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Chaos in mixmaster models
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We apply the methods developed in our previous papers to investigate chaos in mixmaster cosmologi-
cal models. We show that these models have an infinite relaxation time and zero Kolmogorov entropy
near the singularity. Therefore they exhibit a power-law instability instead of an exponential one. From
the point of view of ergodic theory these systems should be classified as the so-called E systems.

I. INTRODUCTION

There is a class of chaotic dynamical systems in general
relativity which describes the dynamics of Bianchi type-
IX or type-VIII homogeneous cosmological models.
Their chaotic behavior near the singularity consists in the
fact that the evolution of three scale factors which oscil-
late anisotropically is very sensitive to initial conditions.

One can distinguish at least four approaches to the
problem of chaos in the mixmaster model. The first is as-
sociated with papers by Belinskii et al. [1]. In this ap-
proach the evolution of mixmaster models is approximat-
ed by a series of Kasner epochs.

The evolution consists in consecutive transitions from
one Kasner epoch to another. During such a transition
one of the oscillating scale factors starts decreasing and
the decreasing one begins to oscillate.

In Belinskii s representation one is drawing conclusions
about chaotic behavior not from the precise evolution of
the model but from its approximation. Both oscillating
scale factors will decrease or the number of oscillations
during the given epoch will be random.

The second approach traces back to Misner's paper [1]
where the Hamiltonian [Arnowitt-Deser-Misner (ADM}]
description of mixmaster models was developed. In the
ADM formalism the universe particle moves inside the
potential well with expanding walls. This can also be re-
garded as a billiard ball on expanded walls. Hence, in
Misner's representation chaos is a consequence of elastic
collisions of the universe particle with walls of the poten-
tial well. A collision corresponds to the transition to a
new Kasner epoch. The third line of argument follows
Barrow's idea of describing the evolution of mixmaster
models by certain diff'erence equations [1]. These equa-
tions establish the dependence of parameters characteriz-
ing the system in two consecutive Kasner epochs.

In the fourth approach one approximates the dynamics
of mixmaster models by separatrices of the corresponding
dynamical systems. This method was developed by Bo-
goyavlenskii [2] and is often referred to as the maximally
nondegenerate compactification method. Its key idea is

to construct a compact manifold S with boundary I so
that the corresponding dynamical system on S can be
smoothly continued to I in such a way that it will have
maximally nondegenerate critical points on I . Then the
problem is to investigate the nondegenerate critical
points (or sets of them) on S along with their separatrices.
In mixmaster models the separatrices join the unstable
critical points. These series of separatrices approximate
the complex dynamical regimes of real physical trajec-
tories. In some cases the critical points form continuous
sets. Then the separatrices define a transformation from
one set to another. In this way we obtain a discrete com-
binatorial model of chaos. The second mechanism of sto-
chastization is associated with indeterminacy of transi-
tions along separatrices in the case when there is a pencil
of separatrices X„.. . ,X at a certain critical point.
This indeterminacy implies the sensitivity of trajectories
with respect to initial conditions.

In our approach we represent mixmaster models as
geodesic Aows on a certain Riemannian manifold and
then investigate their local instability [3—5]. First re-
marks about the stability of geodesic Aows and its con-
nection with curvature have appeared in Barrow's paper
[1] in 1982. Further studies by Barrow and Chernoff ['1]
suggested that chaos may appear in mixmaster models
due to existence of chaotic one-dimensional maps associ-
ated with them. Although these results are correct and
mathematically rigorous there is a significant difference
between the discrete dynamics studied in Ref. [1] and the
full mixmaster dynamics.

