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In view of the Krichever-Novikov (KN) framework, we calculate the partition function for the
N =1,c =3 /2 superconformal model on the supertorus with two distinguished punctures. According to
boundary conditions for fermionic fields around two punctures, partition functions are classified into the
partition function for the Neveu-Schwarz sector Zys and the partition function for the Ramond sector
Zy. Considering the two insertions of fields as boundary conditions for the partition function in the KN
construction, Zyg (Zy) is identical to the two-point function of vortex operators (spin fields) on the su-

pertorus.

I. INTRODUCTION

Recently Krichever and Novikov (KN) have intro-
duced a new kind of algebra onto a Riemann surface of
genus g, as a natural extension of the Virasoro algebra
[1]. The KN algebra plays an essential role in the study
of conformal field theories over high-genus (g=1)
Riemann surfaces. In detail, the KN algebra and its rep-
resentation should provide a basis framework for an
operator description of strings on higher-genus Riemann
surfaces, as does the Virasoro algebra for genus 0.

On the other hand, the conformal algebra has super-
symmetric generalizations known as N-extended super-
conformal algebras. We here consider the N =1 super-
conformal algebra, which describes spinning (supersym-
metric) strings [2]. The Euclidean world sheets of closed
oriented spinning strings are just N =1 super Riemann
surfaces. Note that the higher-genus (g =2) N =1 super
Riemann surfaces remain unexplored, while the N =1 su-
pertorus is well known [3,4].

In this paper, we wish to calculate the partition func-
tion for N =1,c =3 /2 superconformal models on the su-
pertorus with two punctures. It is emphasized that the
KN construction needs Riemann surfaces with two dis-
tinguished points (two punctures) to incorporate a global
definition of time on Riemann surfaces. For example, on
a surface with two punctures it is possible to define
“time” so that one of these points lies in the infinite past
(¢ = — o) and the other lies in the infinite future ( = o).
Note that Polyakov amplitudes of the closed oriented bo-
sonic string on Riemann surfaces with genus g and p
punctures is identical to the amplitudes for the scattering
of p physical on-shell strings, which is calculated by in-
serting p vertex operators on Riemann surfaces of genus g
without punctures [5]. Therefore, with the rest of the pa-
per, we will show whether or not the partition function
for N =1,c =3/2 superconformal models on the super-
torus with two punctures is identical to the two-point
function on the supertorus without punctures.

The organization of this paper is as follows. In Sec. II

44

we review the N =1 supertorus, and an N =1 supertorus
with two punctures is discussed in Sec. III. We calculate
in Sec. IV the partition function for a doubly periodic bo-
son coupled to the NS sector by introducing two magnet-
ic (vortex) operators at two punctures. In Sec. V we ob-
tain partition function for a doubly periodic boson cou-
pled to the R sector by using the spin fields. Finally we
discuss results in Sec. VI.

II. N =1SUPERTORUS

We begin reviewing the results on the uniformization
theorem of genus-1 super Riemann surfaces (supertorus).
A supertorus is obtained as the quotient of the complex
superplane (CSP) with coordinates (z,0) by a supergroup
G =0sp(1,2) of superconformal transformations of the
form

,_az+b vz +06
cz+d (cz +d)? ’
vz +38 6 W
= — L
0 cz+d+cz+d(1+28y)
with
a
c d €SL(2,Z2) .

Because a subgroup of G on the supertorus [=SPL(2,C)]
is isomorphic to a fundamental group of a torus, it must
be Abelian and has precisely two commuting generators.
Furthermore, it can be chosen to preserve the flat super-
geometry on the CSP characterized by the complete
frame fields and its dual fields [4,6,7]:

