
PHYSICAL REVIEW D VOLUME 44, NUMBER 8 15 OCTOBER 1991

Quantum-field-theoretic analysis of inflation dynamics in a (2+1)-dimensional universe
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We reexamine inAationary scenarios based on slow-rollover transitions, which occur under various ini-

tial conditions of the inAation-driving scalar field. We examine inAation dynamics using a recently

developed calculational technique for studying a quantum-field-theoretic system in an external environ-

ment that is itself changing with time. This method, based on the functional Schrodinger picture, uses a

self-consistent gaussian approximation that, unlike ordinary perturbation theory, reAects some of the

nonlinearities of the full quantum theory. Our treatment is confined to planar universes, where the ap-

proximation techniques do not suA'er from well-known problems associated with scalar field self-

interactions in four-dimensional space-time. However, for these toy models we can present concrete and

explicit results.

I. INTRODUCTION

Inflationary cosmology [1] attempts to answer some
fundamental cosmological questions and, moreover, it
provides a possibility of constructing a self-consistent,
predictive cosmology. Various inflationary scenarios
have been proposed during the last decade to overcome
the difficulties in Guth s original model [2], for example,
the "new" inflationary scenario [3], "chaotic" inflation
[4], and more recently "extended" inflation [5] and its
variations. However, so far it seems that none of these
models avoid unnatural fine tunings and/or unnatural ini-
tial conditions. In this article we reexamine the earlier
inflationary scenarios based on "slow-rollover" transi-
tions, such as the "new" and "chaotic" inflation. These
models are attractive since the idea behind them is rather
simple compared to the more recently proposed "extend-
ed" scenarios and therefore deserve further investigation.

The slow-rollover transition was first introduced in the
new inflationary scenario [3] to overcome difficulties with
the original model [2]. In the new inflationary picture,
inflation occurs during a temperature-induced
symmetry-breaking phase transition. The scalar field N,
whose expectation value ( @) =y plays the role of the or-
der parameter, is initially in thermal equilibrium when
the temperature is very high (T)) critical temperature
T, ). The finite-temperature effective potential [6], which
describes the energetics of N, possesses a global minimum
at cp=O for T) T, . At zero temperature, however, the
potential V(y) has minima at g=+y, and is extremely
flat near the maximum at y=0 (see Fig. 1). The behavior
of the scalar field during the phase transition, based on
the static effective potential, is as follows: as the universe

cools the scalar field gets caught at y=O, in a state called
a false vacuum. The energy density of the universe is
dominated by the constant vacuum energy density
V(qr=O)=po and the universe evolves rapidly into a de
Sitter space, which can be described by the metric

where the expansion rate y=+(Sm/3)G&po with Gz be-

ing Newton's constant. The scalar field hovers for a
while at y=0, and then eventually begins to roll down
the gentle hill of the potential. The inAationary era con-
tinues during this slow rollover, since V(p) stays approxi-
mately constant for

~ y ~
((y, .

The most remarkable consequence of the slow-rollover
transition is the prediction of density fluctuations [7],

FKJ. 1. Typical form of the potential function V(gl in the

new inAationary scenario.
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whose origin is the quantum Auctuations in de Sitter
space, occurring during the slow rollover. The predicted
density Auctuations must satisfy the upper bound coming
from the observed isotropy of the microwave background
radiation. This gives a severe constraint on the model:
For a scalar field with a double-well potential

'2
p&(q ) =—q'—

4 A,
(1.2)

the upper bound on the self-coupling constant A, is of or-
der 10 ' . Furthermore, in order to prevent the self-
coupling from becoming large due to radiative correc-
tions, the couplings of N to the other fields must be small-
er than VA, . This poses a serious difficulty for the new
inAationary scenario: couplings must be fine-tuned and
also they are too weak to ensure thermal equilibrium, and
thus, thermal equilibrium is only one of many possible in-
itial states.

However, the picture described above is mainly based
on restricted analyses, relying on the static, finite-
temperature effective potential, which does not properly
take into account effects of nonequilibrium dynamics [8].
Moreover, semiclassical [9] or linearized approximations
[10] have been frequently made, and the full nonlinearity
of an interacting theory is lost. It is conceivable that a
more complete analysis may change this picture, permit-
ting moderate values for the scalar self-coupling A, [8].
This could allow the thermal-equilibrium initial state to
be a viable starting point, which is quite natural in the
context of the hot big-bang cosmology. In fact, the
analysis carried out in Ref. [11], taking into account
some of the nonequilibrium and nonlinear effects,
presents a picture that is quite different from the standard
new inrlationary scenario.

The chaotic inflationary model [4] was introduced to
avoid the difhculty with the initial condition in the new
inflationary model. Here, the inAation-driving field s ini-
tial state is not in thermal equilibrium with the thermal
bath. It starts out in a configuration with a spatially
homogeneous large value of q&. [The potential function
need not be a double well: it may be of the form de-
scribed by Eq. (1.2) with p ~O, A, )0 or p, )O, A, =O.]

FKJ. 2. Two types of potential function V(P) in the chaotic
inAationary scenario.

Then, initially the energy density of the scalar field is
much larger than the radiation energy and inAation
occurs while q rolls down the hill from the large initial
value toward the global minimum at y, =0 or
y, =+@/&A, , depending on the value of the parameters
(see Fig. 2). However, such an initial state is also only
one of many possible initial configurations and it is as un-
natural as the thermal equilibrium initial configuration in
the new inAationary model, if the self-coupling A, is
indeed small.

In order to survey possibilities of inAation, we need to
consider initial conditions that are more general than
thermal equilibrium or the arbitrarily chosen chaotic
configuration.

According to various classical analyses [9], there are
more general initial conditions on 4 for which the
Universe evolves into an inAationary phase by first
dynamically achieving the homogeneous configuration
where y=0, as in the new inflation (Fig. 1) or as in chaot-
ic inflation (Fig. 2). However, the physical significance of
the classical function y„(x, t ) is not at all clear. Especial-
ly for the case where y, &

rolls down from the maximum of
the potential at cp=0, the quantum-mechanical expecta-
tion value (4(x, t ) ) remains zero for all time. In fact, as
pointed out in Ref. [10], the quantum fluctuations govern
the dynamics of the early stage of the slow rollover, and
classical behavior appears only in the late time.

The purpose of this article is to study the onset of
inAation by analyzing the quantum-mechanical time evo-
lution of the inAation-driving scalar field for various ini-
tial conditions, including thermal equilibrium. We use a
recently developed calculational technique for studying a
quantum-field-theoretic system in an external environ-
ment that is changing with time [12]. This technique is
based on the functional Schrodinger picture where mixed
states are described by a functional density matrix and
the fundamental dynamical equation is the Liouville —von
Neumann equation. This equation cannot be solved for
nonlinear (interacting) systems. In Ref. [12], an approxi-
mation scheme was developed based on a variational
principle whose exact implementation leads to the (in-
tractable) Liouville —von Neumann equation. By taking a
Gaussian ansatz for the density matrix, one obtains ap-
proximate but tractable equations for the parameters
which define the ansatz. This method is a self-consistent
approximation that, unlike the ordinary perturbation
theory, reAects some of the nonlinearities of the full quan-
tum theory.

The equations that we deal with are the analogues of
time-dependent Hartree —Fock equations or large-5 ap-
proximations. As such, they suffer from well-known
shortcomings, especially in higher-dimensional field
theory [13]. Therefore we study the self-interacting sca-
lar field in three-dimensional space-time. For a given ini-
tial state (pure or mixed) the onset of inflation is studied
numerically by solving the coupled semiclassical Einstein
and matter equations, where the matter equations are
given by the Gaussian approximation.

This article is organized as follows: In Sec. II we de-
scribe the model used for the early Universe and also our
method of calculation. Section III contains the descrip-
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tion of our code used for solving the time-evolution equa-
tions. We present our numerical results in Sec. IV, and in
Sec. V we compare our results with those obtained in the
linearized approximation [10]and in the large-N approxi-
mation [11].

