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We consider inflation driven by the energy density of a conventional scalar field minimally coupled to
gravity, which has an initial vacuum expectation value which is large compared with the value at the
minimum of its potential ("chaotic inflation"), in the context of Brans-Dicke-type models with a time-

dependent Newton's constant. The equations of motion for the scalar field driving inflation and the
Brans-Dicke scalar are solved in the slow-rolling approximation for the case of a A,o. potential driving

inflation, and the magnitude and spectrum of density perturbations produced during inflation are calcu-
lated. Sufhcient inflation to account for the observed homogeneity and isotropy of the Universe is found
to occur only if the coupling e between the Brans-Dicke scalar and the Ricci scalar is smaller than 1. It
is shown that only in the case where the initial value of the scalar field driving inflation is large com-

pared with the initial value of the Brans-Dicke scalar can e be larger than 10, and that in this case the
self-coupling A, is constrained to be much smaller than in the case of conventional chaotic inflation mod-

els. It is shown also that the spectrum of density perturbations is sufficiently flat to explain galaxy for-
mation only if e (0.04.

I. INTRODUCTION

There has recently been some interest in models of
inflation [1] in which the value of Newton's constant is
determined by the value of a scalar field which is evolving
in the early Universe according to its equation of motion
in a homogeneous and isotropic background [2]. (We
refer to these generically as Brans-Dicke models [3].) In
particular, it has been suggested that the "graceful exit"
problem [1] of inflationary models in which inflation is
driven by a scalar field which undergoes a first-order
phase transition can be solved by having a time-
dependent Newton's constant. An alternative approach
to inflation was suggested by Linde ("chaotic inflation" )

[4], in which a scalar field rolls down a potential from
some initial large value and drives inflation by its poten-
tial energy. It is the purpose of the present paper to con-
sider this method of driving inflation in the context of
models with a time-dependent Newton's constant. In
particular, we are interested in the case where the scalar
field driving the inflation corresponds to a matter scalar
which is minimally coupled to gravity, rather than the
Brans-Dicke scalar itself. Our motivation for considering
this class of inflationary models comes from a number of
observations.

(i) The case of inflation driven by a potential for the
Brans-Dicke scalar itself has been extensively studied pre-
viously [5—7]. It is of interest to consider the case of
inflation driven by the potential of a conventional matter
scalar in order to compare with the case of inflation
driven purely by the Brans-Dicke scalar.

(ii) It has been pointed out that the case of inflation
driven by a potential for the Brans-Dicke sclar may have
a problem with reheating [5]. This is true in the simplest
models in which there is a conformally invariant action

up to terms in the potential of the Brans-Dicke scalar. In
this case, the Brans-Dicke scalar decouples from the light
matter fields when a conforrnal transformation to the
frame with fixed Newton's constant is made [5], prevent-
ing the Brans-Dicke scalar from decaying to quarks and
leptons and so reheating the Universe. Thus, it is of in-
terest to consider inflation driven by a matter scalar
which will not decouple from light matter fields and so,
in principle, may decay to these and reheat the Universe.

This paper is organized as follows. In Sec. II, we dis-
cuss the equations of motion and their approximate solu-
tion. We consider in detail the example of a quartic self-
coupling potential for the scalar driving inflation. In Sec.
III, we discuss the duration of inflation and the nature of
the density perturbations produced. The magnitude of
density perturbations is shown to depend strongly on the
value of the Brans-Dicke parameter and on whether the
initial value of the field driving inflation is larger or
smaller than the initial value of the field determining
Newton's constant. We give our conclusions in Sec. IV.

II. APPROXIMATE SOLUTION
OF THE EQUATIONS OF MOTION

In the following we consider models described by the
action

(Our conventions follow those of Ref. [8].) The equations
of motion are then
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H 1+2H '+ = [V(o )+ V(P)+o /2+/ /2]—
3eg'

(2a)

P+3HQ+P /P+ [o /P+ V'(P) —4[V(P)+V(o )]/P] =0,1+6e
o.+3Ho + V'(o ) =0,

(2b)

(2c)

H [1+2H '(P/P)]= +
3gP2 6e

3H$+P /P=
(1+6m)P

V'(o )

3H

(3)

(4)

(5)

Note that no assumption of PIP being small compared
with H or of P /2 being small compared with V(o. ) has
been made. Equations (3) and (4) can be consistently
solved by assuming

H= —'+ '
2 4e

(6)

where a is the scale factor. In the following we take
k =0. We consider the solution of these equations under
the following three assumptions (slow-rolling approxima-
tions) which will be seen to hold consistently throughout
chaotic inflation: (I) P « 3HQ; (II) V(o ) »o /2, V(P),
PV'(P)/4; (III) o' «3Ho' Equ. ations (2) become

We consider potentials of the form

V(o )=ko", n =2,4, . . . . (13)

On differentiating both sides of (12) with respect to t and
using (13), one obtains

smaller than 1. Thus, the results derived using (11) will
generally differ only slightly from the exact results. We
emphasize that the results obtained using the above equa-
tions may be applied to the case with e& 1. [Note that
this model has also been studied in Ref. [9], although in
Ref. [9] the equation corresponding to (4) omits the
(1+6') factor and so is strictly valid only for e& 1. We
shall compare the results of the present paper and those
of Ref. [9] in our conclusions. ]

