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Statistics of spinning particles in 2+ 1 gravity
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We examine the dynamics of N spinning particles in 2+ 1 gravity, and obtain an effective Lagrangian
description for the particles by eliminating the dreibeins and spin connections from the theory. The re-

sulting equations of motion show that locally the particles are free, but globally their conserved momen-

ta and angular momenta are not well defined. Conditions are found under which the effective action is
invariant under particle exchanges. Ambiguities exist in passing to the quantum theory and these ambi-

guities can be exploited to obtain exotic statistics for the particles. We construct exchange operators
which give exotic statistics, but which do not in general satisfy the braid group relations when X)2.

I. INTRODUCTION

General topological arguments lead to the possibility
of having exotic statistics for particles moving in two spa-
tial dimensions [1]. The quantum theory for N such par-
ticles may be classified by representations of the braid
group Btt [2]. Whether or not exotic statistics are real-
ized in a theory requires a knowledge of the relevant dy-
namics. For many theories of physical interest, such as
those describing the quantum Hall theory [3], this possi-
bility is realized, but it may not always be the case.

In this article we examine the system of spinning parti-
cles in 2+1 gravity. Many novel features [4] have been
noted for this system, including the possibility that such
particles can be quantized with fractional statistics [5].
In this article we show how an exchange operator can be
constructed such that it exhibits exotic statistics. The
quantization procedure, however, is not unique, as we
can just as well have a system where the particles are
quantized as bosons or fermions. At the same time there
appears to be nothing which prevents the particle from
having an arbitrary fractional spin. Hence at the level of
a first-quantized theory, the spin-statistics theorem [6]
need not apply.

Gravity in 2+1 dimensions can be obtained starting
from the Chem-Simons action for the 2+1 Poincare
group ISO(2, 1) [7]. Chem-Simons actions are functionals
of connection one-forms. If spacetime is topologically
trivial, the connections are nondynamical (provided the
total action under consideration does not also contain a
kinetic-energy term for the potentials). The connection
one-forms can then be eliminated from the theory, yield-

ing an effective Lagrangian for any remaining "physical"
degrees of freedom of the theory. This procedure, origi-
nally outlined by Arovas et al. [8], was carried out in de-
tail by Balachandran, Bourdeau, and Jo [9] for particles
with internal degrees of freedom coupled to a general
Chem-Simons gauge theory. There, the field variables
were eliminated from the theory, leaving just a particle
theory. We apply the procedure of Ref. [9] to the case

where the gauge group is ISO(2, 1). For us, the particle
sources do not have internal degrees of freedom, but rath-
er are characterized by an arbitrary mass and spin.

The dynamics for relativistic spinning particles in 2+ 1

dimensions was obtained starting from a Mess-Zumino
particle action in Ref. [10]. We shall consider the system
of N spinning particles coupled to the Chem-Simons
gravity action. Upon eliminating the fields from the
theory, we obtain an efFective action for X particles,
which, in general, is not invariant under particle ex-
changes. Upon requiring exchange invariance, certain
conditions must be satisfied. For 1V =2, these conditions
imply that the particles are identical, i.e., have the same
mass and spin. For N )2, one obtains, in addition, con-
ditions which do not have a clear physical interpretation.
They are analogous to conditions found in Ref. [9]. The
conditions are useful for deriving properties of the ex-
change operator for the quantum theory.

In Sec. II we review the field and particle equations of
motion for 2+ 1 gravity and show how they are obtained
from an action principle. In Sec. III, we substitute the
solutions to the field equations into the total action,
thereby obtaining the e6'ective particle Lagrangian. Ex-
change invariance of the two- and three-particle e6'ective
Lagrangian is studied in Secs. IV and V, respectively.
Quantum exchange operators tr; are constructed in Sec.
VI. They have the property that o.; =1, and hence only
admit bosons or fermions. They are also shown to satisfy
the braid relations o &o2o. &=u2o. &o.z. In Sec. VII we
demonstrate that there exist quantization ambiguities, al-
lowing us to construct alternative exchange operators
which give the possibility of exotic statistics. However,
these exchange operators have the unpleasant feature
that they do not in general satisfy the braid relations
when 1V )2. Concluding remarks are made in Sec. VIII.

II. REVIEW OF PARTICLE-FIELD DYNAMICS

The Chem-Simons action S&s =Scs(co,e) associated
with the ISO(2, 1) gauge group can be written
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Scs =& e ill

M

R '=de'+ &

&ahab
(2.1)

where e' and co' (a, b, c, . . . =0, 1,2) are the dreibein and
SO(2, 1) spin connection one-forms, respectively, which
together comprise the ISO(2, 1) connection one-form. a is
the gravitational constant, which in 2+ 1 dimensions has
units of inverse length, and M denotes the space-time
manifold. The indices a, b, c, . . . are raised and lowered
with the Minkowski metric tensor g=[g,b]
=diag( —1, 1, 1)~

Equation (2.1) was shown [7] to be equivalent to the
Einstein-Hilbert action for gravity in 2 + 1 dimensions
provided the dreibein fields are everywhere invertible. As
well as being invariant under diffeomorphisms of space-
time, the action is left unchanged (up to a boundary term)
under ISO(2, 1) gauge transformation. The latter are
given by

co'~(8')' —
—,'e'b'(d8 8 ')b, ,

e'~(8e)' —[8d(8 'b)]'+e'"'bd(8'), .