II. MODEL FOR THE EARLY UNIVERSE
AND METHOD OF CALCULATION

librium. With the metric (2.1), (T„) is diagonal for
translationally invariant field configurations:

& T„„)=d tag(& ~), (p )a', & p )a'), (2.5)

where (e) and (p ) are the average energy density and
pressure, respectively, and, therefore, the Einstein equa-
tion reduces to

2

In this section we describe our model for the early
Universe and discuss the calculational techniques that we
employ, including some theoretical issues such as renor-
malization.

A. Model for the early Universe

H = — =SirG [(T (4&))+(T )„].
a

In (2+ 1)-dimensional space-time ( Too )„z is given by

(T~)„,=nT',
g(3)(gg + ,'gF )—

(2.6)

(2.7)

In our model, the matter content of the Universe con-
sists of two parts: the first is a self-interacting scalar
field, while the second comprises the remaining matter
and radiation, which provides the environment, in
thermal equilibrium. We assume that the interactions be-
tween the two systems are negligible and their time evolu-
tions are adiabatic: entropy in each system is conserved
separately.

We consider a self-interacting scalar field in a (2+1)-
dimensional Rat Robertson —Walker space-time with the
line element

ds =dt a(t) dx— (2.1)

where a (t) is the scale factor describing the dynamics of
the universe. For a given scale factor a(t), the scalar field
dynamics is assumed to be governed by the action

a(to)
T(t) = T(to),a(t)

(2.8)

where to is some given initial time.
Hence, for a given initial state of the universe, the time

evolution of 4 and a(t) will be self-consistently deter-
mined by the coupled equations

2

=8m'G~((Too(4&))+nT )
a

where gii(gF) is the number of bosonic (fermionic) de-
grees of freedom and g is the Riemann zeta function.
From our assumption of adiabatic time evolution of each
system, the temperature of radiation changes with time as
1/a(t) and may be parametrized as

I= f d x X= f d x dt's/ —g —,'gi"B„4B 0& dynamical equation for N .
(2.9)

—
—,'(p +JR )4

4

4I
(2.2)

G =R„——,'g„R = —8~G( T„), (2.3)

where G is the Einstein tensor and ( T„) is the expec-
tation value of the energy-momentum tensor of the total
matter fields in the quantum state we are considering. In
our model ( T„)may be written in terms of two parts:

(2.4)

where g is the coupling between the scalar field and the
Ricci scalar R =2(a/a) +4(a'/a) of the background
metric and it takes the value g=g„:——,', for the confor-
mally coupled field, and /=0, for the case of minimal
coupling.

The behavior of the classical function a(t) is assumed
to be described by the semiclassical Einstein equation

B. Functional Schrodinger picture:
Gaussian variational approximation

We now discuss the technique that provides a concrete
dynamical equation, which governs the time evolution of
N from a given initial state.

Our calculational technique is based on the functional
Schrodinger picture [14]. The time evolution of a system
from a definite initial configuration is efficiently accom-
plished in a Schrodinger picture description where the in-
itial data consist of specifying a pure or mixed state.

In the field-theoretic Schrodinger picture, states are de-
scribed by wave functionals %'(P) of a c-number field P(x)
at a fixed time. The inner product is defined by function-
al integration,

(2.10)

while operators are represented by functional kernels:

(2.1 1)

where (T„(N)) is the expectation value of the scalar
field energy-momentum tensor in the quantum state
whose time evolution is being studied, and ( T„)„,z is the
contribution from matter and radiation in thermal equi-

For the canonical field operator at a fixed time C&(x) (the
time argument is common to all operators in the
Schrodinger picture, so it is suppressed), we use a diago-
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nal kernel, 4(x) P(x)5(P —P'); the canonical commu-
tation relations determine the canonical momentum ker-
nel, II(x) i—[5/5$(x)]5(P —P'). Both kernels involve
a functional 5 function. Hence N acts by multiplication
on functionals of P, while II acts by functional
differentiation. In this way, the action of any operator
constructed from N and II is

e(11,e)le) —0 —l, p %(p) .. 6
5p' (2.12}

The fundamental dynamical equation is the time-
dependent functional Schrodinger equation for a time-
dependent wave functional %(P, t ). The equation takes a
definite form once a Hamiltonian operator &(II,@) is
specified:

. B%' + . 5
Bt 5p' (2.13)

When the initial state of a system is a pure state, de-
scribed by a wave functional 4, Eq. (2.13) determines
uniquely subsequent evolution.

In the Schrodinger picture for field theory, a mixed
state is described by a functional density matrix [12]

P(01 A) = &P.+.(4»'P.*(42»
(2.14)

Trp= D p, =1,
where [4„[is a complete set of wave functionals and p„
is the probability that the system is in state n. The aver-
age value of physical quantities described by operators 8,
which in turn are represented by kernels 8($„$2), are
determined by the density matrix

(0~ =Trp@ fD41D42p(4'1 42)0(42 41) ~

The entropy of a system described by the density ma-
trix (2.14) is

(2.16)

dS'n=
& [p ~]+g 'p„($1)p„*($2), (2.17)

where & is some time-dependent Hamiltonian.
For a given Hamiltonian and initial condition, Eq.

(2.17), unlike the Schrodinger equation, requires addition-
al information in order to determine subsequent evolu-
tion: (dp„/dt ) must be given. We have already assumed
in our model that the entropy of the scalar field is con-
served. In view of (2.16) it is simplest to assume that the
entropy conservation holds because the occupation prob-
abilities are constant: (dp„ /dt ) =0. Then the isoentropic

S= ktiTrp lnp= ——kii g p„lnp„,
n

with k~ the Boltzmann constant. In thermal equilibrium,

the p„'s are Boltzmann distributed; i.e., they are given by

e " ~, where E„ is the energy eigenvalue of the state

4„. In general, for nonstatic situations the pn's need not
be the Boltzmann distribution, and can also change in

time.
If we assume that 4„ is governed by the time-

dependent Schrodinger equation, the time variation of
the density matrix is given by

time evolution of the density matrix is governed by the
Liouville —von Neumann equation

dp
dt

=i [p,&], (2.18)

The time-dependent functional Schrodinger equation
(2.13) and the Liouville —von Neumann equation (2.18)
are not directly integrable, except for linear problems de-
scribed by a quadratic Hamiltonian. To obtain a solution
for our system we use an approximation in which varia-
tional principles, leading to Eqs. (2.13}and (2.18), are im-
plemented approximately.

The time-dependent variational principle that yields
the time-dependent Schrodinger equation is due to Dirac
[15]: one defines the effective action I as the time in-
tegral of the diagonal matrix element of i 8, —&,

I = f«&+It~, ~l+&, (219)
and demand that I be stationary against arbitrary varia-
tions of l%) and (%l with appropriate boundary condi-
tions. This results in the time-dependent Schrodinger
equation.

In the variational principle that gives the
Liouville —von Neumann equation [12,16] one considers a
nonequilibrium effective action I given by

I = —f dt Tr p +i[&,A]
tf dA
t

—Tr(pA) l, f
(2.20)

Here A, p, and gf' are time-dependent functional kernels
and the trace is over these kernels. We impose the
boundary conditions that Al, , =1 and pl, , =po,f I

where po is some given initial density matrix. Demanding
that I is stationary against variations of p and A leads to
the Liouville —von Neumann equation for p and an equa-
tion for A. The variable A plays the role of a Lagrange
multiplier, and it is also needed to give our action a
canonical structure, which requires a pair of variables,
i.e., in a sense p and A form a canonically conjugate pair.
The boundary condition A l, , = 1 selects the solutionf
A=1 for all time and we are left with a variational for-
mulation of the Liouville —von Neumann equation.