In order to discuss the physical implications of
inflation driven by V(o ) we need to solve (5) for the cr

field evolution. Using (10) we write (5) as
—V'(o. ) 1+I Bdt

0

3(—'+ 1!4e)B

This gives

o' (n/2 —1)d—. /sr= 2+' (14)

The behavior of the solution for cr can best be seen by
changing variables as follows:

where

32' V(o )

(1+6e)(20m+ 6)$0

1o.=p

Then (14) becomes

(15)

(A subscript zero denotes the value at t =0.) Thus,

/=$0 1+J Bdt
0

1 1 BH= —+
4e 1+J Bdt

0

(9)

(10)

where

2n —2p

P1 I,
3( —,

' + I /4e)

(16)

These are similar to the expressions considered in discus-
sions of the extended inflation models in which cr and B
are constants [2]. Although it is not necessary to consid-
er Pl/ small compared with H or P /2 small compared
with V(o ), it will be convenient to have the simple ex-
pression for H which follows if we do make these assump-
tions (which we refer to as assumption IV):

' 1/2
V( ) (11)
3eg

The correct value of H from (3) will differ from this by
only a small factor if e &)1 [Hfrom (3) is abou't —,

' the
value in (ll)] and the two values become equal for e

Note that p) 0. Since the right-hand side of (16) is in-
dependent of p, it is easy to see how p evolves. There are
two possible types of behavior.

(i) At early times the p /p term in (16) is small corn-
pared with (n —2)IC. The p and p will then increase until
the p /p term becomes larger than the (n —2)K term.
Thereafter, the evolution is described by (16) with K
effectively zero.

(ii) It is possible that the p /p term dominates the K
term from the beginning of inflation (t =0). In this case
the K term in (16) may be neglected.

In the following we will consider the solution of (16)
for the case n =4 (we refer to this as A,o. chaotic
inflation). In this case (16) becomes
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p — =2K .
p'
p

(18)

e

~ P
p

(19b)

We will match these solutions at the time when the p /p
and 2K terms in (18) are of a similar magnitude. Al-
though this solution gives a very crude approximation to
the numerical value of p(t), it will be seen to allow us to
easily calculate analytically the main quantities of physi-
cial interest. The solution of (19a) gives

+ +Kt (20a)
3~0p

We consider solving (18) for values of t where the 2K
term is dominant and for values of t where the p /p term
is dominant. Thus, we solve

~ 2
~ P

p
and

—4( A,e/3) poto.=o.pe (25)

The condition for (24) to apply is p /p &2K at t =0. Us-
ing (21) this gives the condition

o )8e —+1 1

2 4
(26)

III. INFLATION AND DENSITY PERTURBATIONS

%'e next consider the conditions for sufficient inflation
to explain the homogeneity and isotropy of the observed
Universe, and the nature of the density perturbations and
gravitational-wave perturbations of the cosmic mi-
crowave background.

Thus, solution (24) applies if o o
)Po when e & 1

(oo) e' ()I)0 when e) 1). Otherwise (25) applies. Since it
will be seen that @&1 is necessary in order to have
sufficient inAation, it is interesting that the nature of the
solution for o (t) is determined just by whether or not cr is
greater than P initially.

op

[1+8K,cr()t/3HO+Ko()t ]' (20b) A. Inflation

cr(t =0)=o.(),
4A,

3Ho
ci(t =0)=—

(21a)

(21b)

where the latter follows from (5). The solution of (19b)
gives

c2(t-t, )

p —cue (22)

where c, and c2 are constants. We match (22) to (20a) at
t =t, where

1/2

oo2
(23)

At t, {20) gives p /p=8K/3. Matching at t, then gives
the solution

The coefBcients are determined by the initial conditions
at t=0:

The number X, of e-foldings of inflation is given by

N, =I Hdt= —+ ln 1+I Bdt
1 1

0 2 4e
(27)

We consider the two cases where (i) go) e'/ ())o and (ii)
cro e po (with e in these replaced by 1 when e & 1 ).

(i) cro)e'/ ())0. (oo) $0 if e&1.) In this case we split
the integral in (27) into that from 0 to t, and that from t,
to t. Between 0 and t, o. =o.0, so

8dt=80t, . (28)
0

From t, to t one has

pt~ —(4/3)a( (t —t )

4a
(29)

Thus, once (t t, ) is larger t—han t, la, the contribution
to the total number of e-foldings is small and the total
number of e-foldings is N, z-, where

p= exp[ —,'at, '{t t, )], —
oo

ooo.= —exp[ —
—,'at, '(t t, )] . —

(24a)

(24b)
and

N, r = —+ ln(1+B()t, )
I 1

2 4e
(30)

Because the matching at t, determines the exponent in
(24), any inaccuracy in the approximation will result in a
large inaccuracy in the value of o. when t & t, . We have
included a factor a in (24), which is generally of order 1,
to account for this. (We find from numerical solution
that, typically, a= 1 —3.) It will be seen that quantities of
physical interest are not significantly affected by a. This
solution is of interest when initially the 2K term in (18) is
large compared to the p /p term. If this is not the case,
then one must consider (22) as applying from the outset.
Using the initial conditions (21), this gives

2o' 0
Bpt, =

(4e+2)'/2y,
(31)

For oo large compared with e'/ $0, this will be large
compared with 1. From (30) we see that e less than 1 will
be necessary in order to have the minimum -(60) e-
foldings needed to account for the homogeneity of the ob-
served Universe without requiring an extremely large
value for the ratio o 0 to $0 (the need for -60 e-foldings is
discussed further in Appendix A).

