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The hoop conjecture was proposed by Thorne in 1972 as a loosely formulated, necessary and sufficient
condition for the formation of a horizon in nonspherical gravitational collapse. In this paper we discuss
some issues that arise in formulating various precise interpretations of the conjecture, and review some
of the small amount of literature that has appeared on this subject. We further specialize the conjecture
to static, vacuum, axisymmetric spacetimes and show that it is satisfied in three particular cases of such
spacetimes. We also prove a theorem for oblate geometries giving a sufficient condition for the conjec-

ture to be satisfied.

I. INTRODUCTION AND SUMMARY

It is well known that spherical gravitational collapse
produces (i) an event horizon, which seals off the collaps-
ing matter and prevents it from causally influencing the
external universe, and (ii) a singularity, at which classical
general relativity breaks down. It is the simultaneous oc-
currence of (i) and (ii) which ensures that external ob-
servers can never witness any such breakdown. In his
1972 review of nonspherical gravitational collapse,
Thorne showed that horizons do not form in idealized
planar and cylindrical collapse, in contrast with the
spherical case [1]. This suggests the following question:
Do horizons always form in the collapse to a singularity
of realistic configurations of matter? This “cosmic cen-
sorship” [2] question has been called by Hawking “the
most important unsolved problem in classical general re-
lativity” [3].

Thus it is of interest to have sufficient and/or necessary
conditions for the formation of horizons. On the basis of
his observations above, Thorne made the following con-
jecture [1,4], which later became known as the hoop con-
jecture (HC): Black holes with horizons form when and
only when a mass M gets compacted into a region whose
circumference in every direction is @ S4wM. Roughly
speaking, the required condition is that a hoop of cir-
cumference € can be slipped over the region and rotated
through 360°. This criterion is sufficiently loosely formu-
lated to allow many different precise interpretations; in
particular different definitions of mass, horizon, and of
circumference are all possible. It is thus essentially a sug-
gestion as to the form a rigorous result might take, while
encapsulating the crucial physical idea that the collapsing
matter must be strongly compacted in all three spatial di-
mensions in order for a horizon to be formed. The rela-
tion @ S47M is intended as an order of magnitude guide-
line, so that different numeric constants (not necessarily
41) may be required for the separate “if”’ and ‘“‘only if”
parts of the conjecture.

What evidence is there in favor of such a conjecture?
Some reasons for believing it are that (i) no compelling
counterexamples are known; (ii) it is in accord with the
behavior of spherical, cylindrical, and planar collapse [1];
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(iii) it is in accord with the results of several numerical re-
lativity calculations of nonrotating, axially symmetric
collapse [5-8], and (iv) several examples of static solu-
tions of Einstein equations are known to be consistent
with it [9-15]. We proceed to present some of this evi-
dence and briefly summarize past research in this area.

The HC in momentarily static, nonsingular, axisym-
metric spacetimes was investigated by Redmount [9]. By
imposing the weak energy condition in the matter-
containing region he succeeded in deriving geometric
constraints that the matter-vacuum boundary must satis-
fy in any such spacetime. Although these constraints
were unfortunately not directly related to HC criteria, he
found no counterevidence to the HC in the particular
geometries that he examined (the I' metric [10] and the
Bach-Weyl ring metric [11]), and his work inspired future
research [19,12]. In [12] and [13], Bonnor considered
static spheres and charged perfect fluid with charge g
greater than their mass m. He showed that if a suitable
energy condition is satisfied then € > 27m, where € is the
circumference of the matter surface, thus supporting the
spirit if not the letter of the conjecture. Chamorro, Gre-
gory, and Stewart [14] showed that solutions of the Ein-
stein equations representing static finite thin discs satisfy
the HC, without the imposition of an energy condition
being necessary, and subsequently Lamberti and Hamity
[15] gave a similar demonstration for thin discs of coun-
terrotating particles.

Investigations of horizon formation in evolving dynam-
ic spacetimes have been mostly numeric. Early numeri-
cal calculations by Nakamura and Sato of the collapse of
nonrotating, axisymmetric fluid bodies indicated that ap-
parent horizons could be formed in highly nonspherical
situations, but that for certain initial conditions apparent
horizons are not formed during the collapse [S5]. Subse-
quently, Nakamura, Shapiro, and Teukolsky analytically
solved the initial-value problem for momentarily static
dust spheroids, both prolate and oblate [7]. They numeri-
cally analyzed the resulting three-dimensional manifolds
for various values of the eccentricity to determine the
minimum circumference of surfaces surrounding the
spheroids, and to check whether or not apparent hor-
izons occur. More recently, Shapiro and Teukolsky [8]
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numerically modeled the full dynamical collapse of such
spheroids, again calculating minimum circumferences
and testing the horizon formation. In these calculations,
both momentarily static and collapsing, apparent hori-
zons were found to be present whenever the minimum
circumference @ was less than 47 times the mass, and not
otherwise, to within 10%. This is strong evidence for
both the necessary and the sufficient condition aspects of
the HC.

In a more general setting, several investigations have
been made concerning the question “What is a sufficient
degree of compactification of matter to ensure horizon
formation?” [16-18]. In 1983 a striking development
took place with the proof by Schoen and Yau [19] of the
following very powerful and general theorem, motivated
by previous work on the HC.

Theorem 1 (Schoen and Yau). Suppose = is any space-
like hypersurface in spacetime, and Q is a bounded region
in = on which p—(J#J")l/ZZ A >0, for some A>0. Here
p=T,,n*n" and J,=T, n"+pn, are the energy density
and flux, and n" is the unit normal to X. If
R(Q)>7V'3/2A, where R(Q) is a suitably defined mea-
sure [25] of the radius of Q, then = contains an apparent
horizon.

Thus by assuming a lower bound for the mass density,
they derive an upper bound for the matter radius for
spacetimes without black holes.

Given such a definitive result, one may well ask what
motivation is there for continuing to study the HC as
originally formulated. The following are some reasons.

First, the HC purports to give a sufficient condition for
horizons not to form, unlike the theorem of Schoen and
Yau above, which would be relevant to cosmic censor-
ship. Recent work by Bzion, Malec, and O’Murchadha
(Eq. (67) of Ref. [20]), in which they derive such a condi-
tion for spherically symmetric systems, indicate that
there is hope to prove this portion of the HC generally.

