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The theory describing gravity and the Kalb-Ramond axion field with topological Lorentz Chern-
Simons coupling is considered. The topological coupling induces an additional term in the energy-
momentum tensor, which in general can lead to violations of the cosmic no-hair conjecture. These viola-
tions are shown explicitly by analyzing the solutions in a diagonal Bianchi type-II geometry.

I. INTRODUCTION

The long-standing cosmological problems of high-
degree homogeneity, isotropy, and flatness of the ob-
served universe have led to the proposal of the
inflationary scenarios to explain them [1]. These
scenarios all involve certain mechanisms to provide for a
positive cosmological constant which is needed to pro-
duce fast growth of the cosmic scale factor. The cosmic
no-hair conjecture, as it was dubbed by Hawking and
Moss [2], then guarantees the success of the inflationary
stage for a very large class of initially inhomogeneous and
anisotropic universes. It asserts that under quite loose
and physically realistic conditions any expanding
universe satisfying them will evolve asymptotically to-
wards a locally de Sitter geometry. In the course of evo-
lution initial inhomogeneities and anisotropies get dissi-
pated and flattened out. Thus, the no-hair conjecture in
conjunction with the inflationary paradigm offers a viable
explanation to homogeneity and isotropy in the universe
as we know it.

In this paper we will not repeat the derivation of the
cosmic no-hair conjecture. There already exists a num-
ber of excellent papers where the proof has been outlined
in great detail [3—6]. Among these especially elegant is
the paper by Wald [4], where he proved the no-hair con-
jecture for the Bianchi models, with the possible excep-
tion of Bianchi type IX. We will merely review his re-
sults here, as we will be investigating the Bianchi models
too.

Most of the aforementioned papers dealt with standard
general relativity with energy momentum carried solely
by the matter sources. Superstring theory, on the other
hand, indicates that the low-energy effective action for
gravity may include curvature terms of higher order, like
the Gauss-Bonnet and the Chem-Simons topological den-
sities. The no-hair conjecture has been investigated for
some models with higher-order curvature terms in the ac-
tion [7], namely, the Starobinsky model. It was found to
hold there. This should not come as a surprise, since it is
well known that the Starobinsky model is conformally
equivalent to the standard general relativity with a
minimally coupled scalar field [8].

We will examine the cosmic no-hair conjecture in rela-
tion to the other superstring motivated abberation from
Einstein s general relativity, the Lorentz Chem-Simons

II. EQUATIONS OF MOTION

We start with the action that is a part of the effective
action for light modes in superstring theory and includes
the graviton and the Kalb-Ramond axion. Dilation self-
interactions may append an effective cosmological con-
stant A to it. So, in four dimensions (4D) our action is

S=Id x &g R M„ i H"'" A— —(2.1)

(LCS) coupling. This topological coupling is incorporat-
ed in the action through redefinition of the axion field
strength 0„& to ensure the gravitational anomally can-
cellation in the string field theory, as explained by Green
and Schwarz [9]. One could ask what would happen if
this term survives the era of quantum gravity and
remains important at scales where inflation is likely to
have occurred. Clearly it could influence evolution of the
universe. Since it can account for interesting new effects
in axion physics at smaller scales and put extra hair on
black holes [10], it is a promising candidate to entertain
similar effects at larger scales as well.

Below we will show that this is indeed the case. Al-
though for certain Bianchi models (type I and type V and
diagonal type III and type VI) the LCS terms allow evo-
lution of the universe to proceed towards asymptotic lo-
cally de Sitter state, for others they can turn the situation
around and force the universe to recollapse. We will
demonstrate this by constructing numerical solutions of
the equations of motion for the diagonal Bianchi type-II
model with only one anisotropy function,
P2=P3= —P, /2. We will also obtain a class of particular
solutions that experience the exponential growth of the
scale factor, but retain hair, as the shear tensor does not
vanish asymptotically.

