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We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian
method which imitates their description in terms of nonrelativistic potential models: the effective in-
teraction potential, to be used in a Schrodinger equation which incorporates relativistic kinematics, is
derived from the underlying quantum field theory. This approach is equivalent to the instantaneous ap-
proximation to the Bethe-Salpeter equation called the Salpeter equation but comes closer to physical in-

tuition than the latter one.

I. INTRODUCTION

Beyond doubt, the appropriate framework for a relativ-
istic description of quantum systems is quantum field
theory. However, the treatment of bound states within
this framework becomes a rather cumbersome and unre-
warding task. Therefore, we would like to argue here in
favor of an effective-Hamiltonian method. This approach
is reminiscent of the investigation of bound states in
terms of nonrelativistic potential models. It allows one,
however, to remain from the very beginning on fully rela-
tivistic grounds whereas the nonrelativistic formalism in-
corporates only the static limit of the theory and its first
relativistic corrections, summarized in the form of the
well-known Breit-Fermi Hamiltonian.

The idea behind the effective-Hamiltonian method is
very simple. The interaction between the bound-state
constituents is described by an effective potential. By
considering the elastic scattering of the particles which
build up the bound state, this potential is derived from
the quantum field theory which describes, in fact, their
basic interaction. With this effective potential at hand,
the Hamiltonian controlling the bound-state system is
constructed.

This paper is organized as follows. In Sec. II we
briefly recall some generalities concerning the description
of scattering processes in quantum theory, which we need
in Sec. IIT in order to derive an effective interaction po-
tential from quantum field theory. In Sec. IV we give the
relevant transition amplitudes for the physically most in-
teresting case, that is, a fermion-antifermion system.

Since the nonrelativistic limit has been the object of in-
vestigation already for some decades, we focus in Sec. V
our interest to the opposite extreme, the massless and
thus ultrarelativistic case. There the expressions ob-
tained for the scattering amplitudes before simplify con-
siderably. Section VI is devoted to the eigenvalue prob-
lem of our effective Hamiltonian.

The mass difference between corresponding spin-singlet
and spin-triplet mesons serves as a tool to demonstrate in
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Sec. VII the wide range of applicability of the effective-
Hamiltonian method as just one illustrative example.
Section VIII summarizes the proposed procedure and
points out its relation to the quantum-field-theoretic
description of bound states. In Sec. II we retain Planck’s
constant 7, whereas for the remainder of the paper we use
natural units such that fi=c¢ =1.

II. SCATTERING THEORY

Let us recall some general facts about the description
of scattering processes in quantum theory [1-3].

We assume that the full Hamiltonian H governing the
dynamics of the quantum-mechanical system under con-
sideration can be split up into a free (or, more generally,
unperturbed) Hamiltonian H;, and an interaction poten-
tial (or perturbation) V,

H(t)=H,+ V(1) . 1)

In the interaction picture the evolution in time of the
Hilbert-space state vectors |¢(¢)) is controlled by a (uni-
tary) time-evolution operator U(¢,¢),

[P(£)) =U(¢,t0)|(2,)) , )

which satisfies the Schrodinger equation

., O
zﬁEU(t,t0)=V(t)U(t,to),

or the equivalent integral equation

U(zg,29)=1, (3)

—_— i t ’ ’ ’
U(t,to)—l—zflodt VU, 1) (4)

In scattering theory, the physical situation of interest is
to specify initial states |i) at time t = — co and final states
|f) at time t =+ o by unperturbed states |a), i.e., eigen-
states of the free Hamiltonian H, corresponding to some
energy eigenvalue E:

Hola)=El|a) . (5)

242 ©1991 The American Physical Society



44 RELATIVISTIC TREATMENT OF FERMION-ANTIFERMION . .. 243

With the help of U(¢,t;) the corresponding states for
finite times, in particular for ¢ =0, are defined by

la,in) =U(0, — w0 )la) , (6)
la,out) =U(0,+ «)|a) . (7

Because of the integral equation (4) for U(¢,¢,), the states
la,in), |a,out) satisfy the (implicit) Lippmann-Schwinger
equations

. . 1
, — + - 1
la,in)=la) EIHEOE Fi%e Vgla,in) , (8)
. 1
R t)= “+ 1 e
la,out)=la) Jim i7e V¢la,out) , 9)

where Vg denotes the potential in the Schrddinger pic-
ture. Operators in the Schrdédinger picture, Og, are ob-
tained from their counterparts in the interaction picture,
O(t), by means of the unitary transformation
i i
O_g:exp _ZHot O(t)exp 2H0t , HO,S:HO .