Applying the variational principles in (2.19) and (2.20)
with a restricted variational ansatz, in the Rayleigh —Ritz
manner, one obtains approximate but tractable equations
describing the time evolution of a nonlinear system for a
given initial pure and mixed state, respectively. For the
evolution of a pure state, a variational approximation in
which a Gaussian ansatz is taken for the wave functional
has been developed in Ref. [17]. More recently, a similar
approximation for studying mixed-state time evolution
has been formulated in Ref. [12], by taking a Gaussian
ansatz for the density matrix and implementing the varia-
tional principle (2.20). In this article we shall apply this
technique. The variational equations obtained in this ap-
proximation are similar to the time-dependent Hartree-
Fock equations or large-N approximations and for a pure
state they reduce to the approximate equations obtained
in Ref. [17]using Dirac s variational principle.

The most general Gaussian ansatz for the density ma-
trix is given by
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p(pi, &2)=&sexp t f ~(x, t)[p)(x) —&2(x)]
X

Xexp —,x —
cp x, t —,'Gz ' x, y, t —iX& x, y, t

& y —y y, t
x, y

+[$2(x)—q&(x, t)][—,'6& '(x, y, t)+iX&(x,y, t)][$2(y)—p(y, t)]

+[/, (x)—y(x, t)](Gs '~ 56s '~')(x, y, t)[P,(y) g(—y, t)]] (2.21)

N& is a real, time-dependent normalization factor which
ensures trp= l. G&, 2&, and 5 are real kernels satisfying
the Hermiticity condition p(P&, $2)=p" (Pz, P, ). The vari-
ational parameters are y, ~, G&, X&,6, and X&. Let us ob
serve that a nonvanishing 6 is a measure of the amount
by which the density matrix differs from a pure state, and
is related to the occupation probabilities p„ in Eq. (2.14).
For 6 =0,p describes a pure state since it can be cast into
the form p($„$2)=%(P,)%*(gz), with 4 being a Gauss-
ian wave functional.

With the above density matrix, the linear averages are
given by

+=a 7T,

~= —a m&(t)+g„R ——y

Gs(k) =4a 'Xs(k)Gs(k),

X&(k)= —,'a 26s (k)[1—5 (k)]—2a Xs(k)

—
—,'a [k a +ms(t)+g„R],

5(k) =0,
where

(2.23a)

(2.23b)

(2.23c)

(2.23d)

(2.23e)

(2.22a)

(2.22b)

(2.22c)

+ [6& ~ (1+5)6& ](x,y, t)

+4[XsGs~ (1 —5) 'Gs X]s( xy, t),
(2.22d)

(C&(x)) =y(x, t),
( II(x) ) =~(x, t ),

while bilinear averages are

(C(x)C(y)) =y(x, t)rp(y, t)

+[Gs (1—5) 'Gs ](x,y, t),
(II(x)II(y)) =sr(x, t)rr(y, t)

m s(t) =p'+(g g„)R —+—y'+ —f (2.23f)

and the Fourier transforms are defined by f(x, y)
= f ze

'"'" "'f(k) with f z representing f [d k/(2') ].
The constant g„=—,

' has been introduced in Eqs.
(2.23a) —(2.23f) for calculational convenience.

To apply these equations, first we must choose our vac-
uum state, which is not unique in quantum field theory in
a time-dependent metric [18], and then study the ultra-
violet divergences. To do so, it is convenient to obtain a
second-order differential equation for G& by eliminating

X&, using (2.23c):

6& =
—,'a (1—5 )Gs '+ —,'6& '6& 2HG&—

( @(x)II(y)) = —5(x —y)
2

—2[k a +ms(t)+(„R]G& . (2.24)

+2[6& (1—5) '6' X ](x,y, t) .

(2.22e)

[We shall use k =
~

k ~, since 6& depends only on the mag-
nitude of k.] Next, by defining

As can be seen in Eqs. (2.22a) and (2.22b), the Gaussian
density matrix p describes, in general, a state with an in-
homogeneous field configuration. In this article, for sim-
plicity, we shall consider states with homogeneous field
configurations which are consistent with our approxima-
tion that the background metric is a perfect
Robertson —Walker space-time. Then the kernels G&, X&,
and 5 are diagonalized in momentum space.

To implement the variational principle we also need an
ansatz for A with the same number of variational param-
eters as in p. By choosing an appropriate ansatz for A
and varying the effective action (2.20) with the respect to
the parameters in A we obtain the dynamical equations
for the parameters which define p in (2.21) [12]. For our
system described by the action (2.2), the variational equa-
tions of motion are

Gs =6+1—5

we obtain an equation for G:

G =—'a 4G '+ —'G 'G 2 —2HG
2 2

—2[k a +ms(t)+(„R ]6,
where

m s(t) =p + (g —g„)R +—
(p + —f 6

(2.25)

(2.268)

]. /2

(2.26b)
We observe that (2.26a) has exactly the same form as

the one for a pure state, obtained from (2.23) by setting
5=0, except that the effective mass in (2.26b) contains a 5
dependence. For the thermal equilibrium configuration,
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G is of the same form as the vacuum solution and 5(k) is
associated with the Boltzmann distribution.

We shall choose as our vacuum the conventional adia-
batic vacuum [18],which behaves as the Minkowski vac-
uum in the limit when the expansion rate of the universe
is much smaller than the effective frequency. The vacu-
um solution [19] in the Gaussian approximation is then,
for large k,

1D=—
2 k2g Q +pyg t g

r

m (t)a1

2 ~i, 2alkl
(2.28)

Therefore the variational equations are not well defined
and require renormalization. The most convenient way
to regularize a quantum field theory in curved space-time
is to use dimensional regularization [20], which preserves
the general covariance. Dimensional regularization may
be applied to the functional Schrodinger picture by
analytically continuing only the spatial dimension, and it
has been used in Ref. [19] to renormalize the self-
interacting scalar field in n = ( 3+ 1 )-dimensional
Robertson-Walker metric.

In dimensional regularization, the first term in the
second integral in (2.28) is simply zero [20] and the
second term is proportional to the gamma function
I (n —4). Therefore, in 3+1 dimensions only the loga-
rithmic divergence appears as a pole in the gamma func-
tion and it can be removed by renormalizing the mass p
and coupling constants A, and g. On the other hand, the
theory does not require renormalization in n =2+1 di-
mensions. However, in order to perform the numerical
calculation, we must use the cutoff procedure. In the
(n =2+1)-dimensional space-time that we are consider-
ing the first term in the second integral in (2.28) is diver-
gent and cutoff dependent and it can be eliminated by a
mass renormalization:

4=4
2=2 A

(2.29a)

where

1

2alkl
' (2.29b)

The prescription (2.29) renders the effective mass m (t)
finite in the vacuum sector:

G(k)= . . .[1+o(lka 'I ')], (227)
2a+k +m (t)a

where m (t)=ms(t)ls 0 evaluated at q&;„, which is the
minimum of the effective potential. This introduces to
the effective mass of (2.23f) and (2.26b) a divergence of
the form, for 5=0,

m '(t) =LM~ + (gti g—„)R+

1

2 Ji, 2alkl
(2.30)

For mixed states, i.e., for 5(k)%0, it is straightforward
to see that the effective mass ms(t) in (2.26b) is rendered
finite by the vacuum renormalization provided the large-
k behavior of G(k) is given by in (2.27) and 5(k) vanishes
sufficiently fast [0( l

k
l

) ]. This is the case, for example,
when the system is in thermal equilibrium where 5(k)
vanishes exponentially for

l
k

l
))T:

ms(t) =p~+(g~ —g«)R +
2 q

1/2
1+5

2 k 1 —5
1

(2.31)

It must be emphasized that this renorrnalization
prescription works only for states that exhibit the high-k
behavior given by (2.27) (these are the states which pos-
sess a finite particle number density with respect to the
chosen vacuum [19]). In the initial-value problem, this
implies that the initial conditions Gs(k, to) and Gs(k, to)
at some initial time to must have the large-k behavior
[19]

[I+o(lkl ')],
2a(to)+k +ms(to)a (to)

Gs(k, to)=[O(lkl ) or smaller],

Gs(k, to) =

(2.32)

where ms(to) is the self-consistently determined initial
mass defined as in (2.31).

