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In relation to black-hole models for central engines in active galactic nuclei, we discuss some eFects of
accreting matter on the global structure of the Kerr black-hole magnetosphere. Based on the steady ax-

isymmetric magnetohydrodynamic (MHD) equations in Kerr geometry, we analytically study the

general-relativistic Grad-Shafranov equation and the poloidal wind equation. The field line geometry is

clearly given in the region where the plasma can be magnetically supported. Near the black hole, the

magnetic support breaks down and the plasma begins to Aow toward the event horizon. We consider the

magnetohydrodynamic conditions for the plasma inAows which should pass through the Alfven critical

point. Then it is found that the accumulation of magnetic field lines threading the horizon is suppressed

for the rapidly rotating holes. This result means that the global shape of the field lines and the MHD en-

ergy extraction from the rotating black hole can drastically change as the spin down of the black hole

proceeds. We present an evolutionary model for the activity and the structure of the black-hole magne-

tosphere.

I. INTRODUCTION

It is widely believed that supermassive black holes
work as an engine of very energetic and compact phe-
nomena observed in active galactic nuclei (AGN's). The
mechanism of energy generation is roughly divided into
two categories. One is essentially due to a release of the
gravitational energy of accreting matter, called *'fuel"
models, and the other is essentially due to an extraction
of the rotational energy from accretion disks or black
holes, called "flywheel" models. Both of these mecha-
nisms may be important in actual AGN's for explaining
the enormous luminosity and other properties of ob-
served phenomena (e.g. , short time variation of activity).
In this paper, we are concerned with the flywheel model
in which the rotational energy and the angular momen-
tum of the black hole are extracted by magnetic dragging
and transferred in the form of electromagnetic flux. A
key problem for this model is to reveal the structure of
the black-hole magnetosphere. This structure is deter-
mined through some interaction between the black hole
and the ambient plasmas which may be described within
the framework of magnetohydrodynamics (MHD). The
basic equations for the steady and axisymmetric magne-
tohydrodynamic system can be reduced to the poloidal
wind equation and the Grad-Shafranov (GS) equation.
The former denotes the development of physical quanti-
ties along a stream line while the latter denotes the
transfield equilibrium giving a geometry of field lines.
But these equations are very complicated and the analysis
has been developed using some approximations.

An important step for studying the magnetosphere in
Kerr background space-time was originated by Blandford
and Znajek [1] (BZ) in the force-free limit. Their work
has clearly shown a mechanism for electromagnetic ener-
gy extraction (which we call the BZ mechanism) which

produces power proportional to Q~(AH —Qz) and the
square of poloidal magnetic flux at the horizon, where Qz
and m& are angular velocities of the field lines and the
black hole, respectively. The radial or paraboloidal
magnetic-field solution was found by a perturbation
method which is applicable to the case in which both Qz
and co~ are very small.

The next step should be to contain fluid contributions
to the magnetospheric structure. In the black-hole mag-
netosphere, the outer region will be filled with
"transmagnetosonic" out-going plasma flows observed as
jets or winds, but the inner region must be filled with
"transmagnetosonic" in-going plasma flows transporting
energy and angular momentum to the black hole. Phin-
ney [2] emphasized the importance of a role of such plas-
ma flows by showing how AF can be determined through
a condition at the fast magnetosonic critical point for the
poloidal wind equation. Further, Takahashi et aI [3].
genera11y proved that the position of the Alfven critical
point for the inflows is crucial to transport the negative-
energy influx into the black hole.

In a Newtonian analysis recent works revealed some
interesting effects of the matter part (plasma's inertia) on
field line geometry. For example Sakurai [4] numerically
showed that poloidal magnetic-field lines connected with
a rotating compact object are forced to bend azimuthally
by the plasma's inertia as the distance from the central
object increases and strong toroidal magnetic field is piled
up near the equatorial plane. Hence the magnetic pres-
sure induces a pinch eFect and collimates the flow along
the spin axis. Heyvaerts and Norman [5] obtained analo-
gous results, by using a purely analytic method under
general boundary conditions. Here we are interested in
the magnetosphere under the efFects of plasma accretion
flows onto the Kerr black hole where a general-
relativistic treatment should be essential. The purpose of
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this paper is to understand the global magnetospheric
structure without assuming the force-free limit and the
Newtonian limit.