(10)

From relations (8) and (9) it can immediately be deduced
that the states |a,in),|a,out) are eigenstates of the full
Hamiltonian in the Schrddinger picture, Hg, with the
same energy eigenvalue E: i.e.,

Hgla,in) =Ela,in) , (11)
Hgla,out)=Ela,out) . (12)

The explicit solutions of the Lippmann-Schwinger equa-
tions read

. 1
s = + 1 e — )
la,in) [1 tim A, iﬁevs la) (13)
1
la,out) 1+511120E H,—i%e sJ|a) (14)

The S-matrix element Sy for the transition i—f is
defined as the projection of the initial state |i,in) onto
the final state | f,out ):

Su=(f18li):={f,outli,in) , (15)

where, using Egs. (6) and (7), the S operator is related to
the time-evolution operator in the interaction picture by

S=U(+ow,—w). (16)

Adopting the Lippmann-Schwinger equation (8) or (9)
and a specific representation of the & function, viz. the re-
lation

ixt ixt
lim lim : =— lim lim .
t—>+w |e>+0X —I€ t—>—w le>+0Xxt+i€
=2mid(x) , (17)

the S-matrix can be rewritten like

where the transition amplitude R ; is defined by
R;=(fIR]i):=(fIVgli,in) =(f,out|Vsli) (19)

and, according to (13) or (14), the R operator is given by

. 1
R=V.+ -+
s ellI}’lH)VS X \"

iz Vs - (20)

With the help of the Lippmann-Schwinger equation for
|i,in), Eq. (8), the transition amplitude R i may be cast
into the form

(fIVgIn)R,;
Ry;=(fIVsli)+ lim WVslnRy 1)

+o§ E,—E,+ite

The Born approximation R }f consists of retaining just the
first term in either of the above expressions (20) or (21):

RE=(fIVsli) . (22)

As a special case, we shall consider as initial and final
states two-particle states of definite momentum, i.e., the
eigenstates

li)y=Ipy,p2), (fl=(ap,q,l (23)

of the one-particle momentum operators. These states
may be built up from tensor products of corresponding
single-particle momentum eigenstates |p) with normaliza-
tion

(qlp)=8"(q—p) (24)

and wave function
1

= (277,)3/2 e

Assuming that the potential Vg depends only on the rela-
tive distance of the two particles, i.e., only on the
difference

(x|p) ipx (25)

X=X, X, (26)

of their coordinate operators Xx;,x,, and abbreviating the
involved momentum transfer by

k=p,—q, @7
the free two-particle matrix element of the potential

operator V(x) takes the form

1
‘(2_77_535(3)(‘11 +aq,—Ppi—p2)

X [dx e™*Vy(x) . (28)

(Q1,Q2|VS(X)|P1»P2)=

III. EFFECTIVE POTENTIAL FROM QUANTUM
FIELD THEORY

In quantum field theory, in the absence of external
fields, the total momentum is conserved due to transla-
tional invariance. Factorizing off the overall momentum
conservation from the scattering amplitude R;, the re-
duced T-matrix element T; is defined by the decomposi-
tion
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S;=8+i(2m)*8 (P, —P)T,, (29)

of the S matrix, where P; and P, denote the total momen-
tum of initial and final state, respectively. Consequently,
the T-matrix element T; from (29) is related to the tran-
sition amplitude R ;; from (18) by

R;=—2m)38% (P, ~P)T . (30)

The interaction of two particles which in fact are de-
scribed by some quantum field theory can be approximat-
ed by an effective potential—at least as long as the Born
approximation (22) makes sense. The simplest quantum-
field-theoretical analogue of the potential scattering con-
sidered previously is the elastic scattering

7)1(p1)+7’2(p2)——»7’1(q1)+7‘)z(q2) (31)

of the two particles 7,7, with masses m,,m,. The total
and relative momenta of the particles in initial and final
state are given by

P,=p,+p P=mPi—MP:2> (32)

P,=q;+q; q9=1,9,—1q,, (33)
with

n+n,=1. (34)

From Egs. (22), (28), and (30), the Born approximation
Tﬁ to the T-matrix element for the above elastic two-
particle scattering is given by

1
(27)°

TE=— [ d*x e™*vs(x) . (35)

Accordingly, the potential F¢(x) can be extracted from
the T-matrix element T; by Fourier transformation with
respect to the momentum transfer k:

Vs(x)=—@2m)? [d*k e T} . (36)

The effective interaction potential Vg(x) is thus the
Fourier transform of the Born approximation to the re-
duced T-matrix element T; for the elastic scattering of
the involved particles [4,5].

