1

cos'cot

A„(t,r)= A(T, r ) .1

cosset

(3.6a)

(3.6b)

(3.7a)

(3.7b)

These in fact are the same geometric transformation rules
as (2.14) and (2.15) except now X&:—( T, r ):

Solutions to (3.3) can be obtained by reference to the
conformal symmetry of the problem at co=0. We recog-
nize, as remarked previously, that H =2coA. Moreover
the coordinate redefinition (1.23) takes Eq. (1.1) to (1.24),
(1.25), which is precisely of the form (3.3). We now rein-
terpret that result in the following useful manner. View-
ing the previous coordinate redefinition as a coordinate
transformation, the co=0 problem is mapped onto the
problem with harmonic forces. Therefore, by effecting
this coordinate transformation on a solution g(t, r) to
(1.1), we obtain a solution P (t, r ) to (3.3) [5].

Referring to (1.23), we may thus assert that given
P(t, r) solving (1.1), direct substitution verifies that a solu-
tion to (3.3) is

L =fd riP BP H—
H. = fd'r ID&„l'—

2
~

p.+ ~'r'p.

(3.1)

(3.2)

axA„„(x)=A (X)
Bx"

j"„(x)=—j (&)
a~
ax

(3.8)

(3.9)

and the equation of motion reads

5H
a,

Df+ A —,
, p+ cor

(3.3)

The coordinate transformation (3.4) is an instance of gen-
eral time reparametrization:

g(t, r)~ (AT(t)e ' ' ~ P(T(t), +T r) (3.10)

With T(t)=t+a, tla, and tl(1 at), one obtai—ns the
previously mentioned time translation, dilation and con-
formal transformations, which are symmetries of the dy-
namics and leave our system invariant. When T(t) is ar-



2528 R. JACKIW AND SO-YOUNG PI

bitrary, the dynamics is not invariant and our system is
mapped onto a difFerent system. In (3.4), with
T(t)=(1/co)tancot, the mapping introduces a harmonic
interaction [3,5].

The energy and angular momentum are still conserved.
Using (3.4) to evaluate (3.2) gives

E„=(1+coT )E m—co Tf d r„r j(T,r )

+ ,'mc—o f d r„r p(T, r ) . (3.11a)

which should be compared to (1.17). For the boosted
self-dual solution (2.10), E is evaluated from (2.8) and
(2.17) as

E =—'Mv +—'Mco (r )+ ,'Ma (br)— (3.11c)

To evaluate the angular momentum J„=m f d rrXj,
we use (3.6b) and find that the harmonic force is invisible:

J =J. (3.12a)

This is given by (2.18) for the boosted self-dual solution
(2.10):

where the current and charge density correspond to a
(possibly time-dependent) solution without harmonic
forces. The integration variable has been changed from r
to r„=r/coscot and T=(1/co)tancot. We may now use
the conformal symmetry of dynamics at co=0 to express
the integrals in terms of conformal generators. Equations
(1.13) and (1.14) give

(3.11b)

p2
E = + —,'Mco (r) + —,'M(a +co )(br)2 . (3.15)

Thus apart from the internal energy, proportional to
(Ar), the kinematical relations are those of a point parti-
cle in a harmonic well; our soliton executes simple har-
monic motion.

While explicit forms for the solutions have not been
used in the development, nor will they be needed for the
semiclassical quantization described below, we note that
the simplest solution, the unboosted (v, =0=a), radially
symmetric n-soliton solution of (2.20), gives

E =
—,'Mco (r ) = ,'Mco ro- m/n

sin vr ln
(3.16)

Hence a single soliton-vortex has an infinite interaction
energy with an harmonic oscillator —compare with the
discussion at the end of Sec. II.

B. Semiclassical quantization

Regardless of whether the solution in the absence of
harmonic forces is static, boosted into a time dependence,
or of some other (so far unknown) time-dependent form,
its transform (3.4), which solves the same problem with
harmonic forces, is always periodic with period 2~/co.
Therefore semiclassical quantization can be carried out.
To this end we integrate the canonical one-form

J d rig*8, t(tt„over the period 2'/co, and equate this to
2vrJV, where JV is a "principal quantum number, " thereby
obtaining from (3.1), (3.2) an energy quantization condi-
tion [6].