We also note that although most of the e-foldings
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occur for t &t„ if the total number of e-foldings was
sufficiently large, it would be possible for the final 60 or
so e-foldings to occur at t ) t„when o (t) is evolving ex-
ponentially according to (24). This is important in the
discussion of density perturbations given later. For
t & t„ the time at which the final hN, e-foldings begin is
obtained from

1 1
AN, =——+ e

u 2 4E

—(4/3)af, '(f —t, )
(32)

where the exponential is taken to be small compared with
1. Thus, with AN, =60, we find that the time at which
the final 60 e-foldings begin (t60 ) is

3t,
t6p t ln4' 960Eca

(33)

Thus, if E5 10, then t6p & t„when o. is decreasing ex-
ponentially with t. If E ~ 10 then the final 60 e-foldings
begin at t60 & t„when o is approximately constant. (As
discussed in Appendix A, t6p is approximately the time at
which perturbations responsible for galactic and large-
scale structure formation cross the horizon. In the fol-
lowing we will use t6p as an estimate of the horizon cross-
ing time for all scales between the scale of galaxies and
the scale of the observed Universe).

The inflation will end when the slow-rolling approxi-
mations I—III break down. It is straightforward to show
that they all fail at approximately the same time, given by

3t,
t —t, = ln (34)

4a E

—8( A.e/3 ) ~ Jot
1 —e (35)

This is small compared with 1. Thus, the total number of
e-foldings in this case is

1 1
8T 2 4

3
2( 1+6e)(20e+ 6)

' 1/2 ' 2
op

(f'0

(36)

In order to have N, z- ~ 60, one requires
2

ES $10
480 $0

(37)

The final hN, e-foldings begin at a time obtained from
1/2

1 1 Bp 3
2 4e 8/0 Ae

8( AE'/3 ) /pe
(38)

which holds if the exponential is small compared with 1,

(Approximation IV also holds up to this time. ) At this
time, only about 1 e-folding of inflation remains, thus the
results for hN, and t6p given above are consistent with
the slow-rolling approximations.

(ii) cro&e' Po. (o0& go if e& 1.) In this case, the solu-
tion (25) gives, for the integral in (27),

1/2

Note that 6, will differ from N, Y. by only a small factor if
t &0, and so EN, =60 would require N, z- to be only
slightly greater than 60 in this case. Using (36), this con-
strains E to be

2
1 op

86N, Po
AN, =60 . (40)

From these results we see that only if oo) Po is e) 10
possible. The approximations I—III (and IV) all hold un-

til the final e-folding of inflation; thus, the expressions de-
rived are consistent with the slow-rolling approximation.

We see that, in the case of chaotic inAation driven by a
matter scalar, it is necessary for E to be less than 1 in or-
der to have a significant number of e-foldings of inflation.
This may be contrasted with the case of chaotic inAation
driven by a potential energy for the Brans-Dicke scalar
itself . In this case, if one considers E » 1, then
inflation can be successfully implemented. Moreover, if E

is suKciently large, the problem of fine-tuning of cou-
plings required to evade large energy density perturba-
tions is overcome in these models. ' Thus, provided
there is no problem with reheating the pure Brans-Dicke
chaotic inAation models, they may provide an attractive
framework for inflation. The case of chaotic inflation
driven by a matter scalar will be of particular interest if
reheating is a problem for inflation driven by the poten-
tial energy of the Brans-Dicke scalar itself.

So far we have considered the possibility that E can
take any value. However, if one does not introduce a po-
tential for P, then e is constrained by time-delay experi-
ments to be less than 5X10 [10]. If one introduces a
potential for P so as to fix its value at late times and so
avoid the time-delay bound, then it is likely that, even if
the initial period of inflation is dominated by V(cr) and
the Universe subsequently reheats, there will be a period
during which V(P) comes to dominate the energy density
and drives inflation. (This is discussed in Appendix B.)
This would be a problem if reheating was a problem for
V(P)-driven inflation [5], since the Universe would be-
come cool due to the inflation following the decay of the
V(o ) energy density. However, as discussed in Appendix
8, it is conceivable that, in some models, a subsequent
period of V())) )-driven inflation may necessarily have to
be avoided, for example, if reheating of the P energy den-
sity cannot regenerate a baryon asymmetry. As a result,
one should not rule out the possibility that E & 10 with
A,o. chaotic inflation scenario as described above remain-
ing unaltered by subsequent P-driven inflation. There-
fore, in the following we will consider all values of E up to
order 1.