IV. THE TRANSITION AMPLITUDE

In the preceding section we found a prescription for
the derivation of the (perturbatively accessible part of
the) effective potential acting between two particles de-
scribed by a quantum field theory. Let us now apply this
prescription to a fermion-antifermion system. Accord-
ingly, we consider the elastic scattering

f(PM'l)+f(P2,Tz)—>f(q1,7'3)+f(q2,74) (37)

of the involved fermion f and antifermion f (with masses
m and m,, respectively).

Expressed in terms of Dirac spinors u(p,7) and v(p,7),
the general form of the T-matrix element for a process of
the type (37) reads

__1 mym, _
' (B,EE,E, T TR

XU(py 1) To0(qp, 7K (38)

where I';, i=1,2, represent some Dirac matrices. K
denotes an (unspecified) interaction kernel, which is usu-
ally assumed to depend only on the momentum transfer
k=p,—q,. The Fourier transform of just this kernel
yields the static interaction potential. There are many in-
dications that the dominant spin structure for quark-
antiquark interaction, originating from quantum chromo-
dynamics, is vector I'®I',=y,®y* plus scalar
I''eI',=1®1. (For a very recent review see, e.g., Ref.
[51)

Explicitly, in the Dirac representation the Dirac spi-
nors are given by

1
172
Si . XT» ’
ulp;,,7;)= | 7— o°pi !
2m; s,
(39)
( | S, 172 USPi
vip,),7)=|7— i
‘ Zm[ 1’ Xfr‘ »
X =—lo 2X:,. )

where Y, is the two-component spinor corresponding to
spin projection 7, and we defined
E = +mD) % By =i tm) 2,
E;=(a+m})'? E,=(g}+m})”?,

and

S\=E,+m,, S,=E,+m,,
S3;=E;+m,, S;=E,+m, .

(41)

Inserting this into Eq. (38), we immediately obtain, in the
center-of-momentum system,

P=P1= —P» 4=q;=qy, (42)

for the T-matrix element of vectorial spin structure [6],
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(p-qd, , —ipXqo)+
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7]1'3(p'q81'274_ip X (]‘0'2)

e ) s, s
+ s,lsz [p?8;,8.,7,~P’0 102+ (po1)(p-oy) ]+ﬁ—[qzﬁmﬁ%—qzal°02+(q-01)(q-02>]
55, (P9 de, T IPX Q0 H(pQ)(0102) (@01 (p o))

+W[p 98::. 8, ~iPpXq 0 +(p-q)lo, o)) (po,)qoy)]
+@[(p-q)2571736,274—i(p'q)(pXq'a+)—(qu-al)(qu-oz)] K, 3)

and, for the T-matrix element of scalar spin structure [6],

- 1 . 1 .
TS - N1N2N3N4 67'17'387'274— ﬁsrﬂt(p.qsﬁﬁ —ipXq-o, )— E;E:S‘rl‘r3(p'q87'zr4_lp X q'02)
1 2 .
t5.5,8,8, (P, ilpalpXqo )= (pXqo)pXgoy)] |K (44)
[
Here we introduced the shorthand notation tors S; in (43) and (44) reduce to
GIEX];30X71, 022)(140)572, o, 501872r4+0287'173 . S,=S,=E,=E,=V'p?, $;=S,=E;=E,=V'q%,
(45) (47)
The normalization factors N; are given by whereas the normalization factors N; are no longer p
o s, "7 " dependent:
" (2m)3? | 2E; _ 1 1
M= G A Ve 4
From this, the interaction Hamiltonian may be found 7
from the Fourier transform with respect to the momen-  Defining the unit vectors
tum transfer k=p—q. In the nonrelativistic expansion P .
up to next-to-lowest order one recovers in this way, of P= Ve q—‘g“\/ (49)
course, the well-known Breit-Fermi Hamiltonian. p q
and abbreviating their difference by
V. THE MASSLESS CASE A A ~ A
k=p—q, k*=2(1-p-G), (50)
Let us now investigate in some more detail the scatter-
ing of massless fermions, i.e., m; =0. In this case the fac-  the T-matrix elements (43) and (44) simplify to
J
1 1 A A AN A
T,= PYnY; Z[(3+p-q)( 1 -!~p-q)8TlT3 T —i(34+P-qQ)PXG-0,)—Kk%0,-0,+(k-0)k-0,)—(PXG-0,)PXG-0,)]K
T
(51)
and
— 1 2\2 l 2 A —a A A ~.
Tg=— 26 4 (k )°8, 87274+3k (PXGo,L)—(PpXq-o)NpXq-o,) | Ky . (52)