J =(r) XMv, +F(~)N . (3.12b)

Although linear momentum is not conserved, it is in-
teresting to evaluate it. We get, with the help of (3.6b),

p (t)=m f d r j (t, r)

E„=co A' — f dt L„2' 0
(3.17)

When the Lagrangian is evaluated on a solution to (3.4)
only nonquadratic terms survive:

r

d r ) T, l
cosset

1L =fd'r A —,ip„p2m ~K
(3.18a)

—mco sin cot f d r~(T, r„) . (3.13a)

=P cos cot+~8 sin cot . (3.13b)

The first integral is the momentum (1.18), and the second
involves a contribution to the boost generator (1.20), both
time-independent in the absence of harmonic forces.
Thus one has

P„(t)= P+co sin cot(B—TP)1

cos cot

Substituting for A„and p their expressions (3.6) and
(3.7) in terms of the solution at co =0 and changing the in-
tegration variable r to r„=r/cos cot leaves

L„=(1+co T )f d r A (T, r )

( T, r„) p(T, r„)1

2tPl K

For the boosted self-dual solution (2.10), this further be-
comes, according to (2.9) and (2.16),

co Tf d r„r—A(T, r„)p(T,r ) . (3.18b)

P (t)=Mv, coscot —M(r)cosincot .

It also follows that

(3.13c) The only solution known at present to the su=0 problem
is the boosted, self-dual one (2.10). Therefore we use
(2.12) and (2.13) to express (3.18b) as

=1 2 1(r) =— d rrp (t, r)=(r)coscot+ —v, sincot

(3.14)

so that

1+co T 1L f d r A (r) — p(r) p(r)
(1 —aT)~ 2m ~ic~

+ f d r(v ar co Tr) A—(r)p(—r) . (3..18c)
1 —aT
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The integration variable has been changed from r to
r=(r„—vT)/(1 a—T). In fact (3.18c) vanishes on the
self-dual solution: the first integrand is zero, according to
(2.6a); the second involves fd r A(r)p(r) and

fd r r. A(r)p(r), which from (1.9a) equal

and

respectively, but the integrals vanish due to antisym-
metry of the integrand. Thus we conclude that

1.„=0 (3.18d)

and the semiclassical quantization rule (3.17) becomes

(3.19)

which of course coincides with that for a point-particle in
a harmonic oscillator potential on the plane.

P (t, r)=
CO

cos—t
2

e
—imr»(r /4)tan(r»/2)t i(N/4')r»i, )( ~ ~ ~

(4.7)

T=—tan —t, R'(t) =2 co

co 2 CO
cos—t

2

R'~ —t r~ .
2

(4.8)

R 'J(a ) =5'Jcos a —'e~si na . (4.9)

Moreover, it is necessary to perform a gauge transforma-
tion; this gives the additional phase factor e' ' ' in
(4.7), which is needed because our formalism is gauge
fixed.

Other dynamical quantities take the form

p (t, r)= 1
p(T, R),

cos —t2 CO

2

(4.10a)

The coordinate transformation involves the same rescal-
ing as in (3.3), but with half the frequency, followed by
rotation through the angle (co/2)t:

IV. EXTERNAL MAGNETIC FIELD

The N-body anyon problem in an external magnetic
field is another widely studied system [7]. The second-
quantized Lagrangian Hamiltonian is

L = f d rip'B, g H„, — (4.1)

j ' (t, r)=
cos —t3 CO

2

XR j'
2

jj(T,R)+ e~"r "p(T,R—)

(4.10b)

(4.2)

The gauge-covariant derivative now includes a contribu-
tion from the external magnetic field %, for which the fol-
lowing vector potential is chosen:

(t, r)=
cos —t2 CO

2

a)N
4m.x

A (T,R) ——rX A(T, R)

(4. 1 la)

A = — e~r~X= —— e~r',i 1 t
' f71 co i

2 2e
(4.3)

A' (t, r)=
CO

cos—t
2

(4.11b}

e
CO= 7

NZ
(4.4) While the current transformation rule is still geometric as

in (3.9) withD:V i A —ie—M . —
CO

(4.5)

The subscript co now denotes quantities in the presence of
the external magnetic field %=mes/e. The equation of
motion becomes

2 coX"= —tan —t,
co 2

1 R'J(cot/2)rj =—(T,R),
CO

cos—t
2

Dg+ A
i

ip

the gauge potentials undergo an additiona1 gauge trans-
formation, which complements the above-mentioned
phase factor of g:

(4.6)

where 2"„ is still given by (1.9), with sources j" con-
structed from g as in (1.4).