C. Finite renormalized semiclassical Einstein equation

Now the coupled Einstein-matter equations in (2.9)
have a specific form:

2

=8vrG~((TOO(N))+nT ),
(2.33)

Eqs. (2.23a)—(2.23e) with ms given in (2.31),
where the expectation value of the energy-momentum
tensor is taken in the Gaussian state (2.21).

In (n =3+ 1)-dimensional space-time Eq. (2.33) is
somewhat inconsistent in that quantum effects of matter
are included, but quantum gravity effects are ignored.
From the theoretical point of view, such semiclassical ap-
proximation is often justified by the renormalizability of
(T„(N)), which contains infinities, even in the free
theory, arising due to the short-distance behavior of
( 4 (x ) ) . However, in ( n =2+ 1 )-dimensional space-
time there are no propagating gravitons; consequently
(2.33) is a consistent approximation.

We shall discuss how we take care of infinities in
(T„(N)) in our numerical calculation. The energy-
momentum tensor for the scalar field described by the ac-
tion (2.2) is
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2 M
P~ i/ g 5 pv

= a„ea.e—g„.[-,'g t'a.ea,e—v(e)]
g(—6„@' g„—„g ~@2 tJ+ @. 2„),. (2.34)

where the notation;p denotes the covariant derivative
with respect to the space-time index p, and

V(@)=—,'p 0& +(1/4!)4 . [T„ in (2.34), which is the
source of the Einstein equation, does not coincide, for
g'WO, with the canonical energy-momentum tensor
T„'„=a„@a@—g„~.]

In the fiat Robertson —Walker metric of (2.1), the ex-
pectation value of T„ in the translationally invariant
Gaussian state of (2.21) has the form

( Too) =
—,'a m' + V(p) g(Go—oq& 4a —

Hyper)

+—'a [Gs ' (I+5)6$ ' ](x x t)+2a [XsG' (1—5) '6' X ](x,x, t)

+}[(a2+2+2)[61/2(15)161/2](xy t ) I

—g[GO0[Gs (1—5) '6& ](x,x, t) —8Ha [X&G& (1—5) 'Gs ](x,x, t)I

——[Gs (1—5) 'Gs ](x,x, t)[Gs (1—5) 'Gs/ ](x,x, t), (2.35a)

+ —,'a [6& ' (1+5)6& ' ](x,x, t)+2a [X&6& (1—5) 'Gs Xs](x,x, t)
—

—,'[p —(g—g„)R ][Gs/ (1 —5) 'Gs/ ](x,x, t)
T

5"~6 [6 (1 5) 6 ](x,x, t )+4a H[g 61/2(1 5)
—161/2 ](X,X, t )

+a'[6'"(1—5)-'6'" ](x,x, t )

+—[6' (1—5) '6 ' ](x,x, t)[6 ' (1—5) '6 ' ](x,x, t)

&T„)=O.

(2.35b)

(2.35c)

As can be seen from the above expression ( T„) may
be divergent due to infinities contained in G&(x, x). The
finite, renormalized energy-momentum tensor is defined
by subtracting the divergent part of ( T„):

& T„.)„„=& T„.) —
& T,.),„. (2.36)

To define the subtraction ( T„),„b, first one must regu-
larize the theory in such a way that general covariance is
preserved. One well-known procedure is to use dimen-
sional regularization, which we have discussed above. In
Ref. [19], ( T„) has been evaluated in (n =d+ 1)-
dimensional space-time: possible logarithmic divergences
appear as poles in the gamma functions I (n —4) and
I (n —2), but all other divergent integrals vanish. When
( T„) is divergent, as in n =4 dimensions, for example,
the subtraction ( T„),„b must be expressed in terms of
covariantly conserved geometrical tensors so that they
can be absorbed by renormalization of the coupling con-

I

stants in the generalized Einstein equation. Moreover,
there is a further subtlety in defining the finite part of the
subtraction [18]. None of this need concern us because at
n =3 ( T„) is simply finite and no subtraction is re-
quired.

However, in our numerical calculation, where the
cutoff procedure is used, the integrals, which vanish in di-
mensional regularization, remain divergent. By using the
cutoff procedure, we need not only mass renormalization,
as we have shown, but also (T„) needs subtraction.
Moreover, introducing a cutoff breaks the covariance of
the theory. Therefore, we shall use the result of dimen-
sional regularization, in which all the divergent integrals
vanish in n = 3 dimensions, as a guidance in defining the
finite ( T„)so that the ( T„) is covariantly conserved.

First, we renormalize the mass according to Eq. (2.29),
and then evaluate the divergent part of ( T„) using the
large-k behavior of 6(k, t ) in (2.27):

2 2

(2.37)
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& T,) &,„,=a'5,,
1

8
+ ', f'ski+ J', '„ ms(t)

4

2
PR
2

R +(g'~ ——')H '—H—
2 R 2 4

(2.38)

As expected, the introduction of a cutoff breaks the covariance of the formalism, resulting in a & T„),„b that cannot
be written solely in terms of covariantly conserved geometrical tensors. On the other hand, we recognize that the diver-
gent integrals in (2.37) and (2.38) vanish when evaluated in dimensional regularization [19]. Consequently, they are a
product of our noncovariant formalism and we shall simply drop them.

Furthermore, in order to be consistent with the observed vanishing cosmological constant, we subtract V,s(y;„)g„
from & T„),where Vdr(y, .„) is the value of the Gaussian effective potential at its minimum in Minkowski space-time.
With these steps, we arrive at the following expressions for & Too) „,„and & T„")„,„:

& Too &„„=
2a

~R 4

12 g +4a g~H(per g~Roo—qr [—ms(t) —p„—(g„g„)R—] + —,'[ms(t)+g„]y
R

G 2

86
+ —,

' m 2s(t)G+ ,' g„RG —g~ROD—G+ 2(R HG

' 1/2
1+5
1 —5

+ [ ,'ms(t)—+(g~ g„)(4H—+2H]
2ak

1 k G
Sa46 2a2

' 1/2
1+6 k

2a'
—A c (2.39a)

& T„~)„„=4(g,—g„),+X
44" a4 q) +(—,'—4g~ )[ms(t)+g„R ]y /~RE —[ms(t) —p~ —(g„——g„)R ]

1 G k+4(g„—g„)j, + ——,G
4a G 4G a

1/2
1+5
1 —6

[4ms(t)+H ] —3A, ,8ak
(2.39b)

where A, =V,s-(y;„) is given in the Appendix. Our
& T„)„„satisfies the covariant conservation law

V'„& T"')„,„=0 . (2.40)

III. DESCRIPTION OF THE CODE

In this article we solve the coupled differential Eqs.
(2.23) with & Too ) replaced by & Too )„„.In principle our
task is simple: the time evolution of the equations of
motion is obtained by using a fifth-order Runge-Kutta
method. However, we must be careful when choosing the
initial condition since it must satisfy (2.31) and (2.32)—
that is, ms(to) and Gs(k, to) must be determined
self-consistently. Furthermore, the Ricci scalar
R ( = 16nG& T~~) and the Hubble constant

H[ =+8vrG&( & Too )„„+& Too)„d)] also depend on
ms(to) and Gs(k, to). Therefore, we must also evaluate
H and R self-consistently. In our code, this is achieved
by choosing a functional dependence of Gs(k, to ) on
ms(to) given by (2.32) and then solving Eqs. (2.31) and
(2.33) for H(to), ms(to), and R(to).