E®=de, E%=df, Et=dz+60d6, E"=dz—0d0

and
Ey=D}%=9,, E;=D3=-9,, 2
E,=Dy=3,+600,, E_=D;=3;—00, .
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The generators of this subgroup can be given by
z'=z+1, 0'=0; z'=z+7+605, 6'=060+8 (3)

for the odd-spin structure [(+,+) boundary conditions]
and

z'=z+1, 6'=0, z'=z+71, 0/=—0 4)

for the even-spin structure with (+,—) boundary condi-
tions. The other even-spin structures are obtained by re-
placing signs (—,—) or (—,+) in the transformations of 6
in (4). The even-spin structures are just the superspace
version of a torus and lead to no difficulty. However, the
periodicity of (3) for the odd-spin structure induces some
problems. For example, the requirement of the periodici-
ty (3) on a scalar superfield gives boundary conditions
that mix the component fields. Avoiding this difficulty,
we introduce the new coordinates (w,¢) related to the
(z,0) as [7]

(0] @y
z=0+¢5—L, 9=¢+5°L (5)

1
Tr Tr

where w; and 7; denote the imaginary part of ® and 7.

Rewriting  and ¢ in terms of (2,2, 6,60,6,6,7,7) we have

z 08
w=z— 65 1+10‘S ,
T 27,
—— (6)
Zr i6d
=0——8 |1+
¢ Tr 271,
In this system the periodicity (3) reduces to
o'=wt+l, ¢=¢, o'=otT1, d=¢. (7)

On the other hand, the supermodular transformations on
the odd supertorus are given by

,_ar+b i o)
cr+d’ (ct+d)"?’

when 7 (8) is an even (odd) modular parameter. Physi-
cally, 7 and & correspond to zero modes of a two-
dimensional graviton and gravitino field. In terms of a
new parameter T'=r7+ 68, these can be described by

,_al+b
cT +d

which is exactly the same form as the modular transfor-
mation law on the torus (see Fig. 1).

(8)

9)

T+1

1

FIG. 1. The supertorus of odd-spin structure is effectively de-
scribed by the torus with the new modular parameter T =7+ 68
instead of 7.

}S

FIG. 2. Four independent cycles a,a’,b,b’ on a torus with
two punctures in the (@,¢) coordinates. The punctures (mul-
tipoles) are denoted by two @’s.

III. N =1 SUPERTORUS WITH TWO PUNCTURES

As was discussed, the role of two punctures on super
Riemann surfaces plays a crucial role in KN algebra con-
struction. These punctures provide the concept of
“time” on the Euclidean world sheets of closed oriented
spinning strings. Moreover, note that the structure con-
stants of the KN algebra depend on the chosen puncture
as well as the periods of the supertorus. We now label
the two punctures as (z;,0,) and (z,,6,). On a doubly
punctured supertorus, there are in fact four independent
cycles a,a’,b,b’ as shown in Fig. 2. Correspondingly,
there are eight possible spin structures, compared with
four spin structures for an ordinary supertorus [8]:

NS

: + - - +

I T S (10)
b: — + — +

b: — + - +

R

+ - - +

-+ 4+ -, (11)
-+ - +

+ - + -

The first four of these spin structures precisely conincide
with the four spin structures for a supertorus without
punctures, which we have already described in Sec. II.
Hence, we here refer to these as the three even- and one
odd-spin structures. Furthermore, under parallel trans-
port around either puncture, there is no change of sign.
So, we refer to this set of spin structures as the Neveu-
Schwarz (NS) sector. The remaining four spin structures
appear new. Under parallel transport around either
puncture each of these spin structures does result in a
change of sign. Hence, we designate this set of spin
structures as the Ramond (R) sector. To be specific, we
remark that under parallel transport around the cycles
a,a’,b,b’ a spinor field ¥(z) in this sector can change by
factors of 1. Note that for the case of a gravitino field
with even-spin structures of the NS sector, there is at
least one cycle around which the field changes sign under
parallel transport. Such a field cannot have a zero mode
(constant mode) and thus there are no odd modular pa-
rameters for even-spin structures. In the R sector there is
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no analogue of the Grassmann-odd modular parameter 5,
since there is always at least one cycle around which a
spinor changes sign under parallel transport.