Second, from a physical point of view, one would like
to have a criterion applicable to measurements made by
an observer external to the collapsing body. External ob-
servers can measure circumferences but not radii, and
mass but not density. Such criteria, if provable, might be
a consequence of the vacuum field equations holding out-
side the body, and thus may be independent of the equa-
tions of state, singularities, etc., of the interior.

The most important reason, however, for continued in-
terest in the HC is the recent strong numerical evidence
in its favor described above [7,8]. In light of this new evi-
dence, it now seems likely that some version of the HC is
true. However, to date very little attention has been paid
to the issue of finding precise formulations of the HC in a
general setting; most investigations have been restricted
to static spacetimes. Accordingly, one of the two princi-
pal purposes of this paper is to identify issues that one
must confront in trying to find and prove such a precise
and general formulation, and to propose some routes that
one might follow. This we undertake in Sec. II, where we
consider various ways of defining mass, horizon, and cir-
cumference. We identify two likely candidate formula-
tions, one global in spirit based on the asymptotic
Arnowitt-Deser-Misner (ADM) definition of mass [21],
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and one local in spirit incorporating some suitable
“quasilocal” definition of mass. We also distinguish be-
tween two approaches towards finding a proof: an interior
approach which tries to make deductions from energy
conditions, etc., holding inside the matter region, and an
exterior approach which instead works from the vacuum
field equations which hold outside.

The second principal purpose of this paper is to
present some new evidence in favor of the HC in static,
vacuum, axisymmetric spacetimes, evidence which indi-
cates that the exterior approach has a good chance of
succeeding. In particular, in Sec. III we show that
several particular such spacetimes are consistent with the
HC, and we derive sufficient conditions for oblate
geometries to satisfy the conjecture. A similar result is
also obtained for prolate geometries. Although these re-
sults leave much room for improvement and do not by
any means constitute a proof of the HC in these space-
times, they do at least demonstrate that there is hope to
make progress along the directions we outline.

II. MAKING THE HOOP CONJECTURE PRECISE:
ISSUES AND TOOLS

A. Apparent horizon versus event horizon

Although ideally one would like to obtain a result in-
volving absolute event horizons, in practice it is usually
difficult to determine whether or not one exists. This is
the case if one is working with data specified on an initial
spacelike hypersurface, as the existence of an absolute
event horizon depends on the structure of the spacetime
in the far future. It is easier to prove the existence of an
apparent horizon, or what is a slightly stronger condi-
tion, that a closed trapped surface exists (see [22] for
definitions of these types of surface). They are closely re-
lated as the boundary of a region containing closed
trapped surfaces is always an apparent horizon [22], and
it is expected that generically trapped surfaces lie inside
apparent horizons, with exceptions forming a set of
“measure zero” [1].

We now consider the question of to what extent the
two types of horizon are equivalent. It is not known
whether trapped surfaces are always accompanied by ab-
solute event horizons. Israel [23] presents evidence in
this direction, and suggests an approach towards a direct
proof. If one assumes cosmic censorship [2], then
Penrose’s singularity theorem [24] implies that the result
is true under quite general circumstances. The following
is essentially the same result in a different guise: In
spacetimes which are future asymptotically predictable,
absolute event horizons must be present when one has a
marginally trapped surface, or an outer trapped surface
which is the boundary of a three-dimensional region
([31], p. 310). (Asymptotic predictability is a technical
condition related to the absence of naked singularities
[22].) However the recent work of Nakamura, Shapiro,
and Teukolsky [7] referred to above casts doubt on the
unqualified validity of this cosmic-censorship hypothesis.
In the converse direction, it is not true that the formation
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of an absolute event horizon implies that there is an ap-
parent horizon nearby. However, if an absolute event
horizon forms, it is believed at least that an apparent ho-
rizon will at some stage be formed, as it is generally ac-
cepted that black holes eventually settle down into a sta-
tionary state, and for stationary black-hole spacetimes
both types of horizon exist and coincide [22].

In conclusion, it seems that outer trapped surfaces or
apparent horizons are probably an acceptable substitute
for absolute event horizons when dealing with sufficient
conditions for horizon formation, but they might not be

so when dealing with necessary conditions.

B. The hoop concept

In this section we consider how to define an appropri-
ate measure of the size of a collapsing body that could be
used to diagnose horizon formation in the spirit of the
HC. Suppose that we have an asymptotically flat space-
like slice of spacetime =, and a connected region ) in =
such that the stress-energy tensor vanishes outside . As
discussed in the Introduction, there exists a definition of
radius 2(£2) due to Schoen and Yau [19] which is useful
in this context. This 72(Q) is essentially the size of the
largest torus that fits inside Q [25]. However, in this pa-
per we are interested in measures that depend only on the
surface S =09( of Q, and not on its interior. Some quan-
tities that could be considered are the area of the surface
A(S), and its circumference CG(S). We discuss these in
turn.

One might expect that the dimensionless quantity
A(S)/m? (where m is the ADM mass of 2 [21]) would be
useful as a measure of degree of compactification. How-
ever there exists a class of static spacetimes (Eq. (5.12) of
Ref. [9]) in which A(S)/m? can be arbitrarily small.
Hence this quantity cannot provide a sufficient condition
for the formation of horizons, and we are led to consider
alternative measures (see below). On the other hand, an
area does appear in the following necessary condition for
the formation of trapped surfaces, namely that closed
trapped surface of area A must satisfy

A <16mm? . 2.1

This result is true for surfaces S of spherical topology in
spacetimes which are asymptotically flat at past null
infinity, and for which there exists a nonsingular null hy-
persurface connecting S to past null infinity [26]. It is
also a simple consequence of some suitable form of the
cosmic-censorship assumption such as asymptotic predic-
tability [22], together with the black-hole uniqueness and
no-hair theorems; see Eq. (3.20) of Ref. [7]. Criteria in-
volving area may also be useful in conjunction with the
Hawking definition of mass, see Sec. II C.