The paper is organized as follows. In Sec. II we will
present the equations of motion and the necessary back-
ground. In Sec. III we will discuss them in light of the
cosmic no-hair conjecture and confirm its validity for
general Bianchi type-I and type-V models as well as diag-
onal type II and type VI. We will inspect the Bianchi
type-II model in Sec. IV and display that the no-hair con-
jecture is violated there. Conclusions will be addressed in
Sec. V.
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and H„& is the 3-form Kalb-Rarnond field strength,
defined by

(2.2)

where B is the Kalb-Ramond two-form, with

spatially homogeneous metrics, i.e., those which admit
isometry groups with three independent translational
space-like vector fields. The vector fields are the Killing
vectors of the metrics. The metrics can be written down
as metrics on coset spaces of nine acceptable groups of
motions, in 4D space-times,

cdL —Tr(co A dc&i+ 3 ' A co A to) (2.3)
ds = d—t +h,b(t)e'ee (2.13)

+4% (H„iR, ) —Ag„
HPvA, —

O

and also from Eq. (2.2).

dH =dcoL

(2.4)

(2.5)

(2.6)

The LCS term in (2.4) is syrnmetrized over p and v.
Our conventions are g = ( —,+, +, + ),

R"
&

= I "
~—.. ., V~ denotes covariant derivative with

respect to basis vector fields X&. We work in the units
x' =1. Summation over repeated indices, both greek and
latin, is understood throughout the paper.

The equations of motion can be recast in a different
form. Recall that in four dimensions an antisymmetric
tensor is dual to a vector:

the LCS form and co the spin connection.
In the action above we ignored explicit dilaton and

Yang-Mills terms, as we are not interested in them here.
Then, the standard variational procedure yields the equa-
tions of motion [11]:

R„——,'g„R =6H„g H —g„Hg H

with group properties included through

de'= —
—,'C', e he', (2.14)

with Tr(P)=0. The matrix P measures anisotropy. This
choice facilitates evaluation of the equations of motion,
as it provides the same general expressions for all
isometry groups. Formulas for a specific group are ob-
tained upon substitution of the values of structure con-
stants. Notice that homogeneity constrains the axion
field b to depend only on time.

All this at hand, it is not difficult to compute the terms
which appear in the equations of motion. For example,
the Ricci tensor and the scalar curvature are [14]

where C'b, are the structure constants of the group in
question. These and further details can be found in [13].

I choose to work in the nonholonomic basis (e = dt, e',
a =1,2, 3). The metric then depends only on time, and is
conventionally given by

—1 0
0 R2( 2P) (2.15)

ab

From (2.5),

dV=O,

(2.7)

(2.8)

KR =E+ +o. o'0 3 ab

R, = —C „o'b —C"dbo", ,
(2.16)

and as long as our manifold has vanishing first cohomolo-
gy, which is true at least locally for Bianchi models, all
closed one-forms are exact. Thus,

+'"R
b

R =2++4''+~ ~'b+"'R
ab

R b
— — &h tr b+ o'b-

h 3

H=*db

and we can rewrite the equations of motion as

Rpv 2pvR = 12XpbXvb 6gpvXgbX 6

+4& [v'g e„ i (Xt'b)R ]—Ag„

d6 =dcoL

(2.9)

(2.10)

(2.11)

(overdot denotes time derivative and K and o,b are the
volume expansion factor and the shear, respectively).
However, I will not dwell on the general computation of
the LCS contributions to the energy-momentum tensor
here. The computation is tedious and not essential for
the remainder of the paper. I will, however, discuss the
axion equation of motion (2.11) in more detail, though.

It is easy to see from the structure of the metric (2.13)
and the definition of the LCS form (2.3) that it can be
written as

d=e X&, (2.12)

Here we allow for the possibility of defining tensors in
a general nonholonomic basis, where coordinate tangent
vector fields 8& are replaced by X&. In such bases, the ex-
terior derivative operator is

coL =B,b, (t)e'Ae" Ae'+ A,b(t)e Ae AE (2.17)

where B,b, and A, b are antisymmetric time-dependent
functions calculated from the metric and the structure
constants. Then, using (2.14),

where e are one-forms dual to vector fields Xi [12]. The
connexion forms can be computed in the usual way, as
explained in [12].