IV. PARTITION FUNCTION FOR A DOUBLY
PERIODIC BOSON COUPLED
TO THE NS SECTOR

The action for the N =1,c =3 /2 superconformal mod-
el on the odd-spin structure of supertorus is given by

—_ 8 4
A = d*Z DyS DS .
(44 =50 fST oS DS (12)
In order to obtain a simple situation on the boundary

conditions, using (5), we can transform (12) into the ac-
tion on the ordinary torus

A= 5 [ 4% 3,299+ 50,8~ 1359,
5 - _i8
20 19 40,0
7,21/}1/} T ¢law 1
i5—
_—¢'1a D,
gTIFo
13
477'7' Jovo— 27 13)

where we have split S (=S;+S,) into a zero-mode part
S, and a non-zero-mode part S;. The component expan-
sion of superfield S is defined by

S(W, W)= (0,5)+ ¢ 0,8)— ¢ Y w,d)
+¢dF (0,3) . (14)

Here we can eliminate the auxiliary field F by its equation
of motion. The partition function for ®, leads to
172

1

[n(7)

— A
Z,= [Doe 1= |E

27'1

(15)

12’
where
—_ 8 2
Ao = de ©3,9,3_®,

and 7 is the Dedekind 7 function. To calculate the fer-
mionic part, let us define the measure for the zero modes
as

DS,=C dF,d,d{, C =const . (16)

For convenience, we choose C such that the partition
function takes the form

z,=[DsoD [ dile =2, an
1
where

A=Ay, +4) Ao, -

Note that there is no contribution from the 3, 5-
dependent terms because of the presence of the Yy,

term. Also we recall that there is no contribution to the
partition function from the doubly periodic free fermion
action (Ising model) on the torus, due to the absence of
the zero-mode term in action [9]. However, on the super-
torus, there is a direct contribution from the fermion ac-
tion to the partition function because of the presence of
the zero-mode term. Now we wish to take into account
the classical part of the action since in a finite geometry
the boundary conditions generate various constraints.
This comes from classical solutions and their winding on
the nontrivial homology cycles of the supertorus [10].
Then, for variations along two cycles (1,7)

8D, =D (w+1)—Py(w)

= (3, Pdz +3,DydZ)=2mm , (18)
8P, =P (0+7)—Pylw)

= fT(azd)c]dz-i—af(I)cldf):Zﬂm’ , (19)

the corresponding continuum limit is the frustrated parti-
tion function

Z, mw=exp(—A4,), (20
where
’ 2
Ay=T8 Im =mrl® 21
cl 2 ™ ( )

Further, in order to account for the poles of two punc-
tures at (w,¢,) and (w,,¢,), we have to introduce a two-
dimensional Coulomb gas formalism. In the Coulomb
gas formalism, the two essential operators are the “vertex
operator” (O,y) and the “vortex operator” (O, ). Here
the subscripts e (n) denote the electric charge (magnetic
charge) in Coulomb gas representation. At this stage we
need the magnetic (vortex) operators O,,, which create
the discontinuity of 2777 on a cut relating between (,¢,)
and (w,,d,). These operators may take into account ap-
propriately the unique meromorphic one-form with sim-
ple poles and residues +n at (w;,¢;) and (®,,¢,) [5]. For
this purpose, we introduce another classical field [6]

_ 0,(w—w—dd,|7T)
Sg=n|Imln 0, (0—y— b, |7)
—i—jlm[aﬁ— (¢1+d,)¢] Rew,,
—2mRe[¢(d;—¢,)+614,] ] (22)
with

Op=0, 0,1, .
This is doubly periodic

Sq(o+1,6)=S_(w,0)

Sale+7,8)=Sq(w,¢)

and singular at (@,¢;) and (w,,¢,).

satisfies

Note that S
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D¢D$Scl=0 at (w’¢);&(w1’¢1)1(w2’¢2) .

The desired discontinuities around (w;,¢,)
appear as (see Fig. 3)

f( o (DySydwd$+D;S.dmdg)=2mn , 23)
@) =C

and (w,,¢,)

f(mz’%):%(Dd,Scldw d¢+D;S dddd)=—2mn .