The most appropriate external measure, however,
seems to be circumference, in accordance with the HC as
it is usually interpreted [7]. How does one define the cir-
cumference of a surface in general? For axisymmetric
surfaces S, one can simply take the maximum of the
lengths of those closed curves which are the analogs of
lines of longitude and latitude. [Call this quantity @,(S).]
This is the definition for which we have the most evi-
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dence that the HC is true [7-9], and it is this definition
which we shall adopt in our discussion of vacuum ax-
isymmetric spacetimes in Sec. III. In this section, howev-
er, we consider how to define circumference more gen-
erally.

The most straightforward definition one might try is

@,(S)=2 max{dg(x,y)|x,y €S} , (2.2)

where dg(x,y) is the length of the shortest smooth curve
in S joining x to y. However this definition is not suit-
able: although it gives the correct answer for spherical
surfaces, we show in Appendix A that for axisymmetric
surfaces it does not reduce to the definition discussed
above. Moreover we show that there exist horizon-free
spacetimes containing surfaces S for which @,(S)/m can
be arbitrarily small.

A more promising notion of circumference is the fol-
lowing. Given a surface S, fix a point 7 in S and consider
families of closed curves D(?,A), for 0<A <1, which
contain 7 and such that all points other than 7 on S lie
on exactly one of the curves D (?,A). Such families of
curves start at 7, sweep around the surface and then re-
turn to 7. Now take the length of the longest curve in
the family, minimize over all such families,and then max-
imize over all points 2. This yields the definition

@5(S)=max min maxL[D(?,A)].
P {D(PA)] A

(2.3)

While this does not always equal €,(S) for axisymmetric
surfaces, as shown in Fig. 1, it may be appropriate and
useful in formulating the HC. Another definition of cir-
cumference which may be a generalization of @, is the
following. Let K be a two-dimensional plane whose ex-
trinsic curvature tensor in the spacelike slice X is trace-
less. Define Cx(S) to be the maximum of the lengths of
the closed curves which make up SNK, and put
C,(S)=maxg Cx(S). This definition depends on the ex-
trinsic and intrinsic geometries of S.

Suppose now that we have chosen a suitable definition
of circumference @(S). If we consider various closed sur-
faces S surrounding a matter-containing region 2, some-
times the minimum circumference infg@(S) is not
achieved by the matter surface 92, but by some surface
outside this [7]. Hence we should actually use the mea-
sure

e ()=inf &(S) , 2.4)

where the minimum is taken over all closed surfaces S on

FIG. 1. For a pancake shaped surface S, the circumference
function @5(S) is given by the length of the curve I'. The
dashed portion of the curve is on the underside of the surface.
Notice that this length is less than @,(S) which is 27R.
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some spacelike hypersurface 2 that contain  in their in-
terior.

Now in a general spacetime with no special sym-
metries, there is no preferred family of spacelike slices =
to which to apply the HC criterion. One might hope to
establish some criterion which would be applicable to all
spacelike hypersurfaces. However this is not possible,
since the three-geometry as perceived on piecewise
‘almost-null hypersurfaces will be distorted due to
Lorentz contraction. For example, let f be a suitably
smoothed periodic sawtooth function of compact sup-
port, whose amplitude A and period A satisfy
0<1—2A4/A<<1 and A<<1. Then in a local Lorentz
frame with nearly Loretnzian coordinates {¢,x,y,z}, such
a hypersurface 2 will be given by t = f (x). Upon averag-
ing over length scales large compared to A, the effective
three-metric of = will be given by ds?=¢?dx?+dy?
~+dz?, for some constant e <<1. If T is a world tube of
the form x%/a?+y?/b*+22/b?><1 with b <<a, then on
such a hypersurface = the circumference of T will be
@ (TNZ)=2b instead of the expected value of =~2a.
This clearly violates the spirit of the type of measure we
are trying to construct.

Thus it is necessary to restrict the class of hypersur-
faces in some way, for example, by placing constraints on
their extrinsic curvature. In particular one could demand
that only maximal slices of spacetime be considered (i.e.,
that the extrinsic curvature be traceless); this would not
be too restrictive as given any closed smooth spacelike
two-surface of spherical topology one can always find a
spacelike hypersurface that contains the two-surface and
is maximal inside it [27]. These considerations lead to an
expression of the HC of the following form: If T is the
timelike world tube of a collapsing body, a horizon is
formed if @,(TNX)=<4m7m for some spacelike hypersur-
face 2 satisfying a suitable extrinsic flatness condition.

An alternate approach is the following. Define for
each point p inside a world tube T

@(T,p)Esgp C,(ENT), (2.5)
where the maximum is taken over all asymptotically flat
spacelike hypersurfaces = containing p. Then a possible
criterion could be C(T,p) <4wm for some p ET. In Ap-
pendix B we show that in the case of static spacetimes
C@(T,p)=C,(2,NT) for all points p, where =, is any hy-
persurface which is everywhere orthogonal to the time-
like killing vector field. Thus @(T,p) reduces to the usual
definition of circumference in this case.

C. Definitions of mass and the effects of gravitational radiation

It has been customary to interpret the mass that ap-
pears in the HC inequality as the ADM mass [21] of a
slice of spacetime. While this seems reasonable in static
spacetimes where the HC has usually been considered,
there are problems associated with this interpretation in
more general spacetimes, and also sometimes even in stat-
ic ones. For example, if the region external to the col-
lapsing matter is not vacuum, there will be contributions
to the asymptotic mass from stress-energy outside the
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matter. This applies in particular to electrovacuum
spacetimes. A more serious problem is the fact that in
any realistic gravitational collapse spacetime there will be
gravitational waves extending outside the matter source,
which in principle could have a mass as large as that of
the matter. In these situations the asymptotic mass is not
a good measure of the actual mass undergoing collapse.

One approach to the problem of gravitational radiation
is suggested by the calculations of Shapiro and Teukolsky
discussed above [8]. Gravitational radiation is emitted by
the collapsing spheroids in these calculations, but only at
a level of less than one percent of the total mass, so that
they are still in accord with the HC. It might be possible
to prove a result that deals with realistic initial
configurations of matter and establishes as a byproduct
that such configurations never emit so much gravitational
radiation as to become a serious problem for the HC.