Bianchi models encompass all possible realizations of

drool =[B,b, (t)+ Ad, (t)C b, ]E Ae'Ae Ae'.

Therefore (2.11) reads

(&h b)'= —,'[B,b, (t)+ Ad, (t)C b, ]c'"',

(2.18)

(2.19)
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(&h b)'= —,'[B,b, (t)+2Ab, (t) A, ]e' ' . (2.21)

Equation (2.21) can be integrated immediately for class
A models. This is not true for class 8 models, not even in
the diagonal cases. It is easy to show that for diagonal
Bianchi type IV and type VIII, &o the second term in
(2.21) is not a total derivative. I will hence concentrate
on class A models. For them,

where e'"' is just the standard antisymmetric symbol. At
this point it is useful to recall the MacCallum-Ellis
classification [14] of Bianchi models based on the form of
the structure constants. The structure constants can be
written out as

bc M ~dbc + ~c~ b ~b~ c (2.20)

where M is a symmetric matrix and 3 a 3-vector.
Bianchi Inodels are classified according to whether A,

vanishes (class A) or does not vanish (class B). Inserting
(2.20) in (2.19) and keeping in mind that A,b is antisym-
metric, we obtain

for Bianchi types I—VIII. Hence the inequalities are de-
rived:

(3.6)

(3.7)

(3.8)

T„=12X„bXb —6g„X&bX b+ A„

A„=4V [ g e„k (Xrb)R ] .

(3.9)

(3.10)

Simple examination of (3.6)—(3.8) leads to Wald's
theorem. Note that the strong and dominant energy con-
ditions were of crucial importance in the argument, as
they led to the inequalities above. Formally, the in-
clusion of the LCS terms does not change the guise of the
problem since the equations (2.10) closely resemble (3.1).
Nevertheless, the LCS terms turn out to have quite disas-
trous effects on the no-hair conjecture. If we cast (2.10)
in the form (3.1), we obtain the following expression for
the energy-momentum tensor:

b = —+ —B,b, (t)e'"',
h 6 h

where C is an integration constant.

III. THE NO-HAIR CONJECTURE

(2.22) It is implicitly assumed that the right-hand side of (3.10)
is symmetrized in p and v. The tensor A„ is clearly
traceless, which is a consequence of the first Bianchi iden-
tity for the curvature:

R p~ 2 gp~R Tp~ Agp~ (3.1)

Basic content of the no-hair conjecture has been men-
tioned in the Introduction. Roughly, it states the
sufFicient conditions under which an expanding universe
continues to expand forever, with the Hubble parameter
asymptotically approaching a constant. It has been prov-
en for Bianchi models by Wald [4], and his result can be
expressed as follows.

Theorem. All Sianchi models except Bianchi type IX
dynamically described by Einstein 's equations

A"„=4V [&g e„k (Xrb)R " ]=0 . (3.11)

TO0=6b + Boo,

Too+ —,'T=12b +BOO .

(3.12)

(3.13)

With the conventions layed out in the preceding section
and after some straightforward but tedious algebra, Aoo
can be produced:

A quick look shows that this energy-momentum tensor
does not always meet the SEC and DEC. Since b depends
only on time,

which are initially expanding, and where the energy-
momentum tensor satisfies the strong and dominant ener
gy conditions, SEC and DEC, respectiuely.

b
Aoo = —(4M' o'atrbc+e elmnM hako b oc ) .

h
(3.14)

(3.2)

(3.3)

for all future directed timelike vectors t", asymptotically
approach isotropic expansion with X =(3A)'r and appear
to be matter free. Moreover, the conclusion holds true for
the Bianchi type IX model too if in-itially the cosmological
constant is larger than the initial spatial curuature with
p=0.