(24)

In order to calculate the corresponding partition func-
tion, we should introduce the other field such as S ;:

¢yl7)
¢¢2|7'

—%_ERe[co+%(¢l+¢2)¢]Rewlz
1

O(w—w,—

S

a=—n

0(w—w,—

——277Re[¢(¢1-¢2)+¢1¢2)]] , (25)

since this leads to

DyD3Sy=—"2[8N0—0)8%¢—¢))
— 80— ,)8 p—¢,)] (26)
instead of
DyD3S,=0

The partition function due to the presence of two punc-
J

S

FIG. 3. Magnetic operators create a cut with a discontinuity
of 27n for the field ® along ¢, and —2#n along c,.

tures takes the form

— g N
Zpune=exp | o Ja% [ 4’0 D,SuD S
g/n?/2 2
= _7M)___ exp _ﬂ(Rewu)Z
0,(wy,|7) 27,

(27)

Note that in deriving the above result, we prefix the nor-
malization
gn2/2

_M to Z punc

5 1—gn?/2—
[ZO] - 01(0|T)

because there exists the singular term 0,(0|7).
Considering (15), (17), (20), and (27), the partition func-
tion on odd-spin structure is given by

= 172 2,
55 | g _nn g 1.2 5 B
odd m,mz,ez T | 27, 0,(wy,|7) exp 27.1{"" m7?+n*(Rew,)* —2n Re[(m'—mT)w,]} )
= 2 Zerln',m (29)
mm'eZ
= 2 lepunczr;l,m’ (30)
mm'€Z
I
One can show that ¢ .
Zoy|5|= 2 Zan9) 3 Zpg|o (33)
Z,’,:’m,((uu-{—l): rlr:m—n(wlz) (31) rs=0,1 m=r[2]
m'=s[2]
Znm @0+ D=2y e (@12) (32) where 22(r,s) denotes the partition function for an

Note that n €Z, Z,, . is not periodic, since shifting w,,
by 1,7, or 1+ 7 is equivalent to adding a new frustration
line wrapping around the torus.

In order to obtain the full partition function for the
N =1,c =3/2 superconformal model on the odd super-
torus, we have to consider the coupling between ® and v,
which is purely induced by the boundary conditions [11].
Considering the partition function of the SU(Q2), k =2
Wess-Zumino-Witten model on an odd-spin structure of
torus, the partition function N =1,c =3/2 superconfor-
mal model for the coupling ® and ¢ is given by

Ising-type model with twisted boundary conditions e'™
(e™) on the spin variables o. Also Z, . (g/2)is already
defined in (28). 2 (r,s) enjoy modular covariance proper-

ties as

T(r—>7+1):Z,(r,5)=2,(r,r +s) , (34)

S|r—o——

:22(r,s)=22(—s,r) . (35)

Further the soliton sector Z,, .
transformations as

. changes under modular
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Tz,  (t+t1)=2Z, . . (1), (36) g
1 Zoy= 3 2)(rs) 3 Zyw S (38)
7 _ A = r,s =0,1 m=r[2]
S:Z,, . ’ Z (7). (37) m=s(2]
Therefore, it is easily shown that the partition function We obtain the partition function of a doubly periodic

Zg_y in (33) is a modular-invariant quantity. In our boson coupled to the NS sectors for a fermionic field on
case, the corresponding partition function Zg_y can be the odd-spin structure of a supertorus expressed in terms
obtained by replacing Z,, . with Z,  .: of the (w,¢) coordinates:

Zns=ZowatZo—y= 3 Z,Z,, . % +Z, [ ¥ - ¥ + X + 3 ]Zr'nl,m' %
mm'€Z m,m’'Ee meEe,m'Eo me&Eo,m'Ee m,m'€o
(3 2+ 3 -3 ]z,';,,,.%
m,m’'Ee me€Eem'€o meE&o,m'Ee m,m’'Eo
+Z4[ S+ 3 - 3 + 3 |Zow|%|, (39)
mm'Ee meEe,m’'Eo meEo,m'Ee m,m’'Eo 2
where
1 ]6,0]7)
== , v=2,3,4. (40)
2| m(r)
Z, corresponds to the partition function for an Ising Majorana fermion on the torus with (+ +,——), (——,——) and
(— —, + +) boundary conditions, respectively. Here e (0) denotes even (odd) integers.