However, we suggest that the best way to avoid the
problems associated with the use of asymptotic mass is to
use instead some “quasilocal” definition of mass: Al-
though gravitational energy is traditionally considered to
be nonlocalizable, recently several such quasilocal
definitions (i.e., definitions based on surface integrals
rather than volume integrals) have been suggested
[28,29]. Also in the special case of stationary spacetimes
there is a useful formulation of local mass due to Komar
[30,31]. Using some such appropriate interpretation of
“mass inside 2” m (L), the following could be a suitable
quasilocal reformulation of the HC. If Q is any region in
a suitably chosen hypersurface = (cf. previous section),
then a trapped surface will be formed whenever C(3Q) is
less than 47mm (). A stronger result would be to assert
that 39 itself would be a trapped surface, but this is less
likely to be true. In any such formulation, the definition
of mass cannot depend solely on the stress-energy tensor,
as it is known that imploding nearly spherical shells of
gravitational radiation can form black holes [32].

In favor of the above interpretation of the HC as a lo-
cal statement is the following fact: some examples of
spacetimes which were found to violate the HC bound of
47m by a factor of 2 [12,33] are in accord with a version
of the HC which uses the local Komar mass. We sketch
a proof of this result: The spacetimes consist of static
spheres of charged perfect fluid joined onto an exterior
Reissner-Nordstrom region, where the join occurs
at a value of the Schwarzschild radial coordinate
r=ro>r,=m~+Vm?—g% Here m and q have their
usual meanings, and m >gq. If S, is the surface given by
r =a for a >r,, then the Komar mass of the volume inte-
rior to this surface is m (S,)=m —q2/a. We find that

C(S,)
el ., |4 2.6
% 4mm(S,) gm]’ (2.6)
where
2x2 for —‘;—?’Sxfl ,
= — 2.7
g(x) (1+V1—x2) vi @7
for 0<x <——;
2(1—x2+V1—x2) 2
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see Fig. 2. In particular it can be seen that

C(S,)=4mm(S,) Ya>r, andg<m (2.8)

as claimed.

There are also some indications in favor of a quasilocal
version of the HC incorporating the Hawking [28]
definition of mass. In spherically symmetric spacetimes,
the Hawking mass m (S) of a spherical surface S coin-
cides with the “mass m (r) inside Schwarzschild radius »”’
[34], which plays a central role in the standard theory of
spherical systems [35]. Moreover, for this m (r) a local
version of the HC is known to be valid: spheres of
Schwarzschild radius » where r <2m (r) must be trapped.
In addition, if S is any closed two-surface in a static, pos-
sibly nonspherical spacetime, which is everywhere or-
thogonal to the timelike killing field, then the Hawking
mass m (S) satisfies [36]

m(S)?<A(S)/16m . (2.9)

Hence if as seems plausible A(S) is bounded above by
some multiple of @(S)?, we then obtain a result of the
form

m(S)<kC(S) (2.10)

for some constant k.

We now address the following question: under what
conditions will the use of asymptotic mass be appropri-
ate? If we grant that some local form of the HC is valid,
and () is a region such that

m(Q)=m_, VYV QDQ,, (2.11)
where m , is the asymptotic mass, it then follows that a

horizon will be formed whenever

m,, *inf{ @(302)|Q D Q,} (2.12)

so that we recover a formulation of the conjecture which
incorporates the definition (2.4) of circumference used
above. If we constrain the initial-value hypersurface in
such a way as to ensure that gravitational radiation is
unimportant on that hypersurface, then for reasonable

C(S,)
min
4m(S

a) 1.5

q/m

FIG. 2. The minimum circumference to mass ratio [Eq. (4)]
for spherical surfaces enclosing static spheres of charged perfect
fluid, as a function of the fluid’s charge to mass ratio. The cir-
cumference to mass ratio is always greater than 47 in accor-
dance with the hoop conjecture. The use of mass enclosed in-
stead of mass at infinity is important in this regard; see text.

2413

definitions of mass Eq. (2.11) will be satisfied when Q, is
taken to be the region where the stress-energy tensor is
nonzero. Thus we obtain the normal global version of
the HC (but with a gravitational-radiation caveat) as a
consequence of the local version.

In investigating the HC there are two different ap-
proaches which can be adopted. One is an interior ap-
proach, which focuses on the interior of the matter-
containing region, and by imposing energy conditions,
etc., there tries to derive constants on the spacetime
geometry. This was the procedure followed by Red-
mount, and by Schoen and Yau. The other is an exterior
approach, which instead works with the vacuum field
equations that hold outside the matter region. It may be
that the HC property is a consequence of these exterior
field equations, and independent of the details of interior
solutions. Some indication that this might be the case
comes from the fact that surfaces of minimal circumfer-
ence are sometimes located in the vacuum outside the
matter region [cf. the discussion preceding Eq. (2.4)
above]. The exterior approach is also easier to analyze.
To do so it is not necessary to consider any matching of
interior matter solutions to exterior vacuum solutions; as
Redmount has suggested [9] one can consider purely vac-
uum spacetimes.

Accordingly, we next consider how the conjecture ap-
plies to static vacuum spacetimes with singular sources.
As trapped surfaces cannot occur in static regions of
spacetime and gravitational radiation is absent, the HC
reduces in this case to the following statement: there are
no surfaces S enclosing the source region which satisfy
C(S)<4mm ., where m is the asymptotic mass. The
same conclusion can be reached if one considers event
horizons instead of trapped surfaces, since if an event
horizon can be found then by Israel’s black-hole unique-
ness theorem [37] the spacetime must be a portion of the
static region of the Schwarzschild spacetime for which no
surfaces satisfying the above inequality exist.

III. EVIDENCE IN SUPPORT OF THE EXTERIOR
APPROACH: STATIC, AXISYMMETRIC
SPACETIMES

In this section we present evidence in support of our
view that the exterior approach to proving the HC has a
good chance of succeeding, at least in static, vacuum
spacetimes. For such spacetimes the appropriate version
of the conjecture is as follows (cf. the end of Sec. II C).

The HC for vacuum static spacetimes. The circumfer-
ences of all surfaces surrounding the singular source re-
gion should be greater than or of the order of 4mm, where
m is the asymptotic mass.