The expressions for ms(t), & T„")„„,and & Too)„„ in-
volve momentum integrations, which are performed by
introducing a cutoff A and using the Gauss method.
Those integrals are A independent provided that A is
large enough to allow G(k, t ) to approach its asymptotic

V„& T~') „,„J—:" X time step,
ren

(3.1)

and checked that it was indeed always small, indicating
that our calculations are reliable.

limit (2.27) with m (t) substituted by ms(t). In order to
find out which A was needed, we evaluated
ms(to), & T„")„„(to),and & Too)„„(to) using different
A' s. For the set of parameters used in this work, we con-
cluded that a good choice is A=M~(= I/G~), where Mp
is the Planck mass. However, for any given value of A, it
is possible that A stops being large enough after some
time since the asymptotic form of G(k, t ) in (2.27) is time
dependent. This occurs roughly for A ~ a (t) ~ms(t) ~.

In order to verify that our results are reliable for all
times, we follow the time evolution of a(t)Gs(A, t),
which should remain constant if the cutoff' A is working
well.

Since we ignore couplings between the inflation-driving
scalar field and the other degrees of freedom (i.e., the
thermal bath), (2.33) yields two separate conservation
laws for the stress-energy tensor: one for the thermal
bath (V'„& T" )„d=0) and another for the scalar field

(7„&T" )„„=0).In our code we used this last conserva-
tion law to monitor the time integration of the differential
equations; more specifically, we evaluated
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To estimate the roundoff errors further tests were car-
ried out by evolving the system forward and backward in
time. The difference between the initial state Gs(k, to)
and the one obtained after running forward and back-
ward in time was negligibly small for most of the Fourier
modes. We also tested the time integration of (2.33) by
taking the scalar field contribution ( T )„,„—:0 and then
solving for a(t) I.n this case, we obtained the expected
behavior H =213t.

IV. NUMERICAL RESULTS

In this section we shall present our numerical analysis,
in which the quantum dynamics of the scalar field and
the time evolution of the Universe have been studied
self-consistently through the coupled Einstein-matter
equations. We show whether and how inAation sets in
under various initial conditions and also study how dy-
namics depends on the values of the parameters in the
model: pg, A,g, and gR.

Initial conditions of the scalar field are given by speci-
fying the values of the variational parameters
p(to), ~(to), Gs(k, to), Gs(k, to) and 5(k), which define
the Gaussian density matrix at an initial time to. Because

Gs(k, t o)= G( k, t o)+I —5 (k) (4.1a)

with

Gs(k, to) =0 (4.1b)

and take G(k, to) to be one of the simplest forms which
allows the system to be renormalized by the prescription
(2.29). For all values of y(to) and for both pure and
mixed states we have chosen

of the symmetry 4—+ —4 in the Hamiltonian, different
dynamics arise depending on whether or not the initial
condition possesses this symmetry; if y(to)=~(to)=0,
then y(t) =~(t)=0 for all t & to due to the symmetry and
if either g(to)%0 or rt(to)%0, then the system no longer
has the symmetry, and both y(t)%0 and ~(t)%0 for
t ) to. For simplicity, we consider initial configurations
with vr(to)=0, so that the symmetry is present or absent
in the system depending on whether y(to) is vanishing or
nonvanishing. We shall consider initial states charac-
terized by g&(to)=0, @(to)((y;„,y(to)))y;„, and

y(to ) =p;„, where y;„ is the location of the minimum
of the effective potential in Minkowski space-time.

We parametrize Gs(k, to) as in (2.25),

G(k, to) =

m s(to)a 2(to) A
G& (k, to) = for k)

2a(to)k 4k3 50'

G&(k, to)= for k (k+e A
g2 50

(4.2a)

(4.2b)

Equation (4.2) contains several mass scales: A is the
cutoff used in the numerical evaluation of the momentum
integral, 0 takes care of the correct dimensionality of
G&(k, to) and e is introduced to avoid infrared diver-
gences in the equation of motion. Their magnitudes are
chosen as A=Mp and 0=10 Mp and a=10 Mp,
where Mp is taken to be Mp = 100 in the numerical calcu-
lation. The parameter ms(to) in G&(k, to) is a self-

consistently determined initial mass.
We recall that the vacuum solution for large k modes

(k &)aH) is given by (2.27), where ms is evaluated at
&p=y;„and 5(k)=0. Therefore, a pure state described
by (4.2) may be regarded as excitations relative to the
vacuum, arising from y(to)Ay;„and also from the fact
that, for k &aH, G& (k, to) and G&(k, to) are different
from the complete vacuum solution.

For mixed states where 5(k)%0, we must specify the
form of 5(k). First, let us consider a thermal equilibrium
initial configuration, which is the most interesting and
representative among mixed states. Gs(k, to) and 5(k)
for a Boltzmann distribution at T(to) may be obtained in
the Gaussian approximation; however, since they are not
in a closed form it is dificult to handle them as initial
data. We shall instead construct a mixed state whose
form resembles the thermal equilibrium solution for a
free field in Minkowski space-time, which is given by

(4.3a)

5 '(k) =cosll-
T

' (4.3b)

In the initial configuration G(k, to) of (4.2) G& (k, to) for
k ))ms(to)a (to) is of the form (4.3a) up to O(ilk ),
with co replaced by an effective frequency

co,tt(to)=+k +ms(to)a (to) . (4.4)

s(to )
5 '(k ) =cosh

7(t, )
(4.5)

In thermal equilibrium, m ls( to ) is evaluated at qr( to ) =0
since the symmetry N~ —N is expected to be restored.
For the large momentum modes, k ))aH, the above ini-
tial configuration is in fact a good approximation to the
thermal equilibrium solution in the Gaussian approxima-
tion.

For more general mixed initial states we shall consider
configurations with nonvanishing q&(to ), but with G(k, to)
and 5(k) still given by (4.2) and (4.5), since they can pro-

Therefore, as a mixed initial state which can mimic a
thermal equilibrium at T(to), we shall take G(k, to) in

(4.2) and 5(k) given by
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Moreover, we have chosen our initial conditions and the
values of the parameters pi, , A,i„and gz such that initial-

ly the Universe is always radiation dominated and conse-
quently the onset of inAation can be observed if it occurs.

In the gaussian approximation we employ, all infor-
mation about the behavior of quantum Auctuations is
contained in the expectation value (N (x ) ). However, if
one were to calculate (4 (x ) ), one would find that it is
divergent, due to the infinite quantum fluctuations in the
field at a point. On the other hand, a measurable quanti-
ty with finite fluctuations can be defined in a manner that
simulates the finite spatial resolution of a measuring de-
vice. For definiteness, we will use the smeared root-
mean-square y,',(t ) defined with a Gaussian weight func-
tion [10]:

1/2
i,q, Gs(k, t)

(4.6)

where I is the smearing length of our coarse-graining pro-
cedure. We shall choose I to be a fixed, time-independent
constant since we are interested in following the evolu-
tion of an expanding region of space.

As mentioned earlier, if y(t0) =0 [with ~(t0 ) =0],
q&(t)=0 for all t. Therefore, the expectation value of the
quantum field cannot be a measure which tells us how
much the system has evolved toward the minimum of the
effective potential. Classically, the system will remain in
its initial configuration. However, we find that dynamics
is nontrivial quantum mechanically and q&, ,(t ) exhibits a
clear signal when the system starts to evolve toward the
minimum [10].

To follow the time evolution of the Universe we keep
track of the scale factor a(t), the Hubble constant H(t)
and the Ricci scalar R (t). The behavior of the scalar
field is studied by examining y(t), y,',(t), and the
effective mass ms(t).

A. Initial configurations with y(tp ) =0

We first analyze the quantum mechanics of the pure
and mixed-state time evolution for an arbitrarily chosen
set of values of pi, , A.i, , and gi, and then study how the
dynamics depends on pi, , k,ii, and gii by varying their
values.