Finally, let us transform the (o, ¢) coordinates into the (z,6) coordinates on the (+ +,+ +) odd-spin structure. The
relation between w,, and Z, is given by

(Imz, )(6;+6,)8 4 i6,5

Tr 27,

0p=Z— (41)

I 6,+0,)5 10,5
+(m22)( 1 2) [1+l Pl

Tr

27'1

Because of the presence of the 88 term in (28), we can substitute 7 into T, =7+(6,+8,)8 in the (+ +,+ +) sector. In
this case, the relation between 0,(w,,|7) and 6,(Z,|T,,) is given by

_ 1 9'1'(212|T12)
47i 91(212 | le)

OUZ,,|Ty,)
91(212|T12)

Imz, Imz,
ImT;, ImT,

Ol(wlle):91(212|T12) 1+(01+92)8 N (42)

where 0,(Z,|T,,) is a superelliptic function (supertheta function) on the supertorus [4,6,7], T,=7+6,8 and
T,=7+0,8.

As is shown in (38) through (29), however, Z,,_, does not contain the prefactor 88 which has the nilpotent property
(82=82=0). Recall that this coupling term comes from the boundary conditions of a doubly periodic boson on the odd
(++,++) spin structure and a twisted fermionic field on three even-spin  structures
(++,——)(——,++),(——,——)). In this case, the new coordinates (w,¢) are identical to the (z,0) coordinates,
because the odd-modular parameter & does not appear on the even-spin structures. Therefore, it is easy to rewrite
Zy_, in terms of the (z,0) coordinates.

After a calculation, we can rewrite Z g in terms of the (z,0) coordinates as
172

— |8 85
Zns= S . —
" 2 (ImT,)*"? m,%ez
n(le) gn/2 -
X o ZaToy — =8 (—|m'—mTy,*+n%ReZ,?—2n Re[(m'—mT,)Z
0.(Z,T) | P 21mT12{ Im'=mTy,|*+n*ReZ ;)" —2n Rel[(m'—mT,)Z,, ]}
+[ g |7 1 S Zins) s
27, |77(T)|2 rs=0,1 2 m=r[2],m'=s[2]
(T) gn/2 -
X 0,(Z,l7) P _‘2;{'—!m"—mﬂz‘f‘nz(Rele)Z—-znRe[(m'_mT)le]}]' (43)
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We wish to notice that the partition function Z g is actu-
ally identical to the total correlation function (two-point
function) {0, (z,,6,)0¢_,(z,,6,)) of vortex operators
on the supertorus without punctures.

Here we wish to note that the correlation function of
Kanno, Nishimura, and Tamekiyo [12] is just the quan-
tum correlation function (propagator of a scalar
superfield) on the odd-spin structure of supertorus (refer
to Eq. (A9) in [6]). In constructing a general two-point
function of electromagnetic operators (particularly elec-
tric vertex operators) on the supertorus, we have to use
the quantum propagator as is shown in Eq. (38) of Ref.
[6]. However, our approach to calculating the partition
function is to take into account the meromorphic one-
form with simple poles at two punctures given in the
Krichever-Novikov construction by using vortex opera-
tors instead of vertex operators. During our calculations,
we did not use any vertex operators. If we use the elec-
tromagnetic operators, instead of magnetic operators, to
take into account the poles, two-point quantum propaga-
tor of Kanno, Nishimura, and Tamekiyo is necessary to
complete the desired two-point function.

V. PARTITION FUNCTION FOR A DOUBLY
PERIODIC BOSON COUPLED TO THE R SECTOR

So far, we have considered only coupling the soliton
sector of a bosonic field with the NS sector. Two punc-
tures in the Ramond sector can be described by bases for
the fermionic field which have branch points at w; and
@,, compared with multipoles at @, and w, in the case of
the NS sector. Two of the simple branch points can be
created by introducing the spin field o(w,®) at @, and w,
[10,13]. Indeed, in order to make these bases single
valued we have to introduce a branch cut relating be-
tween @, and w, as shown in Fig. 4. As is shown in (11),
under parallel transport around a cycle which crosses the
cut (e.g., a’,b’), the spinor field changes sign with respect
to parallel transport around a corresponding cycle which
does not cross the cut (e.g., a,b, respectively). In our ap-
proach, introducing spin fields o (w,®) at w; and w, and a
branch cut relating between w; and w, actually takes into
account the required sign changes of the fermion in Ra-
mond sector around the cycles a,a’,b,b’. For the spinor
field which does not cross a branch cut there is no change
of sign, while along the cycle which crosses a branch cut
there is change of sign for the field ¥(z). According to
N =1 superconformal algebra, furthermore, one can con-
struct the vacuum for Ramond state from that for the NS
state (|0)) by the holomorphic spin field o *(w) as [13]