A. Classical periodic solutions

It has recently been shown that Eq. (4.6) admits time-
dependent solutions that are constructed from solutions
P(t, r) at %=0 by a periodic coordinate transformation.
The following P„(t,r) solves (4.6} [5]:

axA„(x)=A (X)
ax

CO
Nt

Q~ p 4~g
(.

(4.12)

E = dr D
&

—ievD2 —eK —N2'
(4.13)

The kinematical properties of the solution are coded in
the constants of motion, which here comprise the energy,
momentum, and angular momentum. The energy is
given by (4.2), which may also be written as
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P' =m f d rj '„—men f d re'J'rip

J =mfd rrXj + ,'m—cofd rr p

(4.14)

(4.15)

Substituting the co=0 formulas from (4.7), (4.10), and
(4.11) for the appropriate expressions in (4.13)—(4.15)
gives, after a change of integration variable for r to R,

E = (1+~ice T )E+ f d RR p(T R)

while the other two are given by expressions that include
explicit contribution from the external magnetic field:

Note that

p2 ME +coJ = + e—(x)N+ a + (br)
2M 2 2 4

(4.24)

This shows that apart from the internal energy, propor-
tional to (hr), the kinematics of our vortex soliton is
that of a point-particle, with mass M, spin e(~)N and unit

g factor, moving in an external magnetic field.
For the static, unboosted, radially symmetric solution

(2.20), we have

2T f d RR.j(T,R)

f d RRXj(T,R), (4.16)

E =—'Mco (r ) — e(a)—N
8

=—'Mco r
rr ln

sin m In
(4.25)

pl
N
1;co 1 r' 2P JR J' t ———m toe'J d R R ~p( T, R),

CO 2 2
cos—t

2
(4.17)

(4.18)

which diverges for n =1. As seen previously, the single
vortex-soliton has infinite interaction energy.

B. Semiclassical quantization

E„=E+ K ——J,CO N

4 2
(4.19)

P' =P'+ —e'JB~ .
2

(4.20)

Thus when the co=0 solution is the boosted static solu-
tion, we get, from (2.8), (2.9), (2.16), and (2.17),

Again the angular momentum coincides with its co=0
value, while the integrals in the formulas for E„and P„
can be expressed in terms of the co=0 constants of
motion from (1.13), (1.14), (1.19) and (1.20):

Just like the harmonic-oscillator solution, the one in
the external magnetic field is periodic. Note that

CO
cos—t

2

R '~ —t =5'J —e'~tan —t;
2 2

therefore, (4.10) shows that coordinates T, R are periodic
with period 2m. /co [8]. The Jacobian factor in (4.7), viz.
1/cos ,'cot, really—enters with an absolute value [compare
(3.10)]; hence the period of g„(t,r) is 2m lco and the semi-
classical quantization is, as in (3.17);

E = —Mv + —Mco (r) ——(r) XMv1 2 1 2 2 co
co 2 0 8 2 a

2% /coE =co JV— f dtL
2'lT 0

(4.26)

2

e(~)N+ a +— (br)
2 2 4

(4.21)
When the Lagrangian is evaluated on a solution we have,
as in (3.18a),

P ' =Mu ' ——M toe'~ ( rJ )
1

CO 0 (4.22)
1=fdr A —,

lp p2m ~K
(4.27a)

J =(r) XMv, +e(~)N . (4.23) which is evaluated in terms of the co=0 solution to be

I.„=(1+—,'co2T )f d R A (T,R) — p(T, R) p(T, R)1

2m l~l

——f d2R RX A(T, R)+ TR A(T, R)+ p(—T, R),
2 2 27TK

(4.27b)

where the change of integration variables from r' to R'=R'J(tot/2)rjlcoscot /2 has been made. The co=0 solution is
taken to be the boosted static solution, so (4.27b) becomes evaluated from (2.12) and (2.13), after another change of vari-
ables from R to r=(R —vT)/(1 aT),as—