We shall investigate the validity of this conjecture in
axisymmetric, static spacetimes.

We start in Sec. IIT A by briefly describing the Weyl
formalism [38] for solving the static, axisymmetric, vacu-
um Einstein field equations, and we then show that in the
case of three particular Weyl spacetimes or families of
spacetimes, the conjecture holds true. In Sec. IIIB we
specialize to oblate geometries and show that under cer-
tain circumstances, for a spacetime to satisfy the conjec-
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ture it is sufficient to have @(S)=4mm for those surfaces
S which are level surfaces of the lapse function. This re-
sult considerably simplifies any analyses of the HC in
these spacetimes, and we use it to derive a simple
sufficient condition for it to hold true. Finally in Sec.
III C we turn to prolate geometries and show that if Sis a
convex level surface of the lapse function, then
@(S) = 4mm whenever the value of the lapse on the sur-
face is sufficiently large.

A. General Weyl spacetimes

We start by recalling the Weyl description of static,
vacuum, axisymmetric spacetimes [38]. In these space-
times there exist coordinates {#,p,z,¢} such that the line
element takes the form

ds?>=—e?dt*+e2 7 dp*+dz?)+pe Wde?, (3.1)

where y=1(p,z), and y =y(p,z). The vacuum Einstein

field equations reduce to
(F)g2,), = —1 -
V l)b_p (p¢,p),p+¢,zz—0

Y,pzp(!/},zp_lb,zz) ’ and Y,Z=
(F)VZ

: (3.2)
200 ,9, . (3.3)

is calculated with respect to a
flat, nonphysical three-metric, which is given by
Fds’=dp?’+dz*+p*dg?. The appropriate boundary
conditions for these equations are that ¥ =0 at z =0 (ex-
cept at singularities), and that »—0 at least as fast as 1/r
as r— oo, where r=Vp?+z2 [39]. Equations (3.3) may
be solved by quadrature, so that solutions of Eq. (3.2)
determine the geometry. The asymptotic mass of the
three-geometry is [31]

1 3) 3o ¥

= € 328
"4 ds on ’

Here the Laplacian

(3.4)

where S is any surface enclosing the matter region, the
prefix (3) means that the calculation is to be carried out in
the physical curved three-geometry, and 9/0n denotes
the derivative in the direction of the outward pointing

normal to S. From the metric (3.1) with dt =0 one ob-
tains that
=— —l<F>dzs (3.5)
s on

i.e., the asymptotic mass is that of the corresponding
Newtonian problem.

Consider now surfaces enclosing the singular source re-
gion in these spacetimes. We shall restrict attention to
axisymmetric surfaces S as it seems plausible that those
surfaces for which the circumference function @(S) is a
minimum do not break the symmetry of the surrounding
spacetime. Any such surface S of spherical topology is
determined by a curve D in the pz half plane by rotation
about the z axis; see Fig. 3. We will from here on always
use D and S to denote a curve and a surface related in
this way. In terms of D the asymptotic mass of the
three-geometry is

b an (3.6)
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FIG. 3. An axially symmetric surface S in Euclidean three-
space with a cylindrical coordinate system determines and is
determined by a unique curve D in the pz half plane.

The maximum lengths of azimuthal and polar curves on
S, i.e., those curves which are the analogues of lines of la-
titude and longitude, are

L, =sup 2mpe v, (3.7

and

L=2f e Vdl. (3.8)
The definition of circumference that we use is (cf. Sec.
II B)

C(S)=max(L,,L,) . (3.9)

In the above equations d! denotes the element of proper
length with respect to the flat nonphysical geometry on
the pz half plane determined by the metric

Pds?=dp?+dz?, and suppf means sup{f(x)|x ED}.
We will call a surface oblate if L,(S) >L,(s) and prolate
otherwise, and similarly we will call a Weyl spacetime ob-
late (prolate) if the surfaces on which ¢ is constant are
oblate (prolate). Thus in these spacetimes consideration
of the HC naturally divides into two cases. While it is
not always true that L, Z4mm, or that L, > 4mrm, it may
well be that @(S)=max(Le,Lp ) 2 47rm always.

For several solutions of the vacuum field equations
(3.2) and (3.3) it is straightforward to show that indeed
@(S) is greater than 47m for all axisymmetric surfaces S.
The simplest example is the Curzon solution given by

. m _ m?sin’®0
p=—"", y=—D900
r 2r
where the coordinates (r,0) are defined by z =r cos6,

p=rsin6. From Eq. (3.7) we obtain, for any axisym-
metric surface S,

CS)=L, =sup 27r sinfe ™"

(3.10)

>inf2mre™ "=2mrme , (3.11)
r
so that C(S) > 47m always.
As a second example we take a fictitious source for
Laplace’s equation consisting of a line of uniform linear
mass density I' /2 on the symmetry axis from z =—a to
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z=a. Define  coordinates  {u,v} by z-+ip
=a cosh(u +iv), for 0<u <o and 0<v <. Then the
metric is given by [10]

¥=TIntanh % )
5 (3.12)

.
4 2

sin%v

1+ —
sinh?u

and the mass is m =I'a. A calculation of the Riemann
invariant R ,,;,R #v4p reveals that the coordinate singu-
larity at ¥ =0 1s a physical singularity except when '=1,
in which case it is the Schwarzschild horizon. Numerical
studies by Redmount ([9], p. 711) have indicated that
@(S,)=4mm for all the ellipsoidal ¥ =const surfaces in
these spacetimes. In the case where 0 <1—TI <<1 corre-
sponding to a prolate but almost spherical geometry, this
can be confirmed by explicit calculation: we find that

L, min(T)=4mm[1—elne+0(e)], (3.13)

where e=1—T" and L, ;, is the smallest of the polar cir-
cumferences L,(S,). This is illustrated in Figs. 4 and 5.