lo*)=0%(0)]0) , (44)
where 0 *(w) and & *(@) are defined by the relations as
o(w,d)=0 “+o T,
(45)
we,B)=c"c +ota T .

In this sense, it is not unnatural to introduce the spin field
o(w,®) in order to account for the Ramond sector. The
role of spin fields on the complex z plane was discussed in

FS

FIG. 4. A branch cut between two punctures on the torus in
the (w,$) coordinates. The punctures (branch points) are
represented by two ¥’s.

Ref. [14]. By the similar way as in Sec. IV, we have to
consider a soliton sector with (m,m’) characteristic to
construct the partition function. We introduce a real
classical field such that

az(bcl:A(l:z)Q'(w)w],wz) . (46)
Here Q, has the form
91((0—-;—(0)1'*‘&)2”7')

Ql(a),(l)l,a)z)“_‘ (47)

[6]((0_0)1]7')91((0_(1)2|7')]]/2 ’
which satisfies the correct local monodromy properties
around o, and w,.

Now let us fix 4 (1,2) by the condition in (18) and (19).
Then we easily find

mI{—m'l,
AL 2)=im————————, (48)
Im(I,I})
with
1(I})=fl(f)ﬂl(w,w,,w2)dw . (49)
The corresponding classical action reads
2
1Tg |m Il mIl I ] |2 2
d w (50)
T2 [Im(T,I)P marp A%

Actually, to calculate [ .|Q,|?d?w, we can consider this
in the simply connected region T whose boundary is the
parallelogram representing the torus, relating by a thin
neck to a contour surrounding the cut in Fig. 5. In T,
there exists a function such that df =Q,dw. Using
Green’s theorem and integrating in a symmetric way
along 1, 1+7 (1, 1+7), we find

fT|9q| d w~‘27fi_ﬂldm/\ﬂldw

1 _ —
:El_ {flnlffﬂl— flﬂlfrﬂl ]
=Im(I,I}) . (51)

Note that the contribution of the contour surrounding
the cut is disappearing because the corresponding in-
tegral of Q, vanishes.

As w,;—w,, one finds

Q,—1,
ﬁl—»l,

I,—1, Ii—>T1,
(52)

I,—1, T\—>7.
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Therefore, A naturally recovers the result in (21). The
corresponding partition function takes the form
172

v |8 = |_8 1
zZy . |5 =2
mmo 21’1 |T](T)|2
mI)—m'I,|?
Xexp _re L U (53)
2 Im(I,I})

According to Ref. [9], the spin-spin correlation func-
tion is given by

(0(01,3,)0(02,@,)) =34
_ 16101 7)['#0( Hw, —w,)|7)|
16,0017)|16,(e0; —wy| )| 17*

(54)

In the case of v=1, one notes that (oo ), is singular due
to the term |6,(0|7)|. One point to remark is that
(a(1)o(2)), is not periodic by itself. This is because
spin operators are not local in terms of Majorana fer-
mions 1. Actually, translating o;—w, by 1, 7 or 7+1
amounts to creating a frustration line winding around the
supertorus and changes the sign of ¢ along 1, 7, or 1 and
T.

In order to account for the periodicity of the total
correlation function and make (oo ), finite, we prefix

J
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FIG. 5. The simply connected region T whose boundary is
the usual parallelogram of torus related by a thin neck to a con-
tour surrounding the branch cut.