Wald obtained proof of the above theorem by inspect-
ing the initial value constraint equation and the Raychau-
dhuri equation, which, with the metric (2.13) and with
the help of (2.16), are

In certain Bianchi models the SEC and DEC hold due to
the properties of the structure constants. This is the case
for general Bianchi type I and type V, as M' =0 there.
Further scrutiny reveals that Aoo vanishes for the diago-
nal Bianchi type-III and type-IV models, since for these
M' is off-diagonal. Therefore, for these models Wald's
proof is unaffected and the no-hair conjecture holds.

Still, (3.12) and (3.13) in general are not always posi-
tive. Rather, their sign is determined by the dynamics,
and the axion equation of motion plays a significant role.
This suggests that breakdown of the no-hair conjecture
could occur [15]. A definite example featuring such be-
havior is constructed in the next section.

g &b —& ~3~R +/+ T—2G ~bO 00 ~ (3.4) IV. THE BIANCHI TYPE-II MODEL

K+ ,'Ic. =A cr,bo'" (Too+ —,
'—T). — —(3.5)

The SEC (3.2) and DEC (3.3) imply positivity of Too
and Too+ —,'T, and the 3-space curvature ' 'R is negative

The simplest Bianchi model which entails breakdown
of the cosmic no-hair conjecture incited by the LCS
terms is the diagonal Bianchi type-II model with only one
anisotropy function, p2=p3= —p, /2. Its metric is [13]
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ds = dt—'+R'Ie ~(e')'+e ~[(» )'+(»')']j,

with

E' =dx x dx

=dx
e'=dx' .

(4.1)

(4.2)
R =exp( ——43@)R' . (4.8)

x ' =exp(p)x '

x =exp(2p)x

x =exp(p)x

followed by a similar redefinition of the scale factor R,
which could be interpreted as an isotropic dilation:

e4P . e2P
K+K =3A+ +18bP

R
(4.3)

1+12b —18P P+KI3
R

2 e4P —8b —12bP +4Kb13
3 R R R

P P . e P—12P +6KP + 18P

(4.4)

K =A+ + P+6b —+18bP
3 4R2 4 R

(4.5)

~ 1 e'P 3 ., e'Pb= C+ ——RP
6 4 R

(4.6)

The structure constants of the Bianchi type-II group are
incorporated in the formulas above via the definitions of
the nonholonomic basis one-forms.

Derivation of the equations of motion (2.10)—(2.11) is
easy. Details can be found in the Appendix. The equa-
tions are

In terms of these new variables, the metric is formally the
same as (4.1)—(4.2) with P replaced by

13'=13+ ,'p . - (4.9)

The variables R' and P' represent a fully legitimate
choice for the metric, as again Tr(P') =0. Hence this in-
dicates that one of the initial values of the two functions
is physically irrelevant since it can be changed by the
above transformation. Only the ratio g=(e ~/R )~, is

physically significant, since it is invariant under the trans-
formation (4.7)—(4.9). If we define the scaled variables
r =R /R (to ) and a =13 P(to ),—the parameter g plays the
role of the effective coupling constant. Thus we can set
R (to)=1 in conformity with the similar convention em-

ployed in the study of the Robertson-Walker models.
Actually, this selection is the final step in gauge fixing the
theory, since the freedom of choice of the initial value of
R is a remnant of the general Gl(4) gauge invariance
which has not been broken completely by picking the
metric (4.1)—(4.2). Clearly, we could have also chosen to
fix Po and leave Ro arbitrary.