B. Density perturbations

In order to calculate the magnitude of density pertur-
bations when they reenter the horizon during the
Friedmann-Robertson-Walker era, it is necessary to have

i.e., T) 0, where 0=(1/8)I)0)(3/Ae)' . If t &0, the
remaining AN, e-foldings at time t are given by

(39)
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a generalization of the analysis of Ref. [11],which deals
with the gauge dependence of 5p for perturbations larger
than the horizon, to the case of inQation driven by a
matter scalar in the context of a Brans-Dicke gravity
theory. However, at present such a generalization is not
available. Therefore, in this section we follow previous
treatments of inflation models based on Brans-Dicke
gravity [2,5 —7] and make the assumption that the results
of Ref. [11] for the evolution of density perturbations on
scales larger than the horizon may be applied to the
Brans-Dicke case with the substitution of Newton's con-
stant G& by the effective time-dependent Newton's con-
stant G&,z. Physically we expect this to be a reasonable
assumption for superhorizon-sized perturbations (in the
limit where Newton's constant changes slowly compared
with the expansion rate of the Universe) since such per-
turbations are unaffected by microphysics and evolve
purely kinematically. Therefore, for small changes in
time, Newton's constant may be regarded as fixed when
considering the evolution of the perturbations, with the
effect of the time dependence taken into account by re-
placing G& by G&,z. In particular, from the discussion in
Ref. [11], one finds that the constancy of the quantity
5p/(p+p) is not affected by having a time-dependent
Newton's constant. This is supported by the analysis of
Ref. [12], which considers in some detail the evolution of
the density perturbations for the case of a pure induced
gravity model. Thus, with

p+p =o +P (41)

during inflation one obtains, for the magnitude of density
perturbations on the scale of the observed Universe,

5p
o +P

(42)

5p = 5o. .av(~)
(43)

Using (5) one finds

where the expression is evaluated at the time when the
radius of the region which evolved into the observed
Universe crossed the horizon during inflation, which we
estimate by t«& in the following. [There may be a small
factor multiplying the right-hand side of (42) [12]. We
take this to be 1 in the following. ] In order to calculate
5p we must consider the contributions due to fluctuations
in the fields 5o and 5$. The contribution due to 5o is
given by

With (45) giving the density perturbation due to 5$ and
using (4) in the limit where ~PIP~ &&H, one finds

py (46)

5P HP o+P
P o'+ P' '6o

(47)

In the following we apply (47) to the four distinct cases
corresponding to the o(t) solutions given above. (In ac-
cordance with our discussion of inAation we can restrict
attention to the case e & 1.)

(i) pro) Po, t6D &t, (e) 10 ). From Eqs. (5) and (6)
we find that

o. /cr =4@

P/$=4eH . (49)

From these we see that if initially o )P then P )o V t and
vice versa. Thus, in case (i), one has (up to unimportant
factors)

5p

p '6O

(50)

Up to a small factor, cr =o o at the time of horizon cross-
ing. Thus, from (5),

4ioo,
3H

and so, using (11), (49), and (50), we find

3g1/2 2
p

p 4(3g) p ( /++or )~

(51)

(52)

Using the expression for X, (27) and X,r (30), one obtains

3A, '~ (4e+2)exp[26N, /( —,'+1/4E)]
(53)

p 16(3e)

Requiring that 5p/p & 10 for consistency with bounds
on the isotropy of the microwave background gives the
constraint

With the perturbation in the fields during inflation given
by 5o =5/ =H/2m. the magnitude of the density pertur-
bation is then given by

5p = —3Ho-5o. . (44)
E' —4k%,

SX 10 exp(4e+ 2 ) —,
' + I /4&

(54)

~0 ~

2p
(45)

For the case of 5$ one expects that the initial perturba-
tion in Newton's constant will give rise to a similar per-
turbation in the energy density ~5p/p~ = ~5$/P~. This
may also be seen by considering the curvature induced by
a perturbation 5$ around a flat spacetime. From the
Friedmann equation (2a) we find that the curvature k
produced by 5$ is the same as that produced by an
energy-density fluctuation of magnitude

Thus, we find that the upper bound on A, has an exponen-
tial dependence on e. With 61V, =60, we find, for exam-
ple, A, ( 10 when a=0. 1 and A, ( 10 ' when
e=2X10 . Thus, as e becomes large, the density per-
turbations require a much more extreme suppression of
the o. self-coupling than in the case of conventional
chaotic inflation models [4].

(ii) oo) Po, t6o) t, (e & 10 ). In this case one finds
that 5p/p is given by (52) with the substitutions cro~o
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and (1+Bpt)~(1+Bpt, ). Using (24b), (31), and
Bot, &)1, we find

6x 10
(65)

5P (4m+2)A. ' —(4/3)at (t —t )

p 48&3e /

Using the expression for b.N, (32) gives

X'"~aN,

p 63/3e' '
Thus, requiring that 5p/p 5 10 gives the constraint

( 1.1X10 e
bN

(55)

(56)

(57)

hN, =60 then gives the upper bound A, (3X 10 ', the
same as in the case of a fixed Newton's constant. We see
that, in cases (i) and (ii), corresponding to o p & Pp, there is
an explicit e dependence, whereas in cases (iii) and (iv),
corresponding to t)Itp) tr p, the results for density perturba-
tions on the scale of the observed Universe are e indepen-
dent and so are essentially the same as those obtained in
the case of a fixed Newton's constant.