1. Pure state

The mass and coupling constants are chosen to be

pii = —10,A, ii =10, and gi, =0 in the unit where
Mz = 100. We have assumed that the environmental
thermal bath is initially at temperature T(t0)
=10 Mp =1.

Our numerical results for this system are shown in Fig.

vide the effect of mixing.
The initial condition for the environmental thermal

bath is given by the initial temperature T(t0), which then
fixes the initial time. We have assumed the number of
massless degrees of freedom in the thermal bath to be

gg + gF 200

ms(t)= —
pit ~+(gi, —

—,')R, (4.7)

due to the fact that the Ricci scalar in de Sitter space is
constant. Moreover, for the chosen value gii =0, ms(t)
is negative, providing an unstable upside-down harmonic
oscillator for the low-momentum modes [10]. Conse-
quently, low-momentum modes tend to grow opposing
the redshifts due to expansion of the Universe [see Fig.
3(f)]. The effect of these growing low-momentum modes
may be seen from the behavior of y'„,(t) for t )4000.
We interpret this growth of y,',(t) as a signal that the
system starts to evolve toward the minimum of the poten-
tial [10].

On the other hand, the growth of low-momentum
modes does not affect the constant energy density
significantly, at least during our numerical run, and
infiation continues as shown in Figs. 3(a)—3(c). [If the pa-
rameters in the model are chosen such that ms(t) in (4.7)
is a positive constant, the effective potential during de
Sitter phase has a local minimum at y=0 and there
would be no growth of low-momentum modes. The sys-
tem then would evolve to the true minimum, through
quantum tunneling, which we do not consider in this arti-
cle.]

The monitoring of the numerical process is done by
analyzing the quantities a(t)G&(A, t) and J defined in

(3.1). For t ) 10000 our calculations are not reliable any
longer since a (t)G&(A, t ) starts to depart from its asymp-
totic form (2.27) as can be seen in Fig. 3(g), and the cutoff'
A must be increased. Gn the other hand, during the en-
tire period of our numerical evaluation, the covariant
conservation of the stress-energy tensor of the scalar field
is satisfied better than one part in 10 [see Fig. 3(h)].

To understand the infiuence of gz on the time evolu-
tion of the system we performed a run with the same pa-
rameters and initial condition of the previous one, but
with gii =

—,
' ("conformal coupling" ). As can be seen from

Fig. 4, the effect of changing gz is to modify the rate of
growth of the fiuctuations, since for gii )0, m s is less neg-
ative than its value for gii =0.

3. First, we find from Figs. 3(a)—3(c) that the Universe
enters into de Sitter phase approximately at t =4000.
Dynamics bringing about the onset of inflation may be
understood from the behavior of the quantum Auctua-
tions y,',(t) and the eff'ective mass ms(t): Figure 3(d)
shows that at early times y,',(r) decreases rapidly from
its initial value, due to the fact that the fast expansion of
the Universe redshifts away quantum fluctuations. This
redshift can also be seen from the early time decrease in
m&(t) in Fig. 3(e). At t =4000, quantum ffuctuations be-
come negligible, leaving an approximately constant ener-

gy density, dominated by the cosmological constant A„
and de Sitter expansion occurs with H=+SvrG&A, .
(Onset of de Sitter expansion implies that radiation ener-

gy of the environmental thermal bath also becomes negli-
gible at t 84000.)

We further observe in these figures time evolution of
the scalar field after the onset of inflation. Once quantum
fluctuations die away and de Sitter expansion starts, the
effective mass m s (t) in Eq. (2.31) becomes a constant
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2. Mixed state: Initial thermal equilibrium

We have studied time evolution of an initial state with
tp(to)=m(to)=O, G&(k, to) and 5(k) given by (4.1), (4.2),
and (4.5). We assume that the scalar field is in thermal
equilibrium with itself and environment at temperature
T(to)=1.0. Values of the parameters in the model are

p& = 10,A,z = 1, and gz =0.
The result of our numerical run is shown in Fig. 5.

One can see that this figure is similar to that of pure state
in Fig. 3: Again, the quantum fluctuations tp,',(t) de-
creases from a large initial value to a value much smaller
than y;„and inflation occurs due to the same physics.

To show the effect of mixture, we have given in Fig. 6
closer comparisons of the time evolution of the pure and
mixed states by taking the same set of parameters
[)Mz = —10,l z =10,gz =0, and T( to ) = 1 j for both
cases: The small difference is due to the fact that fluctua-
tions in a mixed state are enhanced by a factor
&(1+5)/(1—5), coming from the relations (4.1a) and
(4.6).

3. Dependence of dynamics on pIt, A,z, and g„

The question of how dynamics depend on the parame-
ters )tt~, A,z, and pit has been studied by considering only

the pure-state initial configuration where tp(to) =m(to) =0
and Gz(k, to) given by (4.1) and (4.2) with 5(k)=0 and
the initial environment temperature T( to ) = 1. The
ranges of the parameters we have considered are
pz = —10 ——10,A.z = 1 —10, and for gz we have
taken two values: 0 and —,'. Figure 7 summarizes our re-
sults: we have observed inflation for all cases. The runs
that yield a de Sitter period are indicated with I and the
runs marked by A are the cases in which de Sitter expan-
sion occurs but the numerical results are not reliable due
to the fact that the cutoff A used was not large enough.

From a detailed numerical analysis we have found the
following general features of the dependence of dynamics
on pz, A,z, and gtt. First, if their values are such that
they produce a larger cosmological constant, inflation
sets in at earlier time since the energy density becomes
dominated by the cosmological constant more quickly as
the quantum fluctuations redshift away. Once de Sitter
expansion sets in, dynamics is governed by the value of
the effective mass ms(t), which causes the growth of
low-momentum modes: if the values of pz and g'z are
such that the value of ms(t) in (4.7) is a large negative
number tp,',(t) grows fast and the system evolves toward
the minimum of the effective potential quickly. Clearly,
this is not a desirable condition for the new inflationary
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QUANTUM-FIELD-THEORETIC ANALYSIS OF INFLATION. . . 2347

I I I
P

I I I I I I I I l I I

10 10

0

W

I I I I I I I I I

5000 10000

(&)

0
I I I I l ~ ~ I I, I

6000 10000

~ I I I I

5.10

I I I I 8 I I I I I I I I

5.05

5.00

4.95
0

I

5000
t

I I I I

10000 0
I I I I M I I I I

6000 10000

(c)
I ~ I ~ I ~ I I ~ I ~ I ~ }

10

~ I i I I

(e)

10 ~ ~ I I

6000 10000

(f)
~ & 1 I I I

0.060
I I I I

~ I I l
~

I I I I

0.010
0.005

0.001
0

I I I I I I

5000 10000
I I I I ~ I I ' ' I

0 5000 10000

FIC. 5. Titne evolution of the physical quantities as presented in Fig. 3 for the run PR =10,&z =,(z =, o
mixed state. In this case y, =,'(to)=0. 46 and y;„=0.138.



2348 M. SAMIULLAH, O. EBOLI, AND SO-YOUNG PI

1.0
o.a =I-

08
=I

0 7
e.e ~
05 =~

0 4 ~ I LI

0

I I I I f ~ I I I I

W

I I I ~ I I I I I I

5000 i0000 i5000

I I I I ~ I I I

I ~ I ~ I ~ I I I I I I

0 5%% i0000 i5000

0.5 1 I 4 I I I I I I I

0.0

0
I I I I I I I I ~ ~ 4

5000 i0000 15000

FIG. 6. Comparison of the time evolution between the pure state (solid line) and the mixed state (dotted line) for the case
pz = —10,A& =10,$+ =0, and T(to)=1. (a) Hubble constant H(t) (dashed line indicated radiation-dominated universe). (b)

@,'=,'"(~). {c)m', (~).