(2.2)

(2.3)

e'= —[8d(8 'b) ]', (2.4)

where 0 and b were defined earlier.
Upon introducing a point-particle source into the sys-

tem, R ' and T' vanish everywhere except along the par-
ticle world line. We coordinate the particle world line by
z"=z"(r),p=O, 1,2, and postulate that

—e"' R '„z (x)= f d r 5 (x —z (r) )P'z ", (2.5)

e" T'z( )=xf—dr 5 (x —z(r))J'zt (2.6)

where R '& and T'& are the space-time components of R
and T', respectively, and the dot denotes differentiation
with respect to r The "charge.s" in Eqs. (2.5) and (2.6),
P'=P'(r) and J'=J'(r), are usually interpreted as the
momentum and angular-momentum components of the
particle. Equations of motion for the particle can be de-
duced from the Bianchi identities for the fields:

dR'+e' cub R, R, =0

d T'+ e'b'( cob p, T, + eb A R, ) =0 .

(2.7)

(2.8)

Upon substituting (2.5) and (2.6) into (2.7) and (2.8), we
find

Here 8= [8,b ] is a space-time-dependent Lorentz matrix,
while b = [b, ] is a space-time-dependent Lorentz vector.

The field equations which follow from variations of co'
and e' in Eq. (2.1) state that the curvature two-form R'
and torsion two-form

T'=de'+ ,'e' '(eb A co, +c—obh e, )

vanish everywhere on M. The solutions to the sourceless
equations are pure gauges and can be expressed accord-
ing to

co = teabc(d88 —1)

P '+e'b, co„(z)P'z "=0, (2.9)

J '+e'b, [co„"(z)J'+ e„"(z)P']z"=0, (2.10)

where here co„(z) and e„(z) are the components of the
one-forms co and e, evaluated at the particle position z.

In Refs. [10] it was shown that these equations of
motion are also obtained starting from an action princi-
ple. For this, in addition to the space-time coordinate
z"(r), we introduce the dynamical variables A=[A,b(r)]
and a = [ab(r)], the former being a Lorentz matrix and
the latter a Lorentz vector. In terms of these variables
the momentum P and angular momentum J take the form

pa ~a b

Ja ~a gb+ &abca ~ pd

(2.11)

(2.12)

Here p' and A,
' are constant vectors which select a partic-

ular adjoint orbit of the Poincare group. An orbit is the
set of all P' and J' obtained from (2.11) and (2.12) by

transforming

A~BA, a ~ea +c (2.13)

e and c being a Lorentz matrix and Lorentz vector, re-
spectively. Under transformation (2.13), the quantities

—m =P P=p p2=

—ms =P.J=p A.

(2.14)

(2.15)

remain invariant and these two quantities classify the ad-
joint orbits of the Poincare group.

The particle Lagrangian is [10]

Lp.,t =Lo(A, a)+P.ep(z)z 9+J.a'tp(z)z P (2.16)

wher e Lp gives the dynamics for a free relativistic spin-
ning particle:

Lo(A, a)=P a+ —,
'e' 'A, , (A 'A)b, . (2.17)

I „, is invariant under local Poincare transformations,
(2.3), (2.2), and (2.13) with 6=0(r)=8(z (r) ) and
c =c(r)=b(z(r)).

Upon varying a, and A,b in L „, and using (2.11) and
(2.12), we recover equations of motion (2.9) and (2.10).
An additional equation of motion arises from variations
of z" in L „,. After using (2.9) and (2.10) it can be writ-
ten

[P,T'„(z)+J,R„' (z)]z Y=O . (2.18)

co'=(Nl)' ,'e'"'(d88 ')——
e'=(8E)' —[8d(8 'b)]'+e' 'bd(80), ,

(2.20)

(2.21)

where 8(x) and b(x) satisfy 8(z(r))=A(r)»d

The field equations (2.5) and (2.6) can be obtained by
extremizing the total action with respect to e „' (x ) and
co'(x). For this we define the total action to be

S =Scs fdrL„„.
The solutions to the one-particle field equations (2.5) and
(2.6) may be expressed as
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b(z(r)) =g (r) and

0'= p'd(t and E'= k'd P,1 1

27TK 277K
(2.22)

p( )'g(y( ) and
1 1

277K 27TK
(2.23)

P=P(x —z(r)) being an angular variable which changes
by 2~ upon circling the particle world line once.

The above system can be easily generalized to describe
N particle sources. For this define A' ', a' ', and z' ' to
be dynamical variables, and p' ' and A,

' ' to be the con-
stant vectors associated with the o;th particle,
o.=1,2, . . . , N. From them we can define the corre-
sponding momenta P' ' and angular momentum J' '
analogous to (2.11) and (2.12), along with the ath particle
Lagrangian L ( „)„analogous to (2.16). Then L „, in

(2.19) is replaced by L =g L'„),. Now X terms contrib-
ute to the right-hand sides of field equations (2.5) and
(2.6), having "charges" P,' ' and J( ', a=1,2, . . . , A(, re-
spectively.

The general solution to the field equations in Chern-
Simons theory with arbitrary gauge group and number of
point sources was given in Ref. [9]. In writing the solu-
tion the authors define a spacelike region I ( )(r) associat-
ed with particle a to be a thin strip along the negative xz
direction which encloses the ath particle. The choice of
the region I ' )(r) corresponds to a gauge fixing. The
strips associated with different particles are assumed not
to overlap. On each strip an anglelike function
(analogous to P) is defined, the value of which increases
by 2m. as I ' )(r) is traversed from left to right. In apply-
ing the solutions of Ref. [8] to the case of the ISO(2, 1)
gauge group, we set 0 and E of Eqs. (2.20) and (2.21)
equal to zero on M& U I ' ' and

These variables are invariant under local Poincare trans-
formations (2.3), (2.2), and (2.13) with e=e(r)=g(z(w))
and c =c(r)=b(z(r)). The conserved momentum P' '

and angular momentum J ' ' associated with the ath par-
ticle are constructed from the gauge-invariant variables
A' 'anda' 'as follows,

P' '=A' '' '

J (a)a (A (a)Z(a) )a+ abc (a)-(A (a) (a)
)a b

(3.3)

g y(p)(z(a) )z p(a)
X 4' (3.4)

In deriving (3.4) we have taken into account the effect of
the Chem-Simons term Scs. This gives rise to an overall
factor of —,

' in the coupling terms in Eq. (3.4). (For a dis-

cussion of the factor —,', see Ref. [9].) Again we have as-

sumed that the regions I '~' and I'~' associated with any
two sources /3 and y do not overlap. Then Eqs. (3.1) and
(3.4) give all cases for the effective action of particle a.