We use the precise dynamical equations instead of their
approximations, which is the main advantage of our ap-
proach. A criterion for local instability of geodesic Bows
is formulated by means of the averaged geodesic devia-
tion equation. It implies that the negativity of the Ricci
scalar is a suflicient condition for local instability [1,2].
As a consequence this method allows us to describe such
properties of the model either near or far from the singu-
larity that cannot be seen within the frame of other ap-
proaches. In particular we show that the Lyapunov ex-
ponents are zero near the singularity and so is the Kol-
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mogorov entropy. Therefore the mixmaster models ex-
hibit a power-law instability near the singularity instead
of an exponential one. (It is obvious that the divergence
rate of adjacent trajectories depends on the time gauge
adopted. There is a freedom of time gauge in general re-
lativity which makes the notion of Lyapunov exponents
useless since they are not invariant under time
reparametrization. The detailed discussion of this prob-
lem is presented in Ref. [6].) A class of such systems is
known in mathematics [7]. The outcome of our investi-
gations is confirmed by numerical studies of mixmaster
models.
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We define the A, parameter so that
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Let us introduce a new time parameter A, . Then one can
rewrite the formula (8) in the form

a,.-(q(t(A, ))) =2W(q(t(A, ))) .dq'dq J d A,

dt

II. REDUCTION OF HAMILTONIAN
SYSTEMS TO A GEODESIC FLOW or

dA,

dt
=2 W(q(t(A, ) ) )

BL
aq'
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Hence, if we define a matrix a '
(q ) so that a 'Ja~k =5k,

then

q =a pk

We shall consider the dynamical systems with the La-
grangian

L(q, q)= ,'a;J. (q—)q 'q ~ —V(q),

where B(g', g)= —,'a;~g'P is a positive-definite quadratic
form, q' are the generalized coordinates, and V(q ) is the
potential.

From (1) we obtain

dA,dt=
&2 W(q(t(A, ) ) )

I= f +2[h —V(q ) ]a;Jdq'dq~, (12)

where C is a trajectory of the system. Let us now notice
that the action (12) is independent of the parametrization
of the curve C. Therefore the equations of motion are
equivalent to extremizing the length of a curve in space
with the metric

q;~ =2[h —V(q)]a;~(q) .

If we introduce a new parameter s, so that

(13)

This choice of parameter A, assures the conservation of
energy H(p, q ) =h. The action (6) assumed now the form

and we can immediately write the Hamiltonian

H(p, q)=p;q ' L(q,p}=—,
'a'~—(q)p p~+ V(q) .

Hamilton's equations read

aa & a
,
a"'(q} p,p, —

Bq Bq

(4)

ds
dt

then the equations of motion assume the form

d q ~,. dq dq
s' " ds ds

The system moves along the geodesic and

(14)

(15)

q '=a "(q)p,

On the other hand we have BH/Bt =0 along the trajec-
tories. This implies that H(p, q)=h =const. Therefore
the corresponding constraint is

H(p, q )= —,'a'J(q)p p + V(q }=h

(6)

L(q,p)=p;q ' H(p, q)=p;q ' —h . —

rl. (q)= —
2 h V

(a V5'. +B.V5
1

2 h —Vq
—B.Va j'a& )

+ 'a'~(da +8 a
&

—Ba, ) .

If a =5, then a'"=5'" and

I ( (q)= — (B(V5' +8 V5(
1

2h —Vq

(16)

Thus the equations of motion can be obtained by extrem-
izing the action

I= p;q 'dt (7)

with the Hamiltonian constraint —,'a; (q)q 'q + V(q)=h.
The constraint condition which rejects the conservation
of energy can be satisfied in the following way. Namely,
we have

—a, v5,.) .

Returning back to the Newtonian time t, Eq. (15) reads

q'+I'k q'q™= (18)

where a dot denotes difFerentiation with respect to t. It
can be easily checked that Eq. (18) coincides with the
Hamiltonian equations (5), i.e.,

a; q q~=2[h —V(q)]=2W . (8) q '+ I,'kq 'q (19)
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where

Ba;k Ba;,I,k(q)= —a ' +sk 2 gqs gqk Bq

(26)

The metric of a Riemannian space on which the mixmas-
ter model generates a geodesic Aow assumes the form

I & =((q,p):—,
'+' (q)pip~+ V(q)=h } (20)

In this way the dynamics of a system described by the La-
grangian (1) is reduced to a problem of geodesics de-
scribed by Eq. (15).

The motion of the system is restricted to the subspace
I & of phase space I:

where

1

qlq2q3

0 q3 q2

q3 0 q1

0

= —PGg bdq dq = P g bdq' dq (27)

or to a subspace Q of the tangent fiber bundle TM, where
M is the configurational space of the system: The Hamiltonian (24) can be rewritten as

Q=((q, q):a; (q)q 'q J=2W) . (21) 3 3 3
H =2 g p;p, —g p,'+2 g exp(q, +q, )

Therefore vector fields normalized in the sense of the
metric

g,J. =28'a;j

belong to Q:

(22)
3—g exp(2q, . ) . (28)

Q=((q, u ) g(u, uq)=1) .