( =1/8

10— 10—

I

-10
l

-10 -10
2

lTl
R

-'10

(b)

FICx. 7. Summary of the onset of inflation for various values of pz, A,~, and gz. For all cases de Sitter expansion has been ob-
served. I indicates the numerical results which are reliable and A indicates the ones which are not reliable, but require larger cutoff.
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scenario, which relies on a slow-rollover transition. Our
numerical analysis concerns, however, only the early evo-
lution of y, ,(t). According to Ref. [10], which analyzes
the quantum mechanics of slow-rollover transition in a
linearized model, the late-time behavior of y„',(t) may be
accurately described by the classical equation of motion,
and therefore one expects that the value of A,z controls
the rate of growth as y,',(t) becomes large.

B. Initial con6gurations with nonvanishing y( to )

When an initial state has a nonvanishing y(to), time
evolution of y(t) for t & to is nontrivial and it can be a
measure of how the system has evolved toward the
minimum of the effective potential. We have studied the
evolution of initial states characterized by y(to)((y;„
and y(to) »y;„, for which one expects the dynamics to
be very similar to the classical description of the "new"
and "chaotic" inAationary scenarios, respectively. We
have also considered an initial state with p(to), which is
of the order of y;„ in magnitude. For all cases, we shall
present in detail the time evolution of' pure states only
where Gs(k, to) is given by (4.1) and (4.2) with 5(k)=0,
since we have found that introducing the mixing parame-
ter (4.5) does not change the dynamics significantly.
However, we shall make some comparisons between pure
and mixed states.

I. Initial configurations ioith y(r, ) «y;„
We consider a pure state with qr(to) =10 y;„, where

y;„=2.45 for pz = —10, A, ~ =10, and gz =0. The
initial temperature for the environmental thermal bath is
T(to)=1. Time evolution of the various quantities are
shown in Fig. 8. At t =3000 the system enters into de
Sitter phase due to the fact that the quantum Auctuations
are redshifted away while y(t) stays close to zero result-
ing in an energy density dominated by the cosmological
constant. As long as qr(t) stays small, dynamics of the
system are analogous to the case where p(to)=0: once
inAation sets in, and the Auctuations die out, the effective
mass becomes

(4.8)

times by redshift, the early-time behaviors are almost the
same. However, they are different for t ~ 5000 due to the
growth of low-momentum modes of quantum Auctua-
tions.

2. Initial configurations ioith y(to) »y;„
As mentioned earlier, one expects from a classical

analysis that initial configurations with q&( to ) »y;„
leads to de Sitter expansion as in "chaotic" inAationary
scenario if the potenti. al function is su%ciently Aat. We
have chosen pz = —10 ', A, ~ =10 ', and g~ =0 in or-
der to have a Aat potential. Our initial configuration is a
pure state with y(to)=10';„and Gs(k, to) given by (4.1)
and (4.2) where 5(k)=0. The initial temperature of the
environmental thermal bath is again T(to) = 1. Time evo-
lution of this system is shown in Fig. 10. As shown in
Figs. 10(a) and 10(b) the system exhibits a de Sitter phase.
Dynamics that lead to the de Sitter phase can be seen
from Figs. 10(c)—10(h): While y(t) decreases very slowly,
retaining an almost constant value during the entire
period of our numerical run, y,',(r) gets redshifted away
with a rate much faster than the rate of decrease of y(t),
although the low-momentum modes increase steadily as
shown in Fig. 10(f). Since the temperature of the envi-
ronment also decreases by redshift, the resulting energy
density of the system is approximately constant and
therefore acts as a cosmological constant. Figures
10(g)—10(h) indicate that our numerical work is reliable
during the entire period of the run. Once again we have
verified that the time evolution does not change when we
introduce a mixing by using 5(k) of the form (4.5).

3. Initial configurations with y( t o ) =y;„
We have also considered initial states, pure and mixed,

with y(to)=2y;„, Gs(k, to) given by (4.1) and (4.2), and
T(to) = 1. As expected from classical equations of
motion, we have found that p(t) oscillates around y;„,
although quantum Auctuations somewhat change the
evolution. Figure 11 shows the time evolution of H(t)
and y(t) for the cases of pure and mixed states when

pz = —10,A,z =10, and gz =0. We learn that de
Sitter expansion never sets in and that pure and mixed-
state time evolutions are again nearly the same.

For small y(t), and for the chosen values of the parame-
ters ms(t) is negative [see Fig. 8(e)] and therefore it pro-
vides an unstable upside-down potential for low-
momentum modes of the fiuctuations [Fig. 8(f)] and also
for y(t) Consequently. , both q&„,(t) and y(t) grow as
shown in Figs. 8(c) and 8(d). Figures 8(g) and 8(h) show
that our numerical results are reliable for t ( 10000.

When we consider a mixed initial state by introducing
5(k) of (4.5), time evolution of the system does not
change significantly, as can be seen from Fig. 9. In this
figure we also show the effects of quantum Auctuations by
comparing the time evolution in the Gaussian approxi-
mation with the classical evolution. Because of the fact
that quantum Auctuations die away quickly in the early

V. CONCLUSIONS

In this article we have studied inAation dynamics dur-
ing slow-rollover transitions, which occur under various
initial configurations of the inAation-driving scalar field,
concentrating on the two questions: How the onset of de
Sitter expansion occurs and how the scalar field behaves
during the early part of the slow-rollover transitions.

We have shown that de Sitter expansion sets in if the
initial expectation value of the quantum field cp( to )

satisfies either y(to)((y;„or y(to) »y;„and at the
same time if y( t) evolves very slowly in time. When these
conditions are met, de Sitter expansion occurs regardless
whether the scalar field is in a pure or a mixed state. The
Universe enters into de Sitter phase due to the fact that
both quantum Auctuations of the scalar field and the tem-
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perature of the environmental thermal bath get redshifted
away rapidly in early times, while y(t) evolves slowly [or
remain constant in the case of g(to)=0], leading to an
approximately constant energy density.

For the thermal equilibrium initial configuration,
which occurs in the new inflationary scenario, the behav-
ior of y, ,(t } is particularly important, since it plays the
role of order parameter and therefore it determines when
the system starts to evolve toward the minimum. We
have shown that y,',(t) decreases rapidly during early
times to a value much smaller than y;„and then starts
to grow.

It is instructive to compare our result for the case of
thermal equilibrium initial configuration with some of the
earlier calculations in the literature, for example, Refs.
[10] and [11]. Our analysis may be considered as an ex-
tension of the work in Ref. [10] in several ways: First, in
Ref. [10] quantum mechanics of the slow-rollover transi-
tion was studied in a linearized approximation, whereas
we have studied effects of some of the nonlinearities using
Gaussian approximation. Second, the linearized poten-
tial function used there is a "thermal equilibrium"
zeroth-order approximation, while our method describes
nonequilibrium time evolution. Finally, in Ref. [10] the
background metric is assumed to be de Sitter space-time
at all times and therefore the question of how the
Universe approaches to de Sitter phase was not ad-
dressed, whereas in our analysis time evolution of
Robertson —Walker metric has been determined self-
consistently. The model considered of Ref. [10] consists
of a single scalar field in de Sitter space-time with a po-
tential function V(P)=(A, / 4)(P —p /A, ) . (This model
does not contain environmental matter and radiation,
which contributes to the total energy density. However,
as can be seen in Fig. 12, the qualitative behavior of the
scalar field is independent of the existence of the environ-
ment. ) The scalar field is assumed to be in thermal equi-
librium at early times and the potential is linearized to, at
finite temperatures, Vo(y) = —

—,
'