For the case z' 'HMg U p&
I'p', the effective La-

grangian (3.1) corresponds to that of a free relativistic
spinning particle. This is so since the particle feels no
external curvature or torsion. The same must be true for
the case z' ) E I'p', asap. For this case as well, the parti-
cle feels no curvature or torsion. Hence the Lagrangian
(3.4) must be equivalent to a free particle Lagrangian.
This is evident after defining yet another set of Poincare
group parameters

and hence are also invariant under local Poincare trans-
formations.

For the case z' 'E I '~', the effective particle Lagrang-
ian contains interaction terms

L (a) L (A (a) g (a))+(p (a).g(p)+ f (a) p(p))

on I' '. Furthermore, 9(x) and b(x) in Eqs. (2.20) and
(2.21) are required to satisfy

A (a, P) -(P)(z(a))A (a)

g (aP) —-(P)(z(a))g (a)+h(P)(z(a))
(3.5)

8(z' '(r))=A' '(r) and b(z' '(r))=g( '(r) .

III. THE EFFECTIVE ACTION

(2.24) The SO(2, 1) matrix ='p'(x) and vector h' p'(x) are func-
tionals of p'p)(x). They are defined by

(p)
(-(P) 'g -(P))ab & &abc (P)

We now follow the approach of Ref. [9] and substitute
the solutions of the field equations back into the total ac-
tion (2.19), thereby obtaining an eff'ective action for the
remaining particle degrees of freedom. Here we neglect
self-interactions of the particles.

For the case z' )EMg U p~ I 'p', the eff'ective La-
grangian for the ath particle is

L (a) L ( A (a) -(a))
eA' 0 (3.1)

and

where Lo(A, g) was the free particle Lagrangian given in
(2.17). The variables A' ) and g ' ' are defined in terms
of A( ', a ' ', 0, and b according to

A (a) g(z(a)) —1A(a)

(p)
-(P) 'g h (P) — & g(P)

4+K

(3.6)

In terms of these variables the Lagrangian (3.4) can be
reexpressed as a free particle Lagrangian:

L(a) —L (A(a, p) g (a,p))ea' 0 a (3.7)

p(~, P) g (a, p) (a)
P

f (a,P)a (A (a,P)g(a) )a+ &abcg (a,P)(A (a,P) (a))E Qb' ' P
(3.8)

When z' 'EMg U p~ I 'p', the conserved momentum
and angular momentum are given in Eqs. (3.3). Using
Lagrangian (3.6), the analogous conserved quantities for
the case z' 'H I'~' are

g =e(z ) [g —b(z ))] . (3.2)
For a system of two particles, let us uniquely deter-

mine ='P'(x) and h' P'(x) by setting ='P'(x)=l»&3 and
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h '~'(x) =0 for x at the boundary P'~'=0 of I (~). Then

P) P( ) d J(,P) —J( (3.9)

for z( ' evaluated at $(~)=0. On the other hand, the rela-
tions (3.9) will not hold for z' ) at the boundary (()(~)=2m
of I'~'. Instead, P ' '~' and J '~' at P'~ =2' will in gen-
eral differ from P ' ' and J ' ' by an ISO(2, 1) group trans-
formation. The transformation is obtained by acting with
a group element which we denote by t'~'. t'~' corre-
sponds to ='~' and h '~' evaluated at the boundary
P(~)=2m. The result depends on p(~) and A,

'~' and defines
the ISO(2, 1) holonomy element associated with the Pth
particle. {Actually, it is the square root of the holonomy
element if we compute the relevant Wilson loop using the
fields in (2.23) [4,11]. This is due to the factor —,

' which
entered in the coupling term in the effective Lagrangian
(3.4). )

The above discussion shows that the conserved
momentum and angular momentum are not globally
defined in terms of ISO(2, 1) group variables. This result
is independent of the particular choice made for the solu-
tions and the regions I"' '. It is due to the fact that the
manifold Q spanned by the space-time coordinates is not
simply connected. (We assume as usual that no two par-
ticles have the same space-time coordinates. ) The genera-
tors of m. , of Q are associated with the holonomy elements
t'", t' ', . . . , t' '. For a system of two particles, we treat
one particle as a test particle and the other as a source.
When t'" acts on particle 2, it corresponds to rotating
particle 2 about particle 1 by 2m. Similarly, when t' '

acts on particle 1, it corresponds to rotating particle 1

about particle 2 by 2m. For a system of two particles
these operations commute and hence define an Abelian
group. On the other hand, for three or more particles
m)(Q) is non-Abelian and defines the braid group. The
implications of the fundamental group for the quantum
theory are discussed in Sec. VII.