Hence the problem is reduced to solving the geodesic
equation in Riemannian space (M, g). The equations of
motion read

One can notice that it is a particular case of the so-called
disturbed Toda lattice [4]:

n n+1
H= —g a;Jp;pj+ g bk&exp( Iak, q ]+[aiq] )

i,j =1 k, 1=1

V„u =0, (23) (29)

where u is the vector tangent to a geodesic and V denotes
the covariant derivative. We should bear in mind that
the new parameter s, such that dsldt =2W, is now mea-
sured along the geodesic. The Ricci scalar for the space
with metric (22) is

R=4W (W' ) g' —2W (W' ) (W' ) g'
, 1J , l ~J

(24)

where a„.. . ,a„+, are vectors in n-dimensional space
IR", a„=(a„,. . . ,a„),q is the vector (q„. . . ,q)„ in R",
and there are two scalar products (x,y)=a; x;yj and
[x,y] =x;y;.

One can show that systems described by the Hamil-
tonian (29) are the hydrodynamical-type systems of the
form

The formula (24) will be useful later on. u '=r' u Ju'
jk (30)

III. MIXMASTKR MODELS AS
HAMILTONIAN SYSTEMS

q2q1

qiq3
2

q2 q2q3 (25)

3 3
VG= —W= —2 g n;n q;q —g n, q, .

i(j i =1

where T and V& are the kinetic and potential energies, re-
spectively, n, = 1 for the Bianchi type-IX model and
n, =n2= —n3=1 for the Bianchi type-VIII model. q;
are the squared scale factors. In the case of vacuum
models the Hamiltonian constraint is

Mixmaster models belong to the so-called class- A mod-
els of the Hamiltonian [4,8]:

H=T+ VG, T=g pgpb ~

Such systems appear in approximating the hydrodynami-
cal equations by Galerkin's method. According to Ref.
[9] the hydrodynamical systems (30) with constant I Jk
have an energy integral quadratic in u and the Aux-
conserving phase volume divu '=0.

The above considerations give rise to three other ap-
proaches to the problem, which have been announced by
Bogoyavlenskii [4]: namely, (i) mixmaster models as dis-
turbed Toda lattices [10], (ii) mixmaster models as
hydrodynamical-type systems, and (iii) mixmaster models
as hydrodynamical-type systems.

Let us notice that insofar as the kinetic energy is posi-
tively definite in classical Hamiltonian systems it is
indefinite for the system (27).

It is a specific effect arising from the relativistic nature
of Bianchi cosmological models. The corresponding
dynamical system with the Hamiltonian (27) after the
transformation of time t ~v.:

dr=(q, q, q, ) '"dt

assumes the form
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aHPl=
Bq;

[2—p;(pJqJ+pkqk p;—q; )

+ ,'n;—(n/q +nkqk n—, q, .)],
BH

q; =
Z

=2q, (p, q, +pkq. p;q; —»
Bp;

(31)

where i,j,k =1,2, 3 and the overdot denotes the
differentiation with respect to ~.

IV. CHAOS IN MIXMASTER MODELS

3——y n,4q,4
2

(32)

In the case of the Bianchi type-IX model
(n; =nz=n~= 1) formula (32) reads

1 3 3

R= ——W —g q;+ gq, . q4;=i '

q;(q +qk)
(i,j,k)

(33)

(i,j,k)=[(1,2, 3),(2, 3, 1).(3, 1,2)J. From formula (33)
we immediately see that the following three conclusions
are valid.

(1) When tV=const, we have R =0. This corresponds
to the Bianchi type-I model. The fact that the Ricci sca-
lar is equal to zero rejects the integrability of this model.
More generally, if the model admits the constant poten-
tial near the singularity, then its dynamics is always regu-
lar. In terms of Lyapunov exponents R =0 implies that
the Lyapunov exponent is also zero.