VI. THE BOUND-STATE ENERGY

The primary aim of any investigation of bound states
are the energy eigenvalues E of the system—which give
the mass spectrum of the composite particles—and the

corresponding state vectors |1 ).
We consider as two-particle states simultaneous eigen-
states of the two-particle Hamiltonian H,

HlY(K))=Eg|¥(K)) , (53)
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as well as of the total momentum p;+p,,
(p+p)WK))=K|HK)) . (54)

Ey¢ and K denote energy and momentum of the two-
particle system. The normalization of these states then
has to read

(Y(L)[H(K)) =83 (L—K) . (55)
The energy eigenvalue E is thus obtained from
Eg8P(L—K)=($(L)[H[%(K)) . (56)

We assume that the Hamiltonian H which governs the
dynamics of the two-particle system under consideration
is of the form (1), H=H;+V, with H; describing the free
motion of the particles and an interaction potential V
which does not depend on the center-of-momentum coor-
dinate of the two particles, that is, V=V(x). This latter

1 .
v K)= s [ d°py d’p, expli(p;x,+pyx,)]

~ 1
(p,pyK)=
¥(p1, P2 )

The center-of-momentum and relative coordinates and
momenta are defined in the usual manner:

P=p,+py P=mpP,—1P:, (60)

X=mx+m%, X=%,7X%, (61)
with

mtn=1. (62)

By analogy with the nonrelativistic case one may specify
the factors 7; by the mass fractions

= — (63)

As a consequence of (54) the wave functions (59) factorize
like

P(x, x5, K)= xplUUK-X)¥(x) ,

@
- . (64)
U(p;,p;K)=8"(P—K)i(p) .

In the center-of-momentum system of the two parti-
cles, K=0, using (30), the expectation value of the Ham-
iltonian (57) is then given by

Eo= [ d*p|3(p)2(H,,(p)+H,,(—p)]
— @) [ d’p d’q *(Q)TEd(p)
+ [ d3 [0V, (x) . (65)

According to the prescription of Sec. ITI, the perturbative
part V,, of the potential is related to the T-matrix element
T'j; for two-particle scattering by

feature ensures that the Hamiltonian commutes with the
total momentum, [H,p;+p,]=0, which is an unavoid-
able prerequisite in order to be able to define the simul-
taneous eigenstates considered above. In general, the po-
tential V will consist of a part V, which can be grasped by
perturbation theory along the lines sketched in Sec. III,
and a nonperturbative part V., which is beyond reach of
perturbation theory. The two-particle Hamilton operator
we are dealing with thus reads

H=H, (p))+H,(p) +V,(x)+ ¥V, (x) . (57)
We introduce the two-particle wave functions

(XI,X2|¢(K)> El/J(X],XZ;K) 5

- (58)
(p1, P2 ¥(K)) =4(p,,p;K) ,
which are related by Fourier transformation:
d’(pl’ pZ;K) ’
(59)

[ d*, dx, expl —i(p;x;+pyxy) I x, x5 K).

(q1, Q| Vo p1p2)=— Q278 (P, — P, T}.

As has been demonstrated in Sec. IV for the case of
fermion-antifermion systems, 7-matrix elements are more
easily derived in momentum space. Therefore we give in
(65) the expectation value of V|, in momentum-space rep-
resentation. The nonperturbative part V,, of the poten-
tial cannot be derived from a scattering process but has
to be obtained from somewhere else. The simplest possi-
bility for this is to guess its form in configuration space,
which is the reason why we give in (65) its expectation
value in coordinate-space representation.

VII. SINGLET-TRIPLET MASS DIFFERENCES
OF MESONS

In the quark model, hadrons are regarded as bound
states of quarks. Mesons, in particular, are considered as
being built up from a quark-antiquark pair forming a so-
called “quarkonium” state.