1+—co T 1+—co T
L = — f d r A (r) — p(r) p(r)+ f d r(v —ar). A(r)

(1 —aT)' 2m l~l 1 —aT

——f d2r r+ X A(r)+ Tr+ ~ A—(r)+ p(r)
2 1 aT 2 1 —aT 277K

(4.27c)
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The first integral vanishes according to (2.6a). In the in-
tegrals over A, both fd r A(r)p(r) and

fd r r. A(r)p(r) vanishes as before, while

fd r r X A(r)p(r) is given by (1.9a) as

But now we see that the altered dynamics produces a
trivial modification: g' is given by exp[ i—,e(—a)cot]f„,
where P solves (4.6).

The altered dynamics does produce a change in the en-
ergy:

E„'=E + ,'e(a—)coN . (4.31)

Since

r (r—r')= ,'(r —r' )—+ —,
' lr —r'I

~NL„=—
8mc

(4.27d)

Therefore the quantization condition (4.26) becomes [9]

N2
E =co JV+

8m~
(4.28)

C. Discussion

The external magnetic field % is coupled minimally to
the vortex-soliton system in (4.1), (4.2) and (4.6). Howev-
er, there exists a "natural" nonminimal coupling, which
is worth discussing.

Recall that the contact interaction terms in (4.2) arises
in a spinorial formulation [1] as a non-minimal magnetic
interaction [e(~)/2m]Bp; this equals —(1/2m Ix I )p by
virtue of the Chem-Simons relation (1.3a). Therefore a
spinorial formulation for the external field problem would
lead to the nonminimal term

e(a ) (B+eX)p„=—,
, p„+—e(~)~p„.1 2 1

2m 2m ~K~ 2

Thus, a "natural" modification of the previous theory is
to supplement the Hamiltonian (4.2) by ,'e(a)co f—d rp„;
i.e., replace (4.2) by

H„'= fd'r ID„Q' I' — p' +—6~)~p'
2m l~l

(4.29)

(The primes indicate that a modified model is under dis-
cussion. ) This leads to the equation of motion

the first term leads to an antisymmetric integrand and a
vanishing integral, while the second term gives

+2f d r d r'p(r)p(r') =-
4m+ 4m'

thus contributing coN /8mxto (4..27c). The last integral
in (4.27c) gives —coN /4m', for a final result of

But one can check that the semiclassical quantization
condition for E„' is still (4.28).

A related point is that the Hamiltonian H' may also be
written, apart from boundary terms, as

H' = f d rl(D, ie(a)D —z. )f„'I~ = 1

2m
(4.32)

V. CONCLUSIONS

Coordinate transformation s on the planar, gauged,
nonlinear Schrodinger equation insert an external har-
monic force or an external magnetic field into the dynam-
ics. Correspondingly, solutions of the equation without
external fields are transformed into periodic solutions
with external fields. In particular vortex-soliton
configurations bind to the external fields, but single vor-
tices carry infinite binding energy.

The periodic bound-state solutions can be quantized
semiclassically by the Bohr-Sommerfield procedure. The
resulting energy spectra, Eqs. (3.19) and (4.28), are in
qualitative agreement with known solutions to the quan-
tum mechanical problem [4,7,11]. Although our quanti-
zation is performed on transforms of Galileo and confor-
mally boosted solutions to equations without external
fields, the boosting does not affect the final result, which
could just as well be obtained by starting with vortices
that are static in the absence of external fields.

compare (4.13).
This suggests looking for a self-dual solution to the

external field problem. Indeed, such solutions have al-
ready appeared in the literature [10],both for the attrac-
tive nonlinearity as in the model here considered, and
also for the related model with repulsive nonlinearity.
The repulsive model is of course different from the attrac-
tive model, which we have discussed in the main body of
this paper. However, the two are connected by the spi-
norial formulation [1]. Recall that the spinorial formula-
tion involves a two-component spinor g, with decoupled
dynamics for the two components. The nonlinearity
arises as By cr y = —(1/a )(y y)(y o y), and is attractive
for one component and repulsive for the other. We do
not describe further these topics, since they are discussed
by others [10].

D g'+ A' —,
,
p'+ e(a.)co—

instead of (4.6).

(4.30)
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