(2) In Belinskii s first approximation when q; ))q2, q3,
R is negative, i.e., the system has the property of local in-
stability. In terms of Lyapunov exponents it implies the
existence of a positive exponent.

(3) In Belinskii's second approximation when

q; =q2 &&q3, R is also negative generating in this way the
local instability. There is a positive Lyapunov exponent
in this case, too.

Local instability of a geodesic How on Riemannian
space with metric (27) depends on the Ricci scalar [Mis-
ner and Chitre introduced a coordinate system in which
the mixmaster system becomes the motion of a massless
particle in a hyperbolic triangle in the Lobatchevskii unit
disc with negative curvature. This unit disc approach
has been discussed by Pullin [11]. However this ap-
proach is less convenient for analytical studies being
equivalent to certain billiard problems. We emphasize
that the criterion of negativity of the Ricci tensor is a
nontrivial conclusion from our previous works cited
@bove. It is not a mere statement that geodesics on a
space with negative curvature diverges (this is true only
for spaces with constant curvature)]

3 1 3 3
R= ——W —Wg n;q;+ gn;njq;qj4 4 l l l l

In general it can be shown that the negativity of the
potential VG determines the local instability of a geodesic
Row. Then the condition that VG &0 is equivalent to
P,'&0; i.e., it means that the Ricci scalar on hypersur-
faces of constant time is negative. In other words the lo-
cal instability is associated with the averaged curvature
of hypersurfaces of constant time rather than with that of
a spacetime as a whole. On the other hand we have
shown in Ref. [2] that the negativity of the Ricci scalar
on compact three-dimensional spaces is sufficient for
creating chaos in geodesics. It illustrates a strong con-
nection between the chaotic behavior of scale factors and
the behavior of geodesics in mixmaster models. It is an
interesting feature because chaos in geodesics represent-
ing histories of real observers has a clear physical mean-
ing in contrast to the chaotic behavior of scale factors.

As discussed in Ref. [11],the Ricci scalar R allows us
to determine the mean time scale for mixing:

—1/2
R

7
3

(34)

where k =min
~

—R /3 ~. Therefore A, ~O as R —+0. This
Lyapunov exponent is determined from the averaged geo-
desic deviation equation in a Fermi basis, which in our
case describes a harmonic oscillator with frequency
co=( —R/3)'~2. The mean time scale for mixing is in-
versely proportional to this frequency.

It can be seen from Eqs. (32) and (33) that the Ricci
scalar is zero for the asymptotically axially symmetric
solutions q& =q2, q3 =0. It is associated with the integra-
bility of the system in this case. On the other hand for
q, —

q2
=e « 1, q3 =0 we are in the neighborhood of axi-

ally symmetric solutions known as the so-called Taub
solutions, and then R &0. It means that the irregular
chaotic behavior is concentrated around unstable critical
points (saddles) q;=q, qk =0, p,. =const. It is also con-
centrated around separatrices which join these points.
However, we are not able to show it explicitly because we
do not know the exact solutions corresponding to separa-
trices.

The mechanism creating chaos around separatrices has
been demonstrated for some simple dynamical systems
[7]. It turns out that the phase space is organized by
separatrices around which irregular motion concentrates.
Thus however small and weak the perturbation of the
system is it always significantly modifies the system s be-
havior at the vicinity of separatrices.

The divergence rate for neighbor trajectories is given
by the relation

D(r)
D(0) o

~exp v' —R/3 I 8'dr (36)

where dr=dr/V, V=+q, q2q~ is the volume of hyper-

According to the idea developed in Ref. [12] r is a natu-
ral time scale determined by the chaotic dynamics. The
minimal value of the Ricci scalar is reached at R ~0
which implies the infinite relaxation time ~=ao. The
Lyapunov exponent is equal to

(35)
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surface of constant time. When we are in Kasner epoch,
when %~const, dr=dt It, and thus

)const X V —R /3

D (0)
(37)

p(x)= C
U(x )

where C is a normalizing constant and U is the velocity.
After simple calculations we obtain

p(x)=
2E 23

CO X

1/2 (38)

As could be expected this density is maximal near the
turning points where the velocity is zero. It means that
the particle can be localized with the greatest probability
in the neighborhood of turning points. An analogous
consideration of mixmaster models yields the correspond-
ing density function is concentrated in regions where the
potential is zero. In this case the Ricci scalar is zero and
so is the Lyapunov exponent. Therefore the high concen-
tration of chaotic motions around separatrices is associat-
ed with vanishing Lyapunov exponents near the singular-
ity.