Just for the purpose of illustration we will apply here
the ideas developed so far to the mass differences between
mesons which differ only in the total spin of the constitut-
ing quark-antiquark pair. Since the quarks, like any fun-
damental fermions, carry spin 1, the total spin S of their
bound state will be either S=0 or S=1, which corre-
sponds to a spin-singlet or spin-triplet state, respectively.
As already mentioned, for simplicity we will treat the
quarks as massless particles.

Experimentally, the differences of the squared masses
of corresponding spin-singlet and spin-triplet quarkoni-
um states which contain at least one light quark have
been found to be constant to a surprisingly high degree of
accuracy. For instance, from Table I one may read off
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TABLE 1. Differences of the squared masses of spin-singlet
and spin-triplet partners [7].

Spin triplet Spin singlet M2, —M2_,(GeV?)

P T 0.57
K* K 0.55
D* D 0.55
DX D, 0.58
B* B 0.56
MZ_ | —MZ%_,~0.56 GeV? . (66)

The free relativistic Hamiltonian
Ho (£p)=(p*+m?)'/?

entering in (65) reduces in the massless case to
Hoyi(ip)z\/pz. We only consider ground states, with
vanishing orbital angular momentum, which entails
spherical symmetry, i.e.,

Wx)=y(r), r=Vx*,
$p)=P(p), p=Vp’.

The Fourier transform (36) of the vector product pXq is
the orbital angular momentum. Accordingly, all terms in
the T-matrix elements (43) and (44) involving this expres-
sion do not contribute to the energy expectation value
(65) for ground states.

In gauge theories, the perturbative part of the interac-
tion is very likely to originate from gauge-boson ex-
change. Consequently, the corresponding potential
V,(x) is of vector type. For one-vector-boson exchange

p
the interaction kernel K, in (43) reads

(67)

K — K
(P1_q1)2 (p2q2)1/2k2 .

In quantum electrodynamics, for one-photon exchange,
the parameter k equals Q,Q,e?, where Q, are the electric
charges of the involved particles in units of the electron
charge e. In quantum chromodynamics, for one-gluon
exchange between quarks in a color-singlet state, the pa-
rameter k equals ig’, where g, is the strong coupling
constant and the factor £ arises from color.

For an arbitrary scalar function f(p,q), due to spheri-
cal symmetry the relation

&’ d*q kik;f(p,@)=18; [d’p d’¢K*f(p,q)  (69)

holds. The requirement of spherical symmetry is satisfied
for any wave function corresponding to a state with van-
ishing orbital angular momentum and, of course, also for
the interaction kernel K in Eq. (38). Consequently,
decomposing the product k;k; showing up in (51) like

K,=— (68)

kik;= |k;k;—1Kk*8,; | +1k?,; (70)

into a traceless part (the term in parentheses) and a trace
part, one finds that only the trace part contributes to the
energy expectation value.

Furthermore, we assume that the nonperturbative part
V.p(x) of the interaction is described by a central poten-

tial V,(x)=V,,(r). There are good reasons to believe
that for quark-antiquark bound states this potential is of
scalar type and that its shape is not very different from
linear rise [5], V,,,(r)=ar.

Under the above assumptions the bound-state energy
(65) is given by

Eo=2[d%|¥(p)I*p

1 K © ~ 2
a 2m)? 4 ' fo dpplﬁ(p)[ [Qz—%(“'ﬂ)z(al'az)]
+a [dx|yr)r (71)
with
0= [d0,d0, - G+p91+pg 7
:f P qu( p-q)(1+p-q) . (72)

The spin expectation value (o -0,) depends on the total
spin S of the two-fermion state |1 ):

S=0,
S=1.

—3 for spin singlets,

+1 for spin triplets, (73)

( g,°0,y > =

We adopt a standard variational technique [8] by

evaluating the energy expectation value (71) with the help

of some trial states |#(A)) characterized by a variational
parameter A,

EA)=(¢M)[H¥A)) , (74)

and by minimizing the resulting expression with respect
to A:

dE(A)

E~EQmin) =5 |0

=0. (75)