For a system of three or more particles, the regions
I (~) and I'r) associated with two sources p and y can in
principle overlap. When this happens the solutions given
in Eqs. (2.20) —(2.23), as well as the effective Lagrangians
which followed, are no longer valid. So, as in Ref. [9], we
must impose the veto that a third (test) particle does not
cross the overlapping region. (This situation is similar to
magnetic-monopole theory where a charged particle is
not permitted to cross a Dirac string. ) The quanturn-
rnechanical consequences of this veto have been studied
in general Chem-Simons theory with three or more parti-
cles [9]. A set of "braid quantization conditions" was
found (analogous to the charge quantization condition of
magnetic-monopole theory) which had to be imposed on
the quantum states. Although these conditions were seen
to be very restrictive, we shall not be concerned with
them in what follows in Secs. IV—VI. They will, howev-
er, play a role in the construction of anyonic exchange
operators in Sec. VII. There we find that the exchange
operators generate the braid group only when the braid
quantization conditions are satisfied. On the other hand,
we argue in Sec. VIII that it may not be necessary to im-
pose the braid quantization conditions.

IV. THE TWO-PARTICLE SYSTEM

We first study the case of two particles (i.e., one source
and one test particle), where many of the above-
mentioned complications do not occur.

The total effective Lagrangian is L,~=L",~ +L'e~. Un-
der what circumstances is L,& invariant under an ex-
change of particles 1 and 2'? The total effective Lagrang-
ian is not in general invariant under the naive replace-
rnent

(z(1) A (1) —(1))~( (2) A (2) —(2)
) (4.1)

and

e '(a '"—A'"e 'c —c) (4.2)

where 6 and c correspond to a constant Lorentz matrix
and vector, respectively. Note that under two exchanges

(a) A (a) —(a)) (
(a) A (a) —(a))

If the following conditions are satisfied:

(2) —e (&)

x"'=(ex(")'+~'"c,(ep(")
(4.3)

for the set of constant vectors A,
' ' and p' ', cz = 1,2, then

some work shows that L',z~~L', ~ under the exchange
(4.2). Consequently, the total effective action is exchange
invariant when (4.3) is satisfied.

The conditions (4.3) have a simple interpretation.
From them it follows that

(&). (&)—(2). (2)

and

p(i).g(1) (2) g(2)

(4.4)

The former equation implies that particles 1 and 2 have
the same mass m, while the latter then implies that they
have the same spin s. They are thus identical particles.

It appears that we have recovered the usual exchange
symmetry for two identical particles, but there is one irn-
portant difference. Under the exchange (4.2), the particle
"mornenta" P "',P' ' and "angular momenta" J'",J' '

are not simply interchanged. Rather,

P( ) eP( ) P ) 8—P(

J (1)a (eJ (2))a+&abd (ep (2))

J (2)a (e—1J (1))a e a&bed p (1)

(4.&)

V. THE THREE-PARTICLE SYSTEM

Now L,&=L',& +L',& +L',&. Let us again consider ex-
changing particles 1 and 2. Following Ref. [9] we supple-
ment the transformations (4.2) with

Following Ref. [9], we instead defined an exchange ac-
cording to

(&)~ (2)

e/( 'e,
a '"~e(A' 'c+a ' ')+c
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+(s) C,~(3) & ( ) @& ( +f (5.1)

(1)—q) (2) (2)—q) (1)
p p

g( 1 )
( q)g(&) ) +~ fb( @ (&) )c

A,
' '=(eA."') +6 f (ep'")'

(5.2)

As in Sec. IV, we require that L(,'ff)~~L', ff) under the ex-
change. This again implies conditions (4.3), as well as

(3)—6 (3)

X")=(eX")) +~ c" '""
a a ~abdc p

(5.3)

4& and f denoting another constant Lorentz matrix and
vector, respectively. In order that L',ff'~L', & under the
exchange, we must require that

set the two Lorentz vectors equal to zero. Let as now
rename the two Lorentz matrices 6(12) and N(&2), respec-
tively. In addition, call 6(13) and N(13) the corresponding
Lorentz matrices associated with the exchange of parti-
cles 1 and 3, and 6(23) and 4(23) the Lorentz matrices as-
sociated with the exchange of particles 2 and 3. Invari-
ance of the effective action under particle exchanges re-
quires that

P —e(ap)P P 6(ap)p
(p) @ (a) (a) —q) (p) (5 9)P (ap)P p (ap)p

for (a,P, y)=(1,2, 3), (2, 3, 1) and (3,1,2). Using (5.8) we
can solve for 6( p) and 4( p). For this define L„ to be a
boost along the 1 axis and R+to be a rotation in the 1-2
plane, i.e.,

Thus if all the conditions (4.3), (5.2), and (5.3) can be
simultaneously satisfied for p' ' and A,

' ', a=1,2, 3, the
total effective Lagrangian L,ff is invariant under the ex-
change of particles 1 and 2. As before, the conditions
(4.3) imply that particles 1 and 2 have the same mass and
spin. In addition, using (3.5) we also find

cosh' sinhq

L„= sinhg cosh'

cos4 —sin%
sin%' cos%

(5.10)

(2). (3)—(1). (3)

(2).g(3) + (3).g(2) —(1).g(3) + (3).g(1)

(5.4)

(5.5)

In terins of these matrices the solutions of Eqs. (5.9) for
6( p) and 4( p) can be written as

(1). (2)—(1). (3)
t

(1).g(2)+ (2).g(1)—(1).g(3)+ {3).g(1)

(5.6)

(5.7)

Then for the system to be invariant under all possible
exchanges of the three particles, the particles must be
identical, and must satisfy (5.4)—(5.7). (The conditions on
p' ' and A( ' are analogous to Eqs. (7.2) and (7.3) in Ref.
[9] for the case of the SU(2) Chem-Simons term. )

We now give solutions to the above conditions for vari-
ous cases.

a. ¹ spin. Here we set A,
' '=0, a=1,2, 3. Since all

three particles have the same mass p'", p' ', and p' ', are
related by Lorentz transformations. The most general
ansatz for p' ' (up to an overall Lorentz transformation)
1s

p'"=m 0,
0

cosh@
p' =m sinhp

0

coshp
p' '=m sinhp cosv

s1nhp s1nv

(5.8)

To satisfy conditions (5.4) and (5.6) we require that the
angles p and v are related by

secv=1+sechp .