Having set forth all the necessary preliminaries, we can
investigate Eqs. (4.3)—(4.6) at last. A class of exact solu-
tions is easy to obtain. The form of the equations hints at
an educated guess of trying

R =—e'P,=1 2

7f
(4.10)

Equations (4.3) and (4.4) are the two independent spatial
Einstein s equations, and Eq. (4.5) is the initial value con-
straint. Note that the axion equation (4.6) is first order.
Indeed, (4.6) is the first integral of (2.11), as discussed at
the end of Sec. II. The parameter C is the aforemen-
tioned constant of integration. Also note that the axion
appears in the equations of motion only through b, not b.
This is exactly what one should expect since the theory is
invariant under the global U(1) axial group, which shifts
the value of the axion field by a constant. Furthermore,
although the theory is apparently higher order in curva-
ture by the presence of the LCS terms, the equations
above still contain only first and second time derivatives.
The higher-order curvature effects are manifested in ap-
pearance of the powers of derivatives greater than two.
Before we embark on solving Eqs. (4.3)—(4.6), we digress a
little and emphasize an extra symmetry that the metric
(4.1)—(4.2) has. Our attention is placed upon the fact that
a solution to the system of equations above, in principle,
should involve five integration constants including C.
However, the metric possesses an extra symmetry which
eliminates one of them. Consider an anisotropic dilation
of the spatial coordinates of the form

where g is defined in the preceding paragraph with C =0.
This ansatz makes the equations of motion independent
of both R and P and further gives the identity

K=6P . (4.1 1)

It is not difficult to show that consistency of the system
(4.3)—(4.6) requires 13=p=const, and then p and g are
solutions of the algebraic equations below:

18@+2
15(3@+—') —

—",,

3(126p —15p ——', )

2(15@+2)

1/2

(4.13)

p'g p'g p
(4.12)

36p g —243p g +4g —270p +6g +24A=0 .

The solutions can be represented in the parametric form
with the introduction of a positive parameter p ) 9.

' 1/2
18@+2

15(3p + —') —64
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and they exist for all A~1.64144. The axion equation
reads

(4.14)

Our interest in these solutions is self-explanatory, as they
actually violate the no-hair conjecture. Namely, al-
though the cosmological constant is positive, and the
universe can be initially expanding, and at large times the
volume grows exponentially, according to

C

&g =exp(6pt), (4.15) 4

it is not matter free. The key to such behavior are the
identity (4.11) and the LCS terms, which provide for con-
stant nonvanishing shear, whence the resulting axion
hair.

The violation of the no-hair conjecture we found above
indicates that even more severe departures from it can
emerge. We can concoct the mechanism to account for
possible departures. Look at the initial value constraint
(4.5), and remember that in Wald's proof it led to the in-
equality (3.6), which prohibited the change of sign of K.
Then note that in our model the LCS term could reverse
the argument. It is linear in b, and thus could become
negative and large if the evolution drives b towards nega-
tive values, and simultaneously keeps P e ~/R approxi-
mately constant for a finite time. So it is contrievable
that the LCS term might prevail over the positive terms
in (4.5) and by continuity force IC to change sign. Furth-
ermore, the negative E at this moment can decrease K
down to ~IC~ )A and diminish the LCS term. The con-
verse of the no-hair theorem would then lead to recol-
lapse, as the model would satisfy the same inequalities of
Wald's proof, only with negative E.

Complexity of the equations of motion forces us to
resort to numerical methods to investigate the possibility
elaborated above. Indeed, we confirm the conclusion of
our naive argument. To obtain a complete description of
the solutions, we recall they are labeled by four indepen-
dent parameters, A, C, /3o, and Po. The initial value of the
Hubble parameter is determined from (4.5). We elect to
fix f3o and f3o and observe how solutions behave if we vary
A and C. The results are presented in Figs. 1—4.

Figures 1 and 2 correspond to PO=O, Pc=0. We find
the half-plane of positive A to be divided in two regions,
one where the no-hair conjecture holds and the other
where the universe recollapses (Fig. 1). A typical recol-
lapsing solution is given in Fig. 2. The time when initial
singularity is reached is ht =tz, where tz is the Planck
time. Qualitatively the same picture is obtained for non-
vanishing but small Pz, Pz.