In the case I' > 1, corresponding to an oblate geometry,
it is possible to show that the conjecture is satisfied for all
closed surfaces by using the same technique as in the
above Curzon case. If Sis an arbitrary axisymmetric sur-
face, then from Eq. (3.7),

C(S)=L, =sup 2mpe ¥
=sup 27ra sinhu sinv tanh (% /2)

> inf 27a sinhu tanh ™ T(u /2)

u>0
r—1 (1-T)/2
=2ma(T+1) T1 , (3.14)
so that, using m =T'a,
e(S) r+1 (r—1]" """
—_— > = [—= 1
4mm k(L) 2r r+1 3.13)

The function 4 satisfies 4 (I') =1 for all I" > 1 as shown in
Fig. 5.
Finally consider the class of spacetimes given by

Lp(u,r)

Lp.min (r)7

u

FIG. 4. A graph of the lengths of polar curves on the ellip-
soidal surfaces of constant u in the I'-metric spacetimes. Notice
that this length (and consequently also the circumference €, of
the surfaces) diverges as u tends towards zero, even though the
corresponding surfaces are nested inside each other and ap-
parently getting smaller and smaller.
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Cnin

2mem = Le,min =4mmh(T)

Lp.min

4tm

FIG. 5. A graph of the minimum obtainable circumference
to mass ratio @,(S)/m in the I'-metric spacetimes as a function
of the “oblateness” parameter I'. For I' <1 the longest curves
on the surfaces of constant u are polar, while for I' > 1 they are
equatorial. Again the hoop conjecture is validated.

a
rn+1

P(r,0)= —%+ P,(cosf) , (3.16)
where a is any real number and P, is the nth Legendre
polynomial. Define 6, to be such that cosf, is the small-
est positive root of the equation P,(x)=0. Then we ob-

tain

e(S) ro. m a
yry— > sup = — sin@ exp P WP,,(COSG)
m/r
> inf 25— sin6, > %ane : (3.17)
where o«,=sinf,. The sequence (¢,) starts out

(1,V2/3,V'2/5, 0.88,0.71, . . .) and is bounded below, so
that @(S) R 47m for all axisymmetric surfaces S.

B. Oblate Weyl spacetimes

In investigating the validity of the HC in general Weyl
spacetimes, the most natural course of action is to consid-
er the spacetime geometry as fixed and to calculate the
circumferences of various surfaces in this spacetime.
However we have found the following approach to be
more useful. We choose a closed surface S in the unphys-
ical flat background geometry, and specify the value of
the potential ¥ on S. Then v on the region exterior to S
will be determined as the solution of the following
boundary-value problem: F'V?y=0 outside S, ¥|s=as
specified, and ¥—0 as r—co. Thus the pair (S,¢s)
determines a solution of the vacuum field equations, and
all exterior solutions may be obtained in this way. If we
specify S and the corresponding curve D by a smooth
function p=R (z), for z; =z <z,, then the normal deriva-
tive d¢/3n|p is determined from R and |, by solving
the boundary value problem. The value of the function
Y|p at a point p on D is determined by integrating Vy
along that portion of D joining the z axis to p, where Vy
is given in terms of ¥, and d¢/dn |, by Egs. (3.3). The
mass of the spacetime and the circumference of S are
then given by Eqgs. (3.6) to (3.8), i.e., are functionals of R
and v)p, and the hoop conjecture will be true in these
Weyl spacetimes if
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C(R,Pp) = 4mm (R, ) (3.18)

always.

We now show that for oblate surfaces it is sometimes
sufficient to consider the special case ¥, = const. If, in
any Weyl spacetime, we define S, for A >0 to be the sur-
face {p|¥(p)= —A}, then specifically we have the follow-
ing theorem.

Theorem 1. In a Weyl spacetime suppose that Ay>0 is
such that (i) V70 everywhere on {pl(p)= —Ay}, and
(ii) the coordinate function p has only one local maximum
on each curve D, corresponding to S, for A=A, Then
L,(S)Z4mrm for all axisymmetric surfaces S of spherical
topology outside of and enclosing Sko if and only if

L,(S,)Z4mm for all S, outside S

Note that conditions (i) and (ii) will be satisfied for sur-
faces S 2 sufficiently far from the singular source, i.e., for

sufficiently small A;,. The precise distance required will
depend on the sizes of the dipole and higher-order mul-
tipole mass moments of the fictitious Newtonian source
compared to that of the monopole moment.

Proof. We first show that each surface S, for A <A, is
of spherical topology. If any of these surfaces is not con-
nected, put A=inf{A|S, has more than one connected
component}, which is strictly positive as Y=~ —m /r as
r—oo. Then it can be seen that there is a point p in Sy
with V¢(p)=0, which contradicts assumption (i). Hence
each S; is connected, compact, orientable two-
dimensional manifold, and so is topologically a sphere
with n handles. An argument similar to that just given
shows that the genus #» must be zero. Also, the outward
normal derivative 3y /dn is positive everywhere on each
S, by condition (i), and so that region exterior to S, is
the union of the S, for o <A.

We now prove the “if” part of the theorem as the
“only if” part is obvious. Suppose that we are given a
surface S as in the statement of the theorem. Define
Ay=infg(—1),A,=supg(—1) (see Fig. 6), and for A be-
tween A; and A, let p, be the unique point on D,
furthest from the z axis. Then we have that
7n(p,)=sup{n(p)lp ES,}, where 7 is the function
pe ¥/(2m). Hence

np)=1, ASAZA,, (3.19)

by Eq. (3.7). Let I" be the smooth curve generated by the
pa’s and let S;, S, denote the regions interior to and exte-
rior to S. We claim that p, =p A, lies in S; US. Otherwise
there would exist a neighborhood of p, in S,, and as
Vi(p,)70, there would exist a point gES, with
Y(q) <y(p, )=infs¢=infse¢ (using the fact that ¢ is
harmonic) which is a contradiction. Similarly
P1=D;, €S, US, and so it follows that the curve I cuts S

at some point, say p,. It follows from Egs. (3.7) and
(3.19) that

L,(S)
4mm

=s1;pn2n(pa)21 . (3.20)

This concludes the proof.

EANNA FLANAGAN
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FIG. 6. An illustration of the situation in theorem 1. The el-
lipses represent level surfaces of the lapse function e2¥.