In (4.2) and (5.1) an exchange of particles 1 and 2 was
defined in terms of two Lorentz matrices 6 and @, and
two Lorentz vectors c and f. Since here A( '=0, we can

We can repeat the above procedure for an exchange of
particles 2 and 3. If we then demand that the total
effective Lagrangian is invariant this exchange, particles
2 and 3 must have the same mass and spin. Furthermore,
in analogy with (5.4) and (5.5), p' ' and A,

( ' must satisfy

6(23) Rv& +(23) LpR3vLpRm. —3vL —
JM&

e(12)=LpR 2v, C (12)
—LpR „, (5.1 1)

6(, )=L„R „L „, N(, )=R „L„R L„R
where we are again assuming the relation
secv=1+sechp. From these solutions it is easy to verify
the identities

[@( p)]
= 1

+(23) (12)e(23) (12)e(23)+(12)

(5.12)

(5.13)

b. Spin para/lel to mom enta. Here we take
nonzero and proportional to p' ', k' '=k' 'p' '. Since all
particles are identical the constant of proportionality k' '

is the same for all a. Then equations (5.5) and (5.7)
reduce to (5.4) and (5.6), respectively, and this case is
identical to case (a). The solutions (5.9) and (5.11) for
case (a) apply to this case as well. Furthermore, the
Lorentz matrices 6( p) and 4( p) satisfy

p'=e. x'-) x(r)=e. x(r)
(ap) & (ap)

(5.14)
~(p) ~, ~{ ) ~{ ) @ g(p)

(ap) & (ap)

for (a, /3, y) =(1,2, 3), (2,3,1), and (3,1,2).
C. Arbitrary spin. Here we initially make no special as-

sumptions for A,
' ', except that A,

' 'p' ' is the same,
namely, —ms, for all a, so that we are dealing with iden-
tical particles. Now Eqs. (5.14) are no longer valid since
the A,

' 's are, in general, not obtainable from one another
solely by the Lorentz transformations 6( p) and N( p).
We must allow for translations, as well as Lorentz trans-
formations. In (4.2) and (5.1) the former were
parametrized by c and f for the exchange of particles 1

and 2. Let us rename these parameters c((z) and f(,~), re-
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spectively, or more generally, let c( p) and f( p) be associ-
ated with the exchanges of particles a and P in the set
(a,P, y ). Then instead of (5.14), we must require

a particle of mass m and spin s we define the state
~0, 0, m, s & by

( e(aP)A, )a +eabdc (aP)P

+e
) —(@( P)A,

P ), +e,bd f ( P)P

)(a (@(aP)~ )a abdf (aP)P

(5.15)

P, ~0, 0, m, s & =mrj, o~O, O, m, s &,

J P~O, O, m, s&= —ms~0, O, m, s& .
(6.3)

Again g,b is the Minkowski metric tensor. Under the ac-
tion of Jo this state changes by a phase

for (a, )33, y ) =(1,2, 3), (2,3,1), and (3,1,2), in order that the
total Lagrangian is exchange invariant. From these rela-
tions we can find a set of consistency conditions:

U(R&, 0)~0, 0, m, s&=e '
~0, 0, m, s&

=e "~~0,0, m, s & . (6.4)

~( ) ).p(p) —
( e )((r ) ).p(r )

(aP) ~ (aP)

(aP)( @ g(p)) (a)

=(e X( ').p'p'= —ms.(aP) (5.16)

The remaining states in the Hilbert space may be ob-
tained by first acting on ~0, 0, m, s & with a boost U(L„,O),
rI+0, along the 1 axis and then, with a rotation U(R&, 0)
[cf. Eqs. (5.10)],

These equations are trivially satisfied for case (b),
A.

' '= kp' ', as they correspond to the solution
c( p)

=f( p) =0. Using (5.9), we can verify that the con-
sistency conditions (5.16) are also satisfied by

~ g, rI, m, s &—:U( R &,0 ) ~ 0, il, m, s &

=U(R&, 0)U(L„,O)~0, 0, m, s & .

Then

(6.5)

g(i) —I (2) g(2) —I (3) g(3) —k (i)

or

g(1)—k (3) g(2) —k (1) g(3) —k (2)

(5.17)

(5.18)

cosh'
P~(g, ri, m, s & =m sinhri cosg ~g, rj, m, s & .

sinhri sing

A boost and rotation acts on the state
~ g, ri, m, s & as

(6.6)

For such configurations c( p) and f( p) are not all zero
and can be solved for from Eqs. (5.15). We shall not do
so explicitly, but rather just note an identity. From the
last two equations in (5.15) it follows that the cross prod-
ucts of N( p)f ( p) +f( p) with P' ' and with P'P' must
simultaneously vanish. Then for p' ' not parallel to p'~',
we have

@( p)f( p)+f( p)=0. (5.19)

In the next section, this identity will be used in proving
that the exchange operator squared is the identity.

VI. QUANTUM THEORY

[P„Pb]=0, [J„Jb]=ie b J',
[J,Pb]=ie b P

(6.1)

P, and J, are the quantum operators associated with the
conserved momentum and angular momentum satisfying
(2.14) and (2.15).

Let [U(A, a)] be a unitary irreducible representation
of ISO(2, 1). Then U(A, a )U(e, b) =U(Ae, Ab +a).
From the commutation relations (6.1),

U(A, a) 'P, U(A, a )=A,bP

U(A, a) 'J, U(A, a)=A,bJ +e,b, a (AP)'.
(6.2)

The Hilbert space [~g, i), m, s &] can be constructed by
utilizing the method of induced representations [12]. For

The quantum algebra for a free massive spinning parti-
cle [as described by the Lagrangian Lo in Eq. (2.17)] cor-
responds to the Poincare algebra [10]:

U(R&, 0)~g, r), m, s &
= ~g+it), ri, m, s &, for i)%0,

U(L+, 0) (g, rj, m, s &
=e "~ g', r)', m, s &,

(6.7)

(6.8)

where it ', g', and i)' are related to y, g, and r) by
R ].L„.R ~. =L~R ~I.„.