We consider a Kerr black hole immersed in an axisym-
metric and steady magnetic Geld that becomes asymptoti-
cally uniform. In Sec. II, we introduce the GS equation
and the poloidal wind equation for the MHD system in
Kerr geometry. In Sec. III, we solve the basic equations
in the low-poloidal Qow limit. We find the existence of a
stagnation region where inertial and electromagnetic
forces acting on plasma particles are balanced in the Kerr
background geometry. Our approach is to assume that
the plasma can be magnetically supported in a wide re-
gion of the magnetosphere. This requires that the dimen-
sionless parameter e—=m QF is very small, where m is the
black hole's mass in geometrical units. In this case, the
field lines turn out to be considerably bent from a cylin-
drical configuration. In Sec. IV, we consider the region
where such a poloidal quasiequilibrium breaks down.
The poloidal accretion Rows must be accelerated to a
super-Alfvenic speed in this region near the black hole.
We estimate physical quantities in order of magnitude as
a power of the small parameter e by analyzing the Alfven
critical condition and the boundary condition at the
event horizon. Then we arrive at our main conclusion
that the magnetic field threading the horizon is less
amplified as the hole's angular velocity mH becomes
larger than QF. In Sec. V, as an application of the results
obtained here, we discuss the MHD version of energy ex-
traction from a rotating black hole and the evolution of a
black-hole magnetosphere.

II. BASIC EQUATIONS AND CONSTANTS OF MOTION

We study the general-relativistic equations for steady
and axisymmetric ideal magnetohydrodynamics (no resis-
tivity and no viscosity), which are summarized in the Ap-
pendix. In this paper the MHD equations are treated in
the cold limit (i.e., the pressureless limit P =0) as the first
step for understanding some e6'ects due to the accretion
flow on the shape of the field lines (the pressureless and
viscousless assumption can remove any direct interaction
between neighboring fiuid elements).

The background geometry is given by the Kerr metric
in the Boyer-Lindquest coordinates as follows:

[6,7]). Here we refer to the relevant points.
The four constants of motion can be defined by the

electromagnetic field F & and the four-velocity u as fol-
lows. The angular velocity of magnetic-field line QF and
the injection rate g are

QF (2.2)

g—nu"
Yj= (2.3)

&—gnu
F (2.&)

&—g nu '(Q —Q~)
(2.5)

where

u&Q=
u' (2.6)

is the angular velocity of plasma ffows, and n is the prop-
er number density. The total energy E and the total an-
gular momentum L, of a plasma particle are

Q~B~
4m'

L=——pu

E—=pu, — (2.7)

(2.8)

(g„+g,~QF )e EM—
ut-

p(ko —M )

(g,~+gtt QF)e +LM

p(ko —M )

(2.9)

(2.10)

where p is the specific enthalpy, which in the cold limit
reduces to the rest-mass energy of a plasma particle, and
B& is the P component of the magnetic field defined by

= —,'& —g e
&~

k~F~ (k~ is the timelike Killing vec-
tor).

By using the metric tensor g„and the constants of
motion QF, g, E, and L, we have

ds2= 1 —2 " dt2+2 ., s'"82dtdy
x ' x

A slil 8d~2 Xd (2.1)

—4wg
Bt, = [(g„+g,tQ~)L +(g,t, +gtt, Q~)E],

(ko —M )

(2.11)

where X=r +a cos 8, b, =r —2rnr+a, A =(r +a )—Aa sin 0, and a and m are the spin and mass parame-
ters, respectively. We use geometrical units c =6 = 1.

The set of MHD equations in Kerr geometry has been
completely solved except the transfield components of the
momentum equations. In the cold limit we have the four
constants of motion along magnetic-field lines (stream
lines), and the poloidal velocity of plasma flows is related
to these constants through the poloidal wind equation
(see, for example, Takahashi et al. [3] and Camenzind

where

ko —g«+2g, ~QF +g~~QF2

and

(2.12)

e—=E—QFL, . (2.13)

These constants of motion should be understood as func-
tions of the P component 4 of the electromagnetic vector
potential. The function 'P=~p(r, 8) determines the po-
loidal field line geometry and is called the Aux function.
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The poloidal velocity uP defined by uP = —u A u