We now turn to an analysis of the inequality (3.18) un-
der the simplifying assumption that v, is constant. First
we introduce the following generalized notion of capacity
which is a geometric measure of the size of a region. For
) any connected open region in a Riemannian manifold
3, let u be the unique function satisfying V?u =0 on the
complement O, of Q in 3, upe=—1, and u—0 at
infinity. Then the capacity of Q is

RO(Q)EﬁfaQn“VQu , (3.21)
where n? is the outward pointing unit normal to 3Q. It
can be shown [40] that

R(,(Q)Zinf{fQ gV, uvV,u ‘u ec~Q,),

Ujpgo=—1, u—0 at oo], (3.22)

and it follows that the capacity function R, is monotone
in the sense that

QCQ' =R (Q)SR,(Q') . (3.23)

For () a connected region, we define R,(3Q)=R,(Q).

Suppose now that we are given a curve D and we speci-
fy ¢¥|p. Then from Egs. (3.2) and (3.5) the mass is given
by m (D,¥p)=—1pRy(S), as m is a linear function of
the number ¥|,. Hence to obtain m >0 we must take
¥p = —A, where A>0. Here the capacity is calculated
with respect to (Flgs?, the flat three-dimensional metric.
[In terms of the physical curved three-metric we have
m =(1—e ")Ry(S,) for any v>0.] We now let 9, be
the solution of the boundary value problem with the
boundary condition 15, = —1, with the mass being m,
and y, being the corresponding function obtained from
Egs. (3.3). Then ¢y=Ay, and y =A%y, and Egs. (3.6) and
(3.7) yield that

L, =sup 2mpe* (3.24)

and
m =Amy=AR(S) . (3.25)

Now if we use the monotonicity property (3.23) togeth-
er with the fact that the capacity R of a sphere is just its
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ordinary radius, we obtain that R,(S)=<r,

=suppt,
where r=Vp>+2z2.

Also if we define p,, =suppp, then,

from Egs. (3.24) and (3.25),
L A
__e_=._ﬁ___£_2 e |Pm (3.26)
4mm  2R(S) A 2

Thus for curves D for which p,, =r,,, L, is approximate-
ly equal to m and the HC for these surfaces is approxi-
mately satisfied. Only in cases where p,, <<r,, can it be
violated, and we expect that in such cases Lp >4mrm in-
stead, so that by Eq. (3.9) the inequality G(S)>4mm is
still maintained.

More generally, if we define the ‘“eccentricity” of a

curve D via
Pm
D)= , 3.27
e(D) Ro(D) ( )
and then we see from the inequality (3.26) that

L,(S)=47m if and only if (D) >2Ae ~*. Combining this
with theorem 1 we obtain the following result.

Theorem 2. Suppose in a Weyl spacetime (i) V¢70
everywhere, and (ii) the level surfaces of Y are convex with
respect. to the fictitious flat three-geometry. Then
L,(S)=4mm for all axisymmetric surfaces S of spherical
topology enclosing the singularity if and only if
€(D,)>2Ae " for every 1> 0.

The condition on the eccentricity will be satisfied in
particular when p,, > (2/e)r,, for all curves D on which ¢
is constant. As an example we apply this theorem to the
“T" metrics” discussed earlier [cf. Eq. (3.12)] and rederive
the result that the hoop conjecture is satisfied for

I'>1. Using p,,=asinhu, Ry(D)=Ta/A, and
A= —T Intanh(u /2) we obtain that
inf e(D, >%t— =inf e’;{’([lkile__zlﬁ)) ]
_ron (o= [T
2r r+1 - ’
(3.28)

where the last expression is the same as that obtained
previously in Eq. (3.15).

C. Prolate Weyl spacetimes

We now turn to a consideration of the inequality (3.18)
in the case when the surface S is prolate. We again re-
strict attention to equipotential surfaces, although in this
case we have not been able to show that it is sufficient to
consider these surfaces only. Our result is as follows.

Theorem 3. In a Weyl spacetime, let D be a curve in
the pz half plane with |, = —A. Suppose that (i) D is
convex, and (ii) A = kcm(D), where

— Pm al/’o
Aei=2]

and 1!]05

dp

A", Then
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—1/2
2
T
1+
4

L,(S) > €
4dmm T

~

~5 -

Thus the spirit, if not the letter, of the hoop conjecture is
satisfied for sufficiently small A in the special case of con-
vex D. To prove this result, we have from Eq. (3.8) that

Lp:2f0L(

Here L (D) is the length of D with respect to *)ds2, and &
is the proper length parameter. Now from Egs. (3.3) we
calculate that yo=—13 ,pp’, where the prime denotes
differentiation with respect to &, and the n denotes nor-

2
Page 18 (3.29)

mal derivative. If pu=—y, then it follows that
m=suppu= ["y% pdp, and so by (i) above
1/A=22u,, = —2y4(§) for all £&. Hence
2
N (3.30)

and combining this with Egs. (3.25) and (3.29) yields that

L, _ e L), e L(D)
4mm ~ A 2mmgy ~ 4w Ry(S)

(3.31)

To obtain an estimate of the capacity of the surface S, we
use the result [40] that

1
< =42
Ry(S)= 2 fSKd S, (3.32)

where K is the mean curvature of the surface. If we take
D to be specified by the equation p=R (z) for zy =z =z,
with R (zy)=R (z,)=0, then we obtain

1| 1/R R"
2 (1+R12)1/2 (1_|_R12)3/2

(3.33)

K=

In this expression the second term in large parentheses is
the curvature « of the curve D in the pz plane, and primes
denote differentiation with respect to z. Inserting this
into the bound (3.32) gives

Ry(S)< 1Az+1f pxdl (3.34)
where Az =z, —z,, so that from Eq. (3.31)
L A o 1
P > € zZ_ 4 >€_ .
4mm ~ 7 | L(D) {pr? T 1+{px) ’ 3.35)
where
=— 3.36
(pr)= L(D f prdl . (3.36)

Now for a general curve D, the quantity {pk) may be
arbitrarily large, but when D is convex it is possible to
show that it is bounded above. As R’ <0 for D convex,
we have
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1 —R" Pm —R" Nner 1
(pK)= d P < dz
)=t TR Ty d i o s
Z
= _ Pm ’ X 0.6 ceraecf e
(D) arctan(R ') .
0.4
Pm
= . 3.37
L (D) m ( ) 0.2
But it is easy to see that L (D)=2p, so that from Egs. G + s s o .
(3.35) and (3.37) we finally obtain ’ A () ’ N

L, ¢ 1 1

> ~—

drm ~ @ 1+w/2 3

It is possible to improve this bound to give the one quot-
ed in the theorem by combining Eq. (3.37) with the first
inequality in (3.35) and considering the geometric rela-
tionships between Az, p,,, and L (D); see Fig. 7.