When initial values are large, the situation becomes
more complicated. It turns out that all solutions violate
the no-hair conjecture. Besides the solutions which
feature recollapse, we find those which asymptotically
tend to the exact solutions (4.13) instead of obeying the
no-hair scenario (Fig. 3). This is no surprise since the
solution (4.13) actually replaces the corresponding
asymptotia K =const, P=O of the Einstein's theory. The
numerical investigation of these solutions displays that
they are stable in a large region of the parameter plane.

FIG. 1. b —C parameter plane for the PO=PO=O case: for
positive A, solutions either experience recollapse (region I) or
feature the no-hair conjecture (region II). Region III is
kinematically forbidden and region IV corresponds to negative
A.

There is yet another type of solutions that seem to have
both R and P singular at some finite time (Fig. 4). In the
A —C parameter plane these appear where we would ex-
pect behavior of the type of Fig. 3. They originate from
the fact that P not only controls the evolution of the an-
isotropy, but also of the axion, as can be seen form taking
a derivative of (4.6). So, a positive large fI implies nega-
tive large b, which in turn increases the value of b and
further speeds up the increase of magnitude of P, leading
to the behavior such as we observe. An effect of such
type is a manifestation of the higher-order curvature
terms in the equations. More detailed study of it seems
to us to be physically unjustified, if we accept that the
terms that produce it are really perturbative corrections
in the superstring action.

V. CDNCLUSIQN

0.2 —0.4 1.4

tp

-2--

FIG. 2. A typical recollapsing solution: A= 1, C = —0.26.

I have discussed the validity of the cosmic no-hair con-
jecture in the superstring motivated theory of gravity and
Kalb-Ramond axion field. In the definition of the axion
field strength the Lorentz Chem-Simons form, whose ap-
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R i3
= exp(2P)Pe h e

R 1O
=

K P
3 2

exp(4p) e h e

~ ~ 2
P+K p+ K o

3 32

K P 1+ exp(4p) e h e1 3

3 2 4R

3R z3
= exp(2P)Pe h e '

2R
2 (A2)

Then we use (Al), (A4), and (3.11) to evaluate the LCS
energy momentum:

e2P
A co =18bP

e 2P 2P 2P 6P
A „=—12(bP) 8K—bP 6b—P 8b-

R R

(A5)

2P e 2P 2P 6P
322= 233=6(bp) +4Kbp +12bp +4b

R R R

To compute the Einstein's equations we rewrite them as

exp(2P)Pe he
'2

K P K
R = ———+ ——P

3 2 3
eOp 2

R pv Tp 2g v T+Agpv

R=4A —T .

After a little algebra, these, (2.16) and (A5) yield

(A6)

K P K
R = ———+ ——P

3 2 3
Op 3

aA,B =H
A( R ) (A3)

Computation of the Ricci tensor from the formulas
above is trivial; it gives the well-known results
[4—6, 12,13]. We will calculate the LCS energy momen-
tum. If we define the tensor p„by

K 4P 3 . 2P
=A+ +—P +18bP

3 4R 4 R
4P 2P

K+K =3A+ +18bP
R

2 e4P - . e'P
P+KP= —— —12(bP)'

3 R R

(A7)

where brackets denote symmetrizing over the enclosed
indices, the LCS energy momentum can be computed by
formula (3.11) as its covariant derivative. Using the iden-
tities (Al) and (A2) we find the nonvanishing components
of B„

231 132 123 321

e 2P 2P 6P—12bP —8KbP —8b
R R

At the end we obtain the axion equation (4.6) from
(2.3), (2.22), and (Al). Since the LCS form is

T

3 K P . e4t'
p+

2 3 2 R
(A4)

e 3
coL =6 ——P R e P dx ' h dx h dx (A8)

B1O1 = 2B2O2 = 2B3O3 = 2BO11

2P=4B022 4Bo33

Eq. (2.22) leads directly to (4.6). Then, with a little more
manipulation, (A8) and (4.6) lend to deriving (4.3)—(4.5).
Q.E.D.
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