1Z0,Z, 53410 0(1)0(2)),_ 4 3 4 Tespectively:
Z (o(0,®,)0(0,,@,)),

16,(0|7)|
Il

2o 1050, —ay)l7)|

B 2!"I|”4 |91(601_602|7')|1/4

1
> (oo),

(55)

As w,—w,, we obtain the correct operator-product ex-
pansions:

Z (o0) =1lo,—a,)*r|n|?, (56)
Z. (o0}, =Ly 1+(w]—w2)2 360.°(0l7)  6"(0l7) | |?
e A e le-—wzll/4 48 6.(0]7) 6(0|7) 57

Finally, we construct the partition function for a doubly
periodic boson coupled to the Ramond sector as

Z
ZR=—1<00)1 > Zpm £
2 mm'€Z 2
+ 3 Zne) 3 Zpa |5, (58)
rs=0,1 m=r[2] 2

m'=s[2]

where the partition functions of spin fields with the
branch cut [Z,(r,s)] are given by

Z,(0,0)=Z,{00 ),+Z3{00)3+Z,{c0),,
Z,(0,1)=—2,{00),+Zs{00)3+Z,{00),,
Z,(1,1)=2,{00),—Zs{00 )3+ Z,{00),,
Z,(1,00=2Z,(00),+Z;{00)3—Z,{00), .

(59)

Note that the partition function Zy is identical to the
two-point function of twisted fields on the supertorus
without punctures.

VI. DISCUSSIONS

Now let us suppose that one may rewrite Zy in terms
of the (z,0) coordinates. We remark that in the Ramond

[

sector the bosonic field ® and the fermionic fields ¥(z)
cannot be combined in a superfield multiplet because the
fermionic field should satisfy the special boundary condi-
tions along the cycles a,a’,b,b’ in (11). As a result, the
presence of spin fields o which account appropriately for
the boundary conditions of the fermion prevent us from
expressing Zy in terms of the (z,0) coordinates. Howev-
er, one can easily rewrite Zy in terms of the z coordinate
by the substitution w— z, since in the Ramond sector the
new coordinate o is identical to the z coordinate.

We note also that the Ramond sector of the partition
function for the N =1,c =3/2 superconformal model on
the odd-spin structure of the torus with two punctures
has the same form as in (58). This point shows us a
difference between Zyg and Zi. Furthermore, in the
case of the partition function for the same model on the
odd-spin structure of a torus (not supertorus), the com-
bination of odd modular parameters (88) never appears.
That is, Z 44 in Zyg disappears on the torus and all for-
mulas expressed in terms of the (w,¢) coordinates are not
distinguished from that expressed in terms of the (z,0)
coordinates.

Our strategy was to construct the partition function of
the N =1,c =3/2 superconformal model on the odd-spin
structure of the supertorus. Even though our interest
stays only at the odd (+ +,+ +) spin structure, we con-
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sider coupling a doubly periodic bosonic field ® on the
odd-spin structure to all sectors of the spinor fields ¥(z)
from the boundary conditions of ® and ¥. It thus as-
sumes that the total partition function for the
N =1,c =3/2 superconformal model on the odd-spin
structure of supertorus with two punctures may be given
by

Z=Zns+Zg . (60)

However, it is problematic to add Zyg and Zy, since the
construction of Zyg is quite different from that of Zg.
For example, when one either inserts vortex operators or
spin operators at given points, one gets either one or the
other part of the partition function. Also if we take the
above assumption for granted, it remains to interpret the
total partition function in (60) as a two-point function of
one operator which gives both vortex and spin operators
on the supertorus without punctures. Note that the first
part of Z (Zyg) is identical to the two-point function of
vortex operators, while the second (Zy) is identical to
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that of spin fields. As explained in Sec. V, to describe the
coupling of a doubly periodic boson to the Ramond sec-
tor, we need interesting physical quantities such as spin
fields. These are not described by operators of the vertex
or vortex (electromagnetic operators), but instead by
twist operators. It should be emphasized that the vortex
operators create a branch cut with the amplitude discon-
tinuity of 27n for the bosonic field ®, while the twist
operators create a branch cut with the change of sign for
the fermionic field ¢¥. When one writes a correlation
function, it depends whether one has spin operators in-
serted or vortex operators, and one gets different results.
Therefore, it is problematic to add them (Zyg and Zg)
and look for one operator that gives both.
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