(A =r, 9) can be derived by solving the poloidal wind
equation

2

(1+up)(ko —M ) = — (kok~ 2k—2M k4—M ),22 E

—( + Q )
P A

Pw

X (B„V) + (Bs+)
~rr ~88

(2.19)

(2.14) The poloidal wind equation (2.14) may become singular
at the Alfven point where

where k2 and k4 are given by the metric tensor and the
constants of motion as (ko —M )„=0 . (2.20)

r 2
e

k —=
2 (2.15)

The subscript A means quantities evaluated at the Alfven
point. The flows can smoothly pass through this critical
point only if the condition

gpp+2g, p(L /E)+g„(L /E)
k4 ——

2
pw

(2.16)

and pii, =—g, &
—

g«g&& (=b, sin 8) is the invariant cylindri-
cal radius. The Alfven Mach number defined by

(k2+kok4) „=0 (2.21)

e(g«+gt~QF)~
koA

(2.22)

is simultaneously satisfied. Hence we call Eqs. (2.20) and
(2.21) the Alfven critical conditions. From Eqs. (2.9),
(2.10), and (2.20) we obtain

4mpg
n

can be rewritten in the form

(2.17) and

e (gtp+gpQQF ) A

koA
(2.23)

2
upM =16m p q (g«+g«Q~)

P
(2.18)

where n is the proper number density of plasma particles
and BP is the poloidal magnetic field

The flux function must satisfy the poloidal transfield
component of the momentum equation which is called
the Grad-Shafranov equation. A detailed derivation of
the GS equation is given in the Appendix. In the cold
limit it can be written in the form

v' —g(k, —M') a„q

pw Nrr

p2ii, (ko —M )
~r

4m& g. — +8
V —g(k —M ) B'll

O 8
8 2

Pw See

2 24~8 Pw e 2 r

&Q )~ — —(k, —M ) Q',
M p

2

(e r) )'+g„(L g )'+2g, p(ELg )'+gpss(E g )'PW 22,

4n.p'p ii, (ko —M')
+ Yf'g +

M
(2.24)

where the prime denotes the derivative with respect to 4 because E, L„g, and Az are functions of 0 only. The GS
equation is a highly nonlinear partial differential equation for II and is coupled with the poloidal wind equation. Equa-
tion (2.24) seems to give an additional condition to eliminate the singularity at the Alfven point and the horizon. How-
ever, it is easy to prove that if the regularity requirement for the poloidal wind equation, conditions (2.20) and (2.21), is
satisfied, it is automatically satisfied for the GS equation. Let us rewrite Eq. (2.24) in the form

2
Pw

4m& —g

' a„e, as%+, g "
a„(k,—M')+ ' a,(k, —M')

PW Nrr gee''
477p pw

M
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0
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g L(E LQ~)QF-

M ko —M

. (k, —M') a„, " +a,g a% 'v
g as%

pw Nrr pw ee

4 2 2

M (g,~+g~~Q~)g QF+ 2 [(E r) )'g~~+(L rj )'g«+(ELHI )'2g«]
M
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It is now clear that the right-hand side of Eq. (2.25) does
not diverge even at the Alfven point because the equality

[+(ggy+gyyQi' ) +~ (gg +g/yQF ) ] + p ir( kg+ kok4 )

whole region of the magnetosphere) as
2

e 1—
p

(3.4)

holds. We need only the Alfven critical conditions (2.20)
and (2.21) which result from the poloidal wind equation.

At the horizon (pir =0) Eq. (2.14) reduces to the rela-
tion

ko —M
as%' =4~(rJ+a')[(Eq) mH(—Lr))],

sinO H

(2.27)

where the subscript H means quantities evaluated at the
horizon and r& is the horizon radius. However, Eq.
(2.24) also requires the derivative with respect to 8 of Eq.
(2.27).

Hence we find that the GS equation gives no additional
condition for regularity both at the Alfven point and at
the horizon. In Sec. IV, we will discuss some effects due
to the existence of the Alfven point and the horizon by
using these conditions.

III. STAGNATION REGION

e =ka(r, 0) .
p

(3.1)

In the asymptotic region where z~ ~ and R (=rsin8)—
remains finite, we assume a uniform magnetic field

lim B,= =Bp=const,
z ~ ' R

which means

(3.2)

R
lim e= Bo .

z~oo 2