Ip —[A.T (t)/4]] P,

where T(t) redshifts as in our Eq. (2.8). Vo(P) serves as a
valid zeroth-order approximation in perturbation theory,
while the scalar field remains in thermal equilibrium.
The general qualitative behavior obtained in this linear-
ized model is consistent with our result for the small
values of A, considered (A, «1). Namely, y,',(t) de-
creases to a value that is many orders of magnitude below
y;„=)Lt/VA. , and then starts to grow at a temperature
well below T„ indicating the existence of supercooling.
The reason for the continued falling of p,', ( t } in this
model has been explained as follows: At temperatures
T=T„y,',(t) is dominated by the momentum modes
k a (t)=T =4p /1, . For A, «1, the fact that Vo(P)
becomes unstable at T & T, is therefore irrelevant to
these modes and they continue to get redshifted like a
free field. This, on the other hand, suggests that for A, = 1

the dominant modes feel the unstable potential at T= T,
and the falling of y,',(t) would presumably stop and

y,',(t) would settle into tp;„. However, this explanation
for the falling of y,',(t) given in Ref. [10]comes from the
fact that Vo(P) is the zeroth-order "equilibrium" poten-
tial and therefore the dominant modes of q&,',(t) turn out
to be related to the critical temperature T, =2p, /&A, . If
we were to apply the zeroth-order equilibrium potential
in 2+ 1 dimensions, we expect that the continued falling
to a value smaller than ymj„would occur only if p )&A, .
(In 2+ 1 dimensions A, is not dimensionless and moreover,
the form of the finite temperature effective potential is
different from that in 3+1 dimensions. ) However, we
find that, in our nonequilibriurn calculation, the contin-
ued falling occurs for a wide range of A, even when
X «p . Moreover, the same phenomenon occurs for a
pure state with y(to ) =0 for which the magnitude of the
dominant modes of y,',(t) is irrelevant to the tempera-
ture. Our result implies that at early times, whether the
system is initially in thermal equilibrium or not, p, ,(t) is
simply dominated by large k modes such that the nega-
tive curvature (4.7) is irrelevant to the dynamics for a
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dkG(k)1+5(k)
1 —5(k )

(5.1)

long time.
Next, we comment on the analysis of Ref. [11]. The

model and approximation technique used in Ref. [11]are
complementary to ours: Here inflation dynamics was
studied in an O(N) model of scalar fields using the lead-
ing large-N approximation, and the behavior of the
Robertson —Walker background metric has been deter-
mined self-consistently as in our analysis.

In large-N approximation the evolution equa-
tions of the correlation functions of each compo-
nent field, ( N;(x, t )@;(y, t ) ), ( N; (x, t )II, (y, t ) ), and
(II;( xt)II;(y, t)) are closed. It is straightforward to
show that the large-N equations are the same as our
Gaussian variational equations for G, X, and 6 using the
relations in (2.22), except that the effective mass term in
the large-N does not contain a —,

' factor multiplying k due
to different combinatorics in the Feynman diagrams:

' 1/2

(The subscript X denotes large-N approximation. ) In
spite of the fact that the two approximations are
equivalent the results obtained in Ref. [11] are very
different from ours. We believe that this difference in

physics is due to the different techniques used in handling
quantum-field-theoretic infinities.

Field theoretic infinities appear, in both approxima-
tions, in the correlation function

(@2( )) y
d k G(k )

1+5(k)
(2~)3

'
1 —5(k )

1/2

(5.2)

As shown in this article, the infinities in ( 0& (x, t ) ) must
be taken care of in two different ways: First, in the equa-
tion of motion, one must perform a consistent renormal-
ization, which involve renormalization of A, , )M, and g in
(3+ 1)-dimensional space-time. ( g renormalization is
necessary even when /=0 in the bare Lagrangian. ) Simi-
larly, the energy-momentum tensor must be renormalized
in a covariant manner in the Einstein equation. Second,

I I I I s ~ l ~

I I I I t ~ ~ a I

FiCx. 12. Comparison of the time evolution shown in Fig. 5 (solid line), which includes the environment, and the same run without
the environmental thermal bath (dotted line). In these runs y;„=0.138 and (pI =,'(to =0)= 1.63 in both cases. (a) In[a(t) ]; (b) y,'=,'.
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when (@ (x, t)) is used as a short-range order parame-
ter, the infinities are physically real and must be handled
in such a way that the effects of quantum fluctuations are
kept properly.

In Ref. [11],only the infinities in the initial state are re-
moved by normal ordering; the approximate initial
thermal equilibrium configuration is similar to ours be-
fore normal ordering:

d k(4'(x, t0)) =f, 1+
(2') 2co~ k, tp e N

(5.3)

where co&(k, t0)=(k a +m~)~, . By normal ordering,

the vacuum Auctuations are then dropped, and the initial
value of (P (x, t0) ) has been chosen as

lar field. We did not pursue our calculation for the late-
time behavior of the system. This will determine the
duration of de Sitter expansion, which puts constraints
on inAationary model building. However, this problem is
relevant only to the physical (3+1)-dimensional space-
time. We hope to return to this in the future when a cal-
culational scheme appropriate to 3+ 1 dimensions is
available.
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(5.4)

Reference [11]claims that (at least in the large-N limit), if
one regulates the initial conditions and then follows the
subsequent dynamic evolution generated by the equation
of motion, one generates no new singularities. On the
contrary, we find that quadratic divergences are generat-
ed in the subsequent dynamic evolution, independently of
the initial condition, and conventional renormalization of
coupling constants and mass is necessary [19]. This then
forces the initial state to be renormalized in the same
manner. However, it is well known [13] that the renor-
malized large-N approximation in 3+ 1 dimensions leads
to difficulties and this is precisely the reason why we per-
formed our analysis in 2+ 1 dimensions, since Gaussian
approximation possesses the same difficulties in higher di-
mensions. Moreover, the initial value of our order pa-
rameter obtained by smearing as in (4.6) is quite different
from the initial value of the order parameter (5.4) taken
in Ref. [11]. Taking (5.4) to describe thermal equilibrium
properties on a classical level is presumably acceptable.
However, in studying quantum evolution one cannot
separate quantum fluctuations from thermal fluctuations.

In the results obtained in Ref. [11](4 (x, t)) decreases
from its initial value and directly settles to cp;„, where

y;„ is the location of the minimum of the tree-level po-
tential. The continued falling of (0& (x, t) to a value
much smaller than y;„observed in the numerical results
of ours and Ref. [10] does not occur and it is stated that
"Indeed the 'ball rolling down the hill' advocated by a
number of authors does not result in this model except
that in the case where the system is prepared in a non-
equilibrium initial state where the level of order parame-
ter fluctuations are constrained to be much less than in
the associated thermal state. "

On the other hand, Fig. 12 indicates that the "ball rol-
ling down the hill" picture occurs for the thermal equilib-
rium initial state, even when the environment is absent as
in the model of Ref. [11]. We believe that such a different
result is not due to effect of dimensionality.

In this article we have studied only the onset of the de
Sitter phase and only the early-time behavior of the sca-

V, (Ip) = min (+~H ~e),

where
~

4 ) satisfy the constraint

(A 1)

(A2)

The Gaussian effective potential is the result of (Al)
when we restrict the states

~
4 ) to be Gaussian. For

a = l, y=0, and 6 =0( T00)„„ in (2.34) is simply
( 4

~
H

~
4 ) in a Gaussian state. Therefore,

V,s(y) =min( T00)„„.
G

Carrying out the minimization in (A3) yields that

G= 1

2+k +m
where

(A3)

(A4a)

R 2 R 1
m =p + y+

2 2 k 2+k2+m2

(A4b)

Consequently, the renormalized Gaussian effective poten-
tial is given by

with

Pal Pal PR4 S 4

2A,R 24m 2A, R

~R 4 (A5a)

~R

16m

2 1/2
R 2 R+@~+ y . (A5b)

16m 2

The minimum cp;„of V,~ is located at

9 min=
Q3X~ 1+ 1—

8~

' 1/2
128m pz

(A6)

for XR ~128m pz. Otherwise y;„=0.

APPENDIX

For completeness we record in this appendix the
Gaussian effective potential. In general, the effective po-
tential is given by
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