C. Gravitational waves
and the microwave background isotropy

With hN, =60 this gives the upper bound on A, :

A. (3.1X10 "
a

(58)

We see from the results that as the value of e is reduced,
the constraint on A, becomes weaker until e(10, and
then gets stronger as e is further reduced. Note also,
that, in this case, there is an explicit e dependence, so the
result differs nontrivally from the case of a model with a
fixed Newton's constant.

(iii) (ttp & (Tp t6p ) l9. In this case o P, thus from (47)
one finds

6p H
t60

Using (25) one obtains

—12(ke//2) / tOp —
(

1 )1/2gl/2& —3/2( /y )3
~/ ) ~Ot

p

(59)

(60)

where P =PpV t has been used, which follows from (9) and
(35). Using (38) one obtains

5P —16( 2
) (/2/1/2+N3/2

p
This gives the upper bound on A, :

6x10 "
AN,

(61)

(62)

(63)

Thus, with AN, =60 one obtains 6p/p(3X10 ' . The
limit @~0 corresponds to the case of a fixed Newton's
constant. Since (62) is e independent, it should be the
same result as that obtained in the case of a fixed
Newton's constant.

(iv) Pp) op, t6p (8. In this case (tt=Pp and o =o.
p at

t6p. Using (5) and (59) one obtains
3

P (g/3)1/2~ —3/2

P 0p

The amplitude of gravitational-wave perturbations on
wavelengths of order the present horizon scale is [13,14]

H
~GW=

M
ff 60

(66)

( 5X10
Case (ii):

5X10
Case (iii): A, ~

AN,

(68)

(69)

5x10-"
Case (iv):

AN,

Comparing these with the bounds from density pertur-
bations, one finds that, in all cases, the bounds from den-
sity perturbations are more severe. Thus, in general,
5P/P=10 as required by galaxy formation can be gen-
erated by scalar field Auctuations during A,o." chaotic
inAation without conAicting with the microwave isotropy
due to gravitational waves.

(70)

D. Spectrum of density perturbations

As discussed in Appendix A, the dependence of AN,
on the scale R of the perturbation at present in cases
(i)—(iii) above is

(71)AN, =lnR +k,
where k is a constant. Thus, substituting into the expres-
sions for 5p/p gives

where Mp, =(8m.e)' P. Row is constrained to be less
eff

than 2X 10 in order to leave the isotropy of the cosmic
microwave background undisturbed. We merely state the
resulting bounds on A, for cases (i)—(iv) considered above
in the discussion of density perturbations.

2 —4AN,
Case (i): A, SSX10 2exp(4~+2)' —,'+1 4~

(67)

5P/p 5 10 then gives the upper bound on A, :

A (3X10 e
Oo

(64)

The value of e is constrained in this case according to
(40). Using (40) gives

6pcase (i): ocR ',
p

case (ii): tx: (lnR +k),5p

P

case (iii): ~(lnR +k) /5P

p

(72)

(73)

(74)
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In case (iv), since P =go and o =o o, we find that R' is con-
stant at t6O, and so for scales corresponding to t ~0 the
density perturbations will be scale independent. From
(72)—(74) we see that the spectrum of 5pjp is such that it
increases with R. Thus, there is no problem with primor-
dial black holes in this model [13,15]. However, if one is
interested in galaxy formation, one must check that the
increase in 5p/p from the scale of galaxy formation
(when 5pjp=10 ) to the scale of the observed Universe
does not result in an unacceptable anisotropy of the rni-
crowave background (5pjp~10 on the scale of the
presently observed Universe). This requires that u 50.1,
where a is defined by 5pjp ~ R . From (72) we then ob-
tain in case (i) the constraint e(0.04. In cases (ii) and
(iii) we may express the log variation with R as an
effective power law around t = t6p by taking the power to
be

3a =R ln
d 5p

dR p
(75)

Applying this to (73) and (74) gives, for the effective
power in case (ii),

(76)

and, in case (iii),

1

26N,
(77)

With AN, =60, these are an order of magnitude below
the upper bound. Hence, in cases (ii) and (iii) we find that
the spectrum of density perturbations is, in general, con-
sistent with the isotropy of the microwave background.