In principle, any variational method can, of course, only
provide an upper bound on the energy level under con-
sideration. By definition, the energy of the ground state
will always be less than or equal to the value obtained by
the variational method. It has, however, been shown that
in practice, at least within a nonrelativistic treatment, for
a potential which is a superposition of a Coulomb part
[which arises from the one-vector-boson exchange (68) in
the instantaneous limit] and a linear part, the evaluation
of the energy expectation value (74) by Gaussian trial
functions yields a good approximation (with an error of a
few percent) to the numerically obtained exact energy [9].
We use as trial functions the Gaussian wave functions

A2 A2p2
Yix)= TrsmeXp )
6
B . , (76)
Y(p)= P2z S BT P N
as well as the Hydrogen-like wave functions
e 172
P(x)= |— exp(—Ar)
N (77)
IZ(p)z 475 ;
T (p2+k2)2 ’
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both of them with normalization
Jdxlpx)PP= [dpldp)P=1. (78)

Already from dimensional considerations the general
structure of E(A) as a function of A is

E(A)=AA+B% ) (79)

The constants A and B are given for Gaussian trial func-
tions by

A :.‘_/% —ﬁ[ﬂz—%(hr)z(al-aﬂ], B= 72_;
(80)
and for hydrogenlike trial functions by
=%— 16’;5[92—%(4#)2(01-02)], B=2. (81
Minimization of E(A) in the form (79) yields
172
Ammin= %;i s E(Amin)=V 4Ba . (82)

The energy in the rest system of the bound state is, of
course, nothing else but the mass of the composite parti-
cle. Using (80) or (81) in the expression (82) for the
minimum E(A_;,) of the energy yields for the mass-
squared difference we are looking for

2 a2
Mg——Ms5—o

32 . . .
?Ka for Gaussian trial functions,
T

1—?;«1 for hydrogenlike trial functions.
T
(83)

These expressions have to be compared with the result [5]
obtained in the nonrelativistic case on the grounds of the
instantaneous-limit approximation to the interaction ker-
nel (68):

M2_, —Mgzoz%m . (84)
Obviously, all predictions for the mass-squared
differences are independent of the mass of the particles
which constitute the bound state. However, in the non-
relativistic case this mass independence follows from the
neglect of terms of higher order in the inverse masses of
the components [10] and the assumption that light con-
stituents will be mainly affected by the linear part of the
potential. In contrast with that, in the ultrarelativistic
case this mass independence is enforced by the assump-
tion of vanishing masses of the bound-state constituents.

Since in this case there is no other dimensional parameter
than the slope a of the linear potential, any quantity of
dimension mass squared has to be proportional to this
slope.

VIII. SUMMARY

In the present work we made the case for a relativistic
treatment of bound states which might be regarded as the
relativistic generalization of the approach based on non-
relativistic potential models. It consists of two main
steps.

(1) Compute the effective interaction potential between
two particles (at least to the extent you can trust in per-
turbation theory) from the transition amplitude for the
elastic scattering of the involved particles. An example
for this is provided by the T-matrix elements for a
fermion-antifermion system given in Egs. (43) and (44).

(2) Use this potential in a multiparticle Schrédinger
equation with a relativistically correct Hamiltonian in or-
der to determine the energy eigenvalues and correspond-
ing eigenstate vectors of the bound state under considera-
tion. This has been done for the two-particle case in Eq.
(65).

The obvious advantage of this approach is its physical
transparency.

In the application of this recipe we restricted ourselves
to the case of massless components of the bound state, in
order to be able to give an explicit expression for the
bound-state energy. In general, it will not always be pos-
sible to obtain analytic results. One has to stick to nu-
merical methods.

An analysis similar to the present one has been per-
formed recently by Gara and co-workers [11,12] on the
basis of the Salpeter equation [13] which is obtained from
the Bethe-Salpeter equation [14] upon eliminating any
dependence on timelike variables in a suitable manner.
(See, for instance, also Refs. [4] and [5].) After some
standard and plausible approximations, such as the re-
striction to positive-energy solutions, this approach coin-
cides with the effective-Hamiltonian method advocated
for in the present work. The reduced Salpeter equation
found in this way [Eq. (12) in Ref. [11] or Eq. (5) in Ref.
[12]] is equivalent to our result (65) for the bound-state
energy. In fact, it is nothing else but the (momentum-
space representation of the) Schrédinger equation (53)
with the Hamiltonian (57), after dropping the center-of-
momentum motion of the whole system. The interaction
functions entering in this equation of motion [Egs. (13a)
and (13b) in Ref. [11] or Egs. (6a) and (6b) in Ref. [12]]
are identical to our T-matrix elements (43) and (44).
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