For the two-particle system we define two sets of
operators P,' ' and J', ', +=1,2. They are the operator
analogues of the conserved momenta and angular mo-
menta of the classical theory. When z' 'EM U@& I'~',
the latter are P' ' and J' ' defined in Eq. (3.3). When
z' 'PI'~', the relevant conserved momenta and angular
momenta are P ' p' and J ' p' given in Eqs. (3.8). As
stated in Sec. III, the conserved momenta and angular
momenta are not globally defined; i.e., P ' 'P)AP ' ' andJ' 'p'&J' ' at the boundary p'p'=2' of I'p'. Thus the
classical values of the conserved momenta and angular
momenta are not continuous when the particle crosses .

the boundary. This, however, does not appear to lead to
difFiculties in the quantum-mechanical description of the
system, because we do not promote the space-time coor-
dinate z' ' to a quantum operator. On the other hand, a
quantum mechanical position operator can be defined for
the system (cf. Ref. [10]). It has the unusual property
that different space-time components do not commute
when spin is present.

To obtain the commutation relations for the two-
particle system, we replace P, and J, with P,' ' and J,' ',
respectively, in Eqs. (6.1). In addition,

[P(a) P(P) ] [J(a) P(P) ]
—

[J(a) J(P) ]
—0 for (z+P
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XU( )(:-' ', h' ') 'l2& X 1& . (6.10)

Once again it follows that ~ = 1.
Now let a = 1,2, 3. The Hilbert space is spanned by the

tensor product sates
l

1 & X
l
2 & X

l
3 & . Let the exchange of

particles 1 and 2 be obtained from the action of cr, . This
action does not simply switch the first two kets in the ten-
sor product, but from Sec. V, it involves group elements
U( )(e(,2),c(,2)) and U( )(@(,2),f(,2)). The properties of
e( &), 4( )3), c( ~), and f( &) were discussed in Sec. V. If
we assume z(~ HMg U util

' ', for all p, o( can be
defined as

~(l I & x 12 & x 13 &
—U(1)(e(12) c(12) )U(2)(e(12)»c(12) )

XU{3)(+(12) f(12))I2& X ll & X I3 &

(6.11)

Then applying

cubi

twice gives

~1 (3)(@(12)f(12) )
2= 2

—U(3)( I » @(12)f(12)+f(12) )

(6.12)

where we have used (5.12). The last line follows for cases
(a) and (b) in Sec. V, since there f( &)

=0. It follows for
case (c) by the identities (5.19).

Similar results appear for an exchange between parti-
cles 2 and 3. We denote the corresponding exchange
operator by u, :

The Hilbert space consists of the tensor product states
l

1 & X l2&, where la& denotes the ketlg, g, m, s &. The
operators P', ' and J', ' act nontrivially only on the o.th
ket in the tensor product.

Next we define an exchange of particles 1 and 2. The
exchange which leaves the e6'ective action invariant is not
given by l

1 & X l2 & ~ l2 & X
l
1 &. Instead, it must involve

ISO(2, 1) transformations on the states. This is because
the eigenvalues of P'" and P' ' are not simply switched
under an exchange. When z 6 I and z 6I, they(i) (2) (2) (i)

transform as P "' and P ' ' in Eq. (4.5). For this case we
may define an exchange operator according to

~
l
1 & x l2}= U„,(e,c)U„,(e,c)

—'l2 & x
l

1 &,

where IU( )(e,c)I is a unitary representation of the
ISO(2, 1) group element constructed from generators P,(a)

and I', '. [We could introduce an arbitrary phase in (6.9);
however, such a phase could be absorbed in a redefinition
of

l
1 & X l2 & or l2 & X

l
1 &.] From (6.9) it follows that o

acting on any tensor product state is 1.
This result is also valid for the case of z"'EI' ' or

z' 'EI '". For example, when z'"El ' ', the quantum
operator P"' transforms under an exchange as the classi-
cally conserved momentum P " ' defined in (3.8). This
involves the ISO (2,1) element U( )(:-' ', h' '), as well as
U( )(e,c). [:"' ' and h' ' are defined in (3.7).] More pre-
cisely, for z'"HI' ' and z' 'PI', the exchange operator
is defined as

~
l
I & x l2 & =U„,(:-(2),h (2) )U„,(e,c)U„,(e,c) '

cr2l 1 & X l2 & X l3 & =U(1)(4 (23)»f (23) )

which yields

XU(2)(e(23)» (23)

xU„,(e„„,c„„)-'
x

I
1 & x13 & x I2 &, (6.13)

2= 2
(1) +(23)»f(23) )

=U(, ) ( 1» N(23)f (23) +f(23) )

(6.14)

Using identity (5.13), we can further show that the
braid condition

o i020 i a2criop

is satisfied. [For this we also need the relation

@(23)(e(12) (23) +C(12) )+f(23)

(6.15)

e(12)(e(23)f(12) +C(23) ) +C(12)

(6.16)

Equation (6.16) is easily satisfied for the case (a) of no
spin and case (b), since there, as well, c( ti)

=f( t)) =0. On
the other hand, the proof of this relation is not obvious
for the case (c) of arbitrary spin. ]

VII. QUANTIZATION AMBIGUITY AND
GRAVITATIONAL ANYONS

In Sec. VI, N-particle wave functions were constructed
by taking tensor products of induced representations of
ISO(2, 1). Exchange operators were defined and only fer-
mionic or bosonic statistics resulted. As stated in Sec.
III, the manifold Q spanned by the particle space-time
coordinates zI'

) is not simply connected. It is known [13]
that quantization ambiguities can occur when the classi-
cal configuration space is not simply connected. In this
section, we exploit these ambiguities to construct alterna-
tive quantum theories for N particles where nontrivial
statistics occurs.