IV. CONCLUSIONS

From the equations of motion we expect that, as @~0,
the results will tend to those obtained with a fixed
Newton's constant. We see from the above that, in cases
(iii) and (iv) (which have e 810 ), the results for 5pjp
and A~w are independent of e and so will be the same as
the results in standard A,o. chaotic inflation which occur
in the limit e~O. Cases (i) and (ii), on the other hand,
give results that are explicitly dependent on e, and so are
altered from the standard case by the time dependence of
Newton's constant during inflation. We also find that, in
order to have sufticient inAation, e must be less than 1.
This is different from the case of chaotic inflation driven
by a potential energy for the Brans-Dicke scalar itself, in
which case e can take any value (with e))1 being pre-
ferred in order to suppress density perturbations). We
find that, if e 10, then only case (i) can give sufficient
inflation (requiring that o o & Po in this case), whilst if
e ~ 10, then both o o )Po and Po & o o can give sufficient
inflation. In general, the spectrum of density perturba-
tions has 6p/p increasing with the scale of the perturba-
tions. We find that, so long as a~0.04, it is possible to
have density perturbations 5p/p=10 on scales associ-
ated with galaxy formation without producing large-scale
anisotropies in the microwave background.

Although time-delay experiments put bounds [10] on E

in the case of a pure Brans-Dicke theory (e (5 X 10 ), it
is possible to add a potential for P which would fix
Newton's constant at present. As discussed in Appendix
B, one would, in general, expect to have a period of
inflation driven by V(P) at some time after o. driven
chaotic inflation ends. However, there may be models in
which a period of P driven inflation must necessarily be
avoided. For instance, it has been suggested [5] that
Brans-Dicke scalar-driven inflation may have a problem
with reheating. In this case, it would be necessary for P
at the end of o.-driven chaotic inflation to be close to the
minimum of its potential so as to avoid V(P)-driven
inflation and the associated cooling of the Universe with
no subsequent reheating (or with insufficient reheating to
regenerate a baryon asymmetry). This would correspond
to an anthropic principle determination of the value of P
at the end of inflation. Thus, the possibility that e & 10
with no significant V(P) driven inflation should not be
discounted, although it is unattractive. However, we find
on studying in detail the o. driven chaotic inflation
scenario that even if e could be greater than 10 for
some reason, the value of the o. self-coupling is con-
strained to be extremely small for large e (less than 10
for e=O. 1). This would probably make reheating in this
model difficult (since the couplings of o to quarks and
leptons would also have to be small in order not to gen-
erate a large A, at one loop), so giving little improvement
over the case of V(P)-driven inflation. Thus, chaotic
inflation driven purely by a minimally coupled scalar in a
model with e much larger than —10 is disfavored even
if it can be made consistent with the time-delay experi-
rnent bound.

Chaotic inflation in the context of Brans-Dicke theory
has also been discussed by Linde [9]. He considers essen-
tially the same model as discussed in Sec. II and gives
solutions for o. and P in a general parametric form for an
arbitrary V(o ). The main emphasis of the present dis-
cussion has been on the constraints originating from the
physical consequences of density perturbations generated
during inflation, which is not analyzed in Ref. [9]. The
main results of Ref. [9] deal with the self-regeneration of
inflationary domains due to quantum Auctuations of the
scalar fields in the model, and with the possibility of the
present large value of the Planck mass being determined
by probability arguinents (what initial region inflates the
most) or by the anthropic principle. The topics discussed
in the present paper are mostly distinct from those dis-
cussed in Ref. [9] and so complement the discussion of
Ref. [9]. We believe that the explicit (though approxi-
mate) solutions for o. given in this paper are particularly
convenient for the analysis of density perturbations and
inflation in this model.

We conclude that chaotic inflation in Brans-Dicke
theory with a pure quartic potential for the matter scalar
driving inAation can difFer significantly from the case of
gravity with fixed Newton's constant when initially o & P
(and, in particular, when e ) 10 ), but does not conflict
with the observed isotropy of the Universe provided that
e & 0.04. Sufhcient inflation is found to require that e & 1.
However, in the range 10 «a&0.04, the density per-
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turbations produced during inflation will require a much
smaller value for the o self-coupling than in the case of
conventional chaotic inflation models with fixed
Newton's constant.
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APPENDIX A: VALUES OF AN,
AT HORIZON CROSSING

IN A,cr CHAOTIC INFLATION

In this Appendix we give expressions for the value of
b,N, at which, perturbations corresponding to scales of
size R in the present Universe leave the horizon during
inflation. The radius of a volume of the present Universe
arising from a region crossing the horizon at time t is

g rh rh 1 tt,N (t)g(T )

g(Tr ) Tr
(Al)

where the horizon at time t in A,o driven inflation is

H

' 1/2

o.
o

1+f Bdt
0

2
oo

(A2)

(A3)

where we have used o =era for t ( t, . From (27) we find

—AN,(1+Bot ) =(1+Bat, )exp
—,'+ 1/4e

Thus, from (A 1) we find

(A4)

b,N, ( t ) is the number of e-foldings remaining until the
end of inflation, T,h is the reheat temperature at the end
of inflation, T is the temperature of the photons at
present (2.7 K), and g( T) is the effective number of mass-
less degrees of freedom at temperature T. In the follow-
ing we give the expressions for hN, corresponding to
R(t)=R&, where R~ is the size of the observable
Universe at present. We consider the four cases for the
time of horizon crossing corresponding to the cases dis-
cussed in Sec. III.