In the course of the above proof we showed that condi-
tion (i) in the theorem is equivalent to A~ !>2yu,, , where
u=—y, and pu,, =supppu. By using the inequality
f (l)ef = exp( f (l)f ) it is possible to weaken this condition
to A7 >2(p), where {u) = [FPdEp(E)/L(D).

(3.38)

D. Future directions for Weyl spacetimes

In this section we have considered the ratio
O=@(s)/4mm for convex equipotential surfaces S in
Weyl geometries as a function of (i) the curve D that gen-
erates S by a rotation, and (ii) the value —A of the poten-
tial 1 on this surface. We found that © > 1 for all posi-
tive values of A whenever the eccentricity of the curve is
greater than 2/e. For smaller values of the eccentricity
we found that the ratio © is bounded below by a positive
constant of the order of a half when A= A,(e(D)) and
when A <(2(u))" !, where A,(x) is the larger of the two
roots of 2Ae ~*=x (see Fig. 8). Now in general (2{u))~!
is not greater than A,(e(D)), and thus there is a range of
values of A for which none of the bounds obtained for ©
apply. For example, for ellipses whose ratio of semiminor
axis to semimajor axis is #¢<<1, asymptotically
A(e(D))=|Int| and (2{u))"'~1|Int|. Further progress

FIG. 7. The length of the curve L (D) from the diagram will
be greater than V' (Az —a)*+p?, +V a?+p?, for some a.

FIG. 8. An illustration of the definition of the function A,(x)
which is defined only for x <2 /e.

towards showing © X1 generically would necessitate
finding better estimates for the lengths of polar curves
with A in this intermediate range.

Also, we have restricted attention to Weyl spacetimes
with isolated singular sources. If one considers nonisolat-
ed sources, one can obtain spacetimes with non-
Schwarzschild event horizons. A complete classification
of such “distorted black holes” in static, axisymmetric
spacetimes has been given by Geroch and Hartle [41]. It
might be interesting to investigate the circumferences of
the distorted horizons.

IV. CONCLUSION

In this paper we have reviewed some of the evidence in
favor of the HC, and presented some tentative but sug-
gestive results which tend to support it. We have also ad-
vocated the following two points of view: (i) that the con-
jecture can be interpreted as a quasilocal statement in the
spirit of the theorem of Schoen and Yau, and (ii) that the
geometric constraints embodied in the conjecture may
very well be consequences of the exterior vacuum field
equations and independent of the complicated interior
physics.

The dynamical collapse simulations of Shapiro and
Teukolsky [8] apparently exhibit violations of cosmic
censorship, violations which are in accordance with the
HC. A proof of some criterion along the lines of the HC
would both bolster our faith in those calculations, and
also possibly increase our understanding of when such
violations can occur.

ACKNOWLEDGMENTS

The author’s thanks go to Kip Thorne for many help-
ful and detailed discussions about aspects of this work,
and about it’s presentation.

APPENDIX A: DEFINITIONS OF CIRCUMFERENCE

In this appendix we show that for axisymmetric sur-

faces S, the definition (2.2) of circumference satisfies
@Z(S)ZLP , (A1)

where L, is twice the distance from the north pole to the
south pole. In particular we have that C,(S) #@(S)
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=max(L,,L,), which is the quantity that seems to be ap-
propriate for the HC in axisymmetric spacetimes. Here
L, denotes the maximum of the lengths of closed azimu-
thal curves as in Eq. (3.7).

An axisymmetric surface S can be described by a line
element of the form

ds’=a(0)’d6*+B(6)*sin’0d¢> .

Given points P, @, in S, let T'; be the curve joining P to
the north pole W along a line of longitude (§= const).
Let I', be a similar curve joining N to @, and let T", be
I', joined onto I';. Similarly construct I' g joining 7 to @
via the south pole &. Then the distance from 7 to @
satisfies d(P,@)<L(Ty), and similarly for the curve
I's. However it is easy to see that L(I' )+ L(T'g)=L,,
so that 2d(‘P,(Q)SLP. Now taking the maximum over
all points 7 and @ and using the definition (2.2) yields
that @,(S)=L,, and Eq. (A1) then follows.

Now consider a surface of constant lapse in the space-
time given by Eq. (3.12). From Eq. (3.8) we obtain that

L,(S)=4sinh" (x) tanh~"(u /2)
X fﬂdu(sinhzu +sin2p)~ T
0
<47 tanh T(u /2)sinh™(u) , (A2)

which tends to zero as u tends to zero if I'>1. Hence
@,(S)/m can be arbitrarily small.
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APPENDIX B: WORLD-TUBE
CIRCUMFERENCE PROOF

In this appendix we show that the definition (2.5) of the
circumference of a world tube reduces to the usual
definition in the case of a static spacetime. Such a space-
time can be described by a line element of the form

ds?=g(x*)dt*+g;;(x*)dx'dx/ , (B1)

where i, j, and k range from 1 to 3, and gqy(x*)<0. Any
spacelike hypersurface is given (not just locally) by an
equation of the form

t=F(x',x%x3%), (B2)
and the induced metric on X is
*ds>=(g;; +8ooF ;F ;)dx'dx’ . (B3)

If we define =, to be the hypersurface ¢t =0, then the
diffeomorphism from =, to = obtained by identifying the
coordinates x!, x2, and x> will be a contraction, i.e.,
lengths of curves on X, will always be longer than the
lengths of the corresponding curves on X. This is be-
cause g;; is positive definite and go, <0. A similar state-
ment applies to distances between points. This shows
that the maximum over all = of C,(ENT) will be

achieved by =, which establishes the desired result.
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