The N-particle wave functions of Sec. VI were eigen-
states of the rnomenta operators P', '. The angular mo-
menta J', ' had a well-defined action on the states. But
from Sec. III, it was shown that the classical analogs of
P,' ' and J,' ' are not globally defined. By rotating particle
a around particle p by 2m, the conserved quantities P ( '

and J ', ' transform under the action of an ISO(2, 1) group
element t'~'. [t'~' was defined from ='P' and h'~' of Eq.
(3.7) evaluated at the boundary»){(~) =2m. . The result de-
pends on p(~) and A, '~).] Hence P ', ' and J ', ' are not clas-
sically observable degrees of freedom. Physical degrees
of freedom are obtained only after moding out the action
of fundamental group n.((Q). Under the action of m. , (Q),
P ', ' and J(, ) undergo ISO(2, 1) transformations. The
latter are generated by t'~'.

For the case of two particles, let t'~' denote the
quantum-mechanical analogue of t'~'. We define its ac-
tion on the states by
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t'"I 1 & I2 & =U(, )(r"')
I 1 & I2 &,

t' 'Il & I2& =U(()(&' ')Il &I2& .
(7.1)

Since t'" and t' ' act nontrivially on different kets in the
tensor product, they commute and thus generate an
Abelian group corresponding to n.)(Q). t") and t( ' are
not independent. Using the ISO(2, 1) group element
defined from e and c, we can transform t'" to t' '. This
is since from Eqs. (4.3), e and c transform p( ) and X(') to
p' ' and A,

( ). Quantum mechanically, this yields the iden-
tity

U(r"') =U(e, c)U(r'")U(e, c )-', (7.2)

Upon taking its square, we find

(o t"')'I 1 & I2 & =U„,(e,c)U„,(t" ')

xU„,(e,c)-'U„,(r(")I I & I2&

=U(, )(t' ')U(2)(t'")I 1 & I2&

=t'"t' 'Il&I2&,

where we have used (7.1) and (7.2). Now the exchange
operator squared is not the identity, but an operator asso-
ciated with an element of m. )(Q). This result persists if we
more generally define the exchange operator to be o.

times any element of the fundamental group.
It is known I 13] that the action of m, (Q) on wave func-

tions written on the universal covering space of Q can be
defined in such a way that it commutes with all the ob-
servable operators of the theory. The Hilbert space for
such theories can then be decomposed into irreducible
representations of m i( Q). For Abelian fundamental
groups, we can simultaneously diagonalize the generators
t' ' along with a complete set of commuting observables.
The eigenvalues of t' ' are phases which serve to label the
irreducible representation. For the system of two parti-
cles described above, the phases are associated with the
statistics of the particles.

We thus find that the statistics for the two-particle sys-
tem are ambiguous for two reasons: (1) The exchange
operator can be chosen to be cr times an operator associ-
ated with any element of m. ((Q); (2) after defining the ex-
change operator, its eigenvalue depends on which partic-
ular irreducible representation we choose for m i(Q).

The above analysis for two particles can readily be gen-
eralized to three or more particles. In this regard, we
once again note that the generators t' ' no longer com-
mute and m. ((Q) corresponds to the braid group. For
three particles, t"' can act either on particle 2 or 3.
Therefore we can construct two different quantum opera-

U being a unitary representation of ISO(2, 1).
Exchange operators cr for the two-particle system were

defined in Eqs. (6.9) and (6.10). Since physical observ-
ables are defined after moding out the action of m)(Q), we
could equally well define at'" to be the exchange opera-
tor for the two-particle system. Using (6.9) and (7.1),

ot'"Il&I2&=U„,(e,c)U„,(t ()U, ,(e,c) 'I2&Il & .

(7.3)

tors t" ' and t' ' ' associated with the ISO(1,2) group
group element t

t" 'Il&I2&I3&=U(~)(t'")Il&I2&I3&,

t""I1 & I» I3 & =U(3)«"')
I
l & I» I3 &

More generally, define t' '~' according to

t"p'Il & I2& I3 & =U(p)(r")
I

1 & I2& I3 & .

(7.5)

(7.6)

As was the case for two particles, t' '~' are not all in-
dependent. The generalization of identity (7.2) to the
case of three particles is

U(r(P)) =U(e,.„,c(.p) )U(r")U(e,.„,c,.„)-',
U(r(r)) =U(e,.„,c(.p) )U(r(r))U(e, .„,c,.„)-',
U(r )=U(4

( p) f( p) )U(r )U(N( p) f( p) )

U(r )=U(C
( p)~f( p) )U(t )U(C ( p) f( p) )

(7.7)

( t(i,2) )2 t(1,2)t(2, 1) (7.9)

where we have used identities (7.7). Similarly,

(o t(23)) =t( 3)f(32)02 (7.10)

Thus now, as in the two-particle case, the exchange
operator squared is not the identity, but an operator asso-
ciated with an element of m i(Q). We expect that this re-
sult is independent of the particular choice made for the
exchange operator.

We again conclude that the statistics is ambiguous for
two reasons: (1) The exchange operator can be chosen to
be 0. times an operator associated with any element of
m i(Q). (2) After defining the exchange operator, the re-
sult depends on which particular irreducible representa-
tion we choose for n, (Q).