(i) oo&go, t (t, . In this case the horizon during
inflation is given by

' 1/2

X(To

—
—,'lne+ln[ V(cro)'/ /T, h] . (A6)

Therefore, with R =3000 Mpc (=5X10 ' GeV) and
Ty=2. 7 K (=2xlo 13 GeV), and assuming that
g(T,„)/g(Tr ) =100, we find that bN, corresponding to
the present Universe is given by

2 —4e
2+4' [ 61.7+ —' Ink, ——' inc

(A7)

(4/3)t, a(t —t, )=Ho 3&ot.e

Then using (32) and (A9) in (Al), one obtains
1/3

g ( Trh ) Trh 3Bot,R(t)=
g(T ) T Ho

bN, (t)
1 1 e
2 4e hN,

(A9)

(A 10)

Using (31) and the above values for R and Tr, we find
that AN, corresponding to the observable Universe is

bN, =66.0+in' N, +—„'ink, + —,'1ne+ln[ V(o 0)' /T, h] .

Thus, one finds that, up to corrections typically ~ 10, the
scales corresponding to the observable Universe cross the
horizon at =60 e-foldings before the end of inflation, y,s-
suming that X is not very small compared with the value
which gives density perturbations of magnitude
5p/p=10 . It was shown in Sec. III that acceptable
density perturbations can constrain A, to be very small if e
is larger than 10 . One might ask if the value of AN,
from (A7) could be much smaller than 60 in this case. In
fact, this turns out not to be the case. If we substitute the
value of tt. from (54) which gives 5p/p=10 into (A7),
we obtain the expression for AN, :

b N, (1+6e)=58.6+ —,'lne+ln[ V(o o)' /T, „], (A8)

which shows that, in general, hN, =60 for scales corre-
sponding to the observable Universe.

(ii) cro) Po, t60 ) t, In this. case, using (24) in (A2), one
finds that

' 1/2

XO4o

1 1
Xexp hN, 1 — —+

2 4e

Using (31) we find

g( T,„) TrhR(t)=
g(T ) Tr

X(1+Bat, )

(A5)

(A 1 1)

' 1/2

XO-4o

A,E'

exp 8
3

1/2

(A12)

where we have used (25) and 1+fB dt =1. Thus, from

Again this is typically =60, assuming that e is not ex-
tremely small and that A, is not too much smaller than the
value which gives 5p/p = 10

(iii) $0& cro, t )8. In this case the horizon is given by
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(Al) we find

R(t)=
1/3(T,„) T,h 1 3

g(T ) T, 8bN,

1/2 dN (t)
e

0o

AN, =60 (assuming A, and e are not extremely small).
The scales corresponding to galaxies have R =10 R,
and so have AX, smaller by about 7.

+In[ V(cro)' /T, h ], (A14)

which again is typically =60, with the assumptions of
not too small e and A, as in case (ii).

(iv) Po(cro, t (8. In this case, P=(fo and cr =cro dur-
ing infiation. Therefore, H '=Ho ' and so, from (Al),

1/3
Ho

EN, =ln R Tr (A15)
g Tr

Thus, we find for hX, corresponding to the observable
Universe,

(A13)

where (38) has been used. Thus, we find that bN, corre-
sponding to the observable Universe is given by

b N, =68.3+in' N, +—' ink. +—'inc+ In(go/cro)

APPENDIX 8: POST-INFLATION EVOLUTION
OF THE UNIVERSE IN THE

A.cr CHAOTIC INFLATION MODEL

In this appendix we consider the e6'ect on the post-
inAation evolution of the A,o. chaotic inflation model of
including a nonzero V(P) in the model. Including a
nonzero V(P) is necessary in the case where e) 5 X 10
in order to avoid the bound on e coming from time-delay
experiments [10]. In particular, we consider the question
of whether or not a period of V(P)-driven inflation can be
avoided following the reheating of the V(cr ) energy densi-
ty.

In order to discuss the evolution of the Universe in the
presence of a nonzero V(P), we will consider in the fol-
lowing a simple symmetry-breaking potential:

bN, =65.2+ —,'lnbN, + —,'ink, +in[ V(cro)' /T, h], (A16)
V(P) = (P' —u')' .

4
(B1)

which, as in the previous cases, is typically =60.
Thus, in general, when the scales corresponding to the

observable Universe cross the horizon during inflation
the number of e-folding s of

inflation

remaining is

The full equations of motion including an energy density

p a pressure p for the matter and radiation energy are
then

H 1+2H ' = [ V(P)+P /2+p ],1d I

y2
(B2)

4'+3HA+0 /4+ [V'(4») 4V(0)/4 —(p 3p )—/4]=0—.1+6e
(B3)

P /2+ V(P)+p
H =

3eg

3H = 2( 2 $2)

( I+6e)$

(B4)

(B5)

We can solve these equations exactly for the case where
the Universe is dominated by a radiation energy density
(or by an effective radiation density for the oscillating o.
case). The radiation energy density can be written in
terms of the scale factor as p =k, /a . Using this and
(B4) and (B5), we obtain an equation for P in terms of a:

The initial V(cr)-driven inflation period will come to an
end once the 0 field starts to oscillate about its minimum.
For the case of a pure ko. potential, the resulting energy
density will evolve exactly like a radiation energy density
[16]. As a result, in this case we need not consider the
question of reheating, since the evolution will be essen-
tially the same before and after reheating. For a radia-
tion energy density one has p =3p, thus, with the po-
tential (Bl) the equations of motion in the slow-rolling
approximation are

3eA, &v P(u —P )a

da (1+6e)k„

This equation has the solution

2 x
v e

e"+u /P, —1

(B6)

(B7)

where X is defined by

3eA.&v (a —a, )

2(1+6e)k„
(B8)

P =v /(X+u /P, ) . (B9)

and p, and a, are the values of p and a at the end of
V(o )-driven inflation.