The second argument is based on some general reasons.

where const is positive. The detailed discussion of Eq.
(37) is possible if we know how the Ricci scalar behaves,
i.e., if we know the behavior of scale factors q;. There-
fore we shall examine what it tells us about mixmaster
models in regions where the dynamics is qualitatively
known. It can be explicitly shown from formula (37) that
if we approximate the evolution of the mixmaster model
by a series of Kasner epochs, then the system is charac-
terized by a power law t, a) 0 divergence rate of adja-
cent trajectories instead of an exponential one. It implies
that going backward in time toward the initial singularity
D(t) tends to zero. In terms of Lyapunov exponents it
means that they also tend to zero near the singularity. Of
course the result about the rate of divergence of nearby
trajectories depends on a time gauge adopted. In particu-
lar a power-law instability in time t corresponds to a hy-
perexponential one in time ~. A more detailed discussion
of this problem is presented in a separate paper [6].
Several valuable comments may be found in Ref. [11].
However it turns out that hyperexponents vanish near
the singularity and so do the Lyapunov exponents.

We shall now give some other theoretical arguments in
favor of this. These arguments have been confirmed nu-
merically in Ref. [13]. The first argument arises from the
observation that for a harmonic oscillator with the total
energy E =

—,'mx + —,'men x we can define the probability
density p(x) for finding the particle within the interval
x,„&x &x,„(x;„+x,„are turning points) in the fol-
lowing manner:

It is valid for Bianchi type-IX models only. A substantial
dift'erence between the evolution of Bianchi type-IX and
Bianchi type-VIII models lies in thier long-term behav-
ior. Bianchi type-IX models represent a closed universe,
while Bianchi type-VIII models are open. Because both
models exhibit chaos near the initial singularity, the
problem lies in the nature of their final states. In the case
of a Bianchi type-IX model we can use a time-reversal ar-
gument [14]. Namely, the vacuum Einstein equations are
invariant under time reversal. Since the vacuum Bianchi
type-IX model begins and ends in a singularity, it would
seem that the approaches to these singularities are simi-
lar. This is not really clear in the Bianchi type-VIII case.
The initial singularity of the Bianchi type-IX model is
reached at ~= —~ whereas the final one at ~=+ ~.
The Lyapunov exponents in these two states are

A( —oo )= lim
&—R/3 y~

0

A,(+ oo ) = lim
7~+ 00

v —R/3 y~ 8'dw .
7 0
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This implies that A, ( —oo ) = —
A,(+ oo ), but from the

time-reversal argument we have A, (
—oo )=A,(+ oo ) and

thus it must be A, ( —oo ) =A,(+ oo ) =0. It can also be seen
from formula (37) that the initial (t ~0) and final (t ~ to )

singularities may be indistinguishable only if 8 —+0.
The Kolmogorov entropy is the measure of loss of in-

formation about initial conditions. For typical chaotic
systems the following quantities are of the same order:
r, '-k-h where ~, denotes the correlation splitting
time, A, is the Lyapunov exponent, and h is the Kolmo-
gorov entropy. This relation is true for systems which ex-
hibit an exponential instability. However, the correlation
splitting can occur not exponentially but according to a
power-law formula. In such systems the relaxation time
is finite but despite this they still have the mixing proper-
ty.

On the other hand we can measure the stochasticity of
the system by ratio of the configurational space volume
for which R & 0 to the volume for which V(q ) & 0. This
ratio tends to zero while moving toward the singularity
which can be interpreted as the vanishing entropy near
the singularity.

Concluding our considerations we can state that the
mixmaster models are not the typical examples of chaotic
Hamiltonian systems. Their Kolmogorov entropy and
Lyapunov exponents vanish near the singularity and at
the same time the mean time scale for mixing is infinite.
In case of typical chaotic systems all these quantities are
finite. Nevertheless such exotic dynamical systems are
known in mathematics [7] and they should be regarded as
the so called K systems.
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