Finally, we remark that although o. defined in Sec. VI
satisfy the braid relations Icf. Eq. (6.15)j, the exchange
operators crit" ' and cr2t' ' ' defined above do not, in
general, satisfy the braid relation. Using the identities
(7.7), we find

t(1,2) t(2, 3) t(1,2) ~ ~ ~ t(1,2)t(2, 3)t(1,3)

while

t (2,3) t (1,2) t (2,3) t (1,2)t (1,3)t (2,3)

(7.11)

(7.12)

Now applying (6.15), we conclude that the braid relation
for operators o.,t" ' and o.2t ' ' is satisfied only if

for (a,P, y)=(1,2, 3), (2,3,1), and (3,1,2). Identities (7.7)
follow from (5.9) and (5.15).

As an example let us choose crit" ' and o.2t' ' to be
exchange operators for the three-particle system, where
o i and crz were defined in (6.11) and (6.13). o,t" ' acts
on a three-particle state as

t""Il&I2&l3&=U (e„„,„,))U(,)(e(„,, („))
xU(3)(@()2) f()2) )U(i)(&'")I2& I

1 & I
3 &.

(7.8)

Upon taking its square we find
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t~2 3~fbi 3~=t~i 3~f~2 3~ (7.13)

Equation (7.13) is precisely the braid quantization condi-
tion mentioned in passing in Sec. III and discussed in de-
tail in Ref. [9] [cf. Eq. (5.18) of that reference]. A trivial
solution to (7.13) would correspond to all p' 's being
equal and all k' 's equal. In that case we can take all
e~ &~=4~ &~=1 and c~ &~=f~ &~=0. It is not apparent
whether other solutions exist to (7.13).

Instead of cr&t ' ~ and crit ' ~, we can define alterna-
tive exchange operators which give exotic statics (i.e.,
their square is not one), but they will not in general satis-
fy the X =3 braid group relation, and hence not generate
the braid group. If we require that exchange operators
generate the braid group for arbitrary p' ' and k' ' con-
sistent with exchange invariance, we are left with opera-
tors such as o. which do not have exotic statistics.

VIII. CONCLUDING REMARKS

The preceding analysis is easily generalized to X)3
particles. Exchange invariance of the effective Lagrang-
ian requires that all particles have the same values of
mass and spin; i.e., they are "identical. " Furthermore,
any two particles a and P of the set must have the same
value for p' 'p ~' and p' 'k'P +A, ~ p'~. In the quan-
tum theory we again find that squares of all operators a.
are equal to the identity. Exotic statistical properties for
the particles can be obtained by defining the exchange
operator to be o times elements of m. &(Q). The exchange
operators are not standard ones. This is because, as in
Eqs. (6.9)—(6.11), cr involve Poincare transformations on
the states of the tensor product, which ensures that the
eigenvalues of momentum are not naively exchanged
after acting with o. .

As we found in Sec. VII, the statistics of particles with
a fixed spin s are ambiguous in the first-quantized theory.
Thus at this level of the theory, we do not obtain a con-
nection between the spin and statistics of particles in
2+1 gravity. (Recently the spin-statistics theorem was
proved without the use of field theory, but just assuming
the existence of antiparticles [14].)

Finally we discuss deficiencies of our analysis, which
we shall address in a future work.

(i) We have ignored self-interactions of particles. Self-
interactions are known to have the effect of inducing a
spin to particles in Chem-Simons theory [9—15]. Since
spin is already present in our system, self-interactions will
possibly redefine the "effective spin" of the particles. It
would seem unlikely that the effective spin of the particle
is such that the spin-statistics theorem is recovered. On
the other hand, a similar effect was shown to occur in a
related problem, where spin is induced to a spinless parti-
cle with the addition of an SO(2, 1) Chem-Simons term to
the Einstein gravity action. Deser and McCarthy [16]

finds that this induced spin is such that the spin-statistics
theorem is valid.

(ii) We have not studied the "braid quantization condi-
tions" of Ref. [9] in detail .They appear to be necessary if
one wishes to construct exchange operators which give
nontrivial statistics and satisfy the braid group relations.
As mentioned in Sec. III, they are analogous to the Dirac
charge quantization condition which occurs in the
charge-monopole system. The braid quantization condi-
tions were obtained by considering three particles, i.e., a
test particle in the presence of two sources, in Chern-
Simons theory. They were a consequence of the fact that
the relevant fiber bundle of the theory is nontrivial and a
global section of the bundle does not exist. For us, if a
and P correspond to two sources we had to exclude points
z' 'E I'~' and z'~'H I' ' from the configuration space, as
the solutions (2.20), (2.21), and (2.23) were not valid such
points. The authors of Ref. [9] required that the ex-
ponential of the "Aux" through such points is the identi-
ty. They defined this exponential by taking the product
of group elements, which became the operators t
upon quantization. The braid quantization conditions
such as (7.13) resulted, because the group elements in the
product do not in general commute. But such conditions
may not in fact be necessary. For instance, no such con-
dition will result if we instead define the exponential of
the Aux as the exponential of a sum of Lie-algebra ele-
ments. Because we can commute and cancel terms in the
sum, the exponential of the Aux will be identicaHy one in
this case.

(iii) In (ii) quantization conditions result for (three par-
ticles, i.e.) two sources and a test particle. There we ig-
nored the self-interaction of the test particle. But if we
choose not to ignore self-interactions, we can obtain
quantization conditions for the two-particle system. In
that case we cannot say that we have one source and one
test particle, but both particles, labeled by 1 and 2,
should be simultaneously treated as sources. Then we
must again exclude points z'"EI' ' and z' 'EI '". A
quantization condition may then follow for the two-
particle (self-interacting) system, which would be analo-
gous to the braid quantization conditions of Ref. [9].
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