We first consider whether or not it is possible for the p
field to begin oscillating before the radiation energy den-
sity becomes dominated by V(P), thus avoiding a period
of V(P)-driven inflation. We first consider the case
where, initially, P ) u. From (B7) we see that, for X small
compared to 1, P can be written as
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Thus, once X is larger than U /P„P will become propor-
tional 1/X. Let the time at which this occurs be denoted
by I;„. Assuming that a »a, at t, we see that, after t,
the energy density in the P field ( ccP ) will drop more
rapidly than the radiation energy density. Thus, if the ra-
diation energy density is dominant at I;„ then it will
remain dominant until the P field begins oscillating. Us-
ing (B8) and p =k„/a, we find that the condition for
the radiation energy density to be dominant when the P
field begins to rapidly decrease is

p2
e/(1+6@) &

6v
(B10)

1+6me& (B11)

We see again that this is not satisfied if e & 1. (In this case
the slow-rolling approximation for P is valid up to X= 1).

Thus, we conclude that, in general, V(P) will come to
dominate the energy density of the Universe before it or
P change significantly from their values at the end of
inflation. Therefore, if P is slow-rolling once V(P) be-
comes dominant, a period of P-driven inflation will occur.
This would be a problem if either the P field lacks the
couplings to light fields allowing the energy density in
V(P) to decay and reheat the Universe, or if the tempera-
ture at the end of V(P) reheating was too low to allow
nucleosynthesis or baryogensis to occur (the original
baryon density being diluted away by the P driven
inflation). These possibilities are clearly very model
dependent. However, if in some model they do occur
then it would be necessary for the region of the Universe
in which we live to be such that little or no P-driven
inAation occurs. This amounts to a fine-tuning of the ini-
tial value of P following inflation, justified by the anthro-
pic principle. (The initial period of o-driven inflation is
crucial in creating an ensemble of regions the size of the

This is not satisfied if a&1. Thus, if initially P&U, the
Universe will become dominated by V(P) before
changes significantly from its value at the end of inAation

(The slow-rolling approximation for P will hold up to
X=u /P, in this case. )

In the case P less than U, we see from (B7) that once X
is greater than order 1, P will start to grow rapidly. Once
X is larger than u /P, we find that P=v. We see from
(Bl) that, until P is close to U, the potential does not
change much from A, &U /4. The condition for the radia-
tion energy density to dominate V(P) at X=1 (when P
begins to change significantly from its initial value) is
p & A.&U /4, which gives

In this case the slow-rolling approximation for P breaks
down and the (() field will begin oscillating around the
minimum of V(P). Alternatively, one could simply re-
quire that there was not too much P-driven inflation, so
preventing a preexisting baryon asymmetry from being
diluted by too large a factor. From Accetta et al. the to-
tal number of e-foldings of inflation which occur as P
from its initial value to P = U is

2

—1, p&U, (B13)

N, = ln ———,p&U .
4e P 2

(B14)

Thus, we see that if e is large (greater than about 0.05),
then there will be no more than about 10 e-foldings of
inflation due to V(P) if P is of order v when V(P) be-
comes the dominant energy density. So, in this case there
can be relatively little cooling and expansion of the
Universe during V(P)-driven inflation, leaving the V(cr )-
driven inflation scenario largely unaffected by the subse-
quent period of P-driven inflation.

We conclude that, although in general there will be a
period of significant V(P)-driven inflation following the
end of the chaotic V(cr )-driven inflation, it is conceivable
that there are models in which the cooling and expansion
of the Universe due to V(P) is physically inconsistent
with the Universe as it exists at present. In this case, an-
thropic principle considerations require that the V(P)
inflation should either not occur or should have little
effect on the overall evolution of the Universe following
the end of o-driven chaotic inAation. For this reason one
should consider the possibility that e& 10 in the V(o )-
driven chaotic inflation scenario, with the existence of
V(P) giving a mass to the Brans-Dicke scalar, allowing
the time-delay bound e ( 5 X 10 to be evaded but other-
wise not altering the inflation scenario significantly.

observable Universe, in each of which the value of P is
expected to be different, depending on its initial value in
the region of the preinAation Universe which inAates to
the observable Universe-sized region. ) Thus, we consider
the conditions under which little or no V(P)-driven
inflation occurs after the V(o )-driven inflation ends.

No V(P)-driven inflation will occur once V(P) becomes
dominant if P at this time satisfies the condition (Accetta
et al., Ref. [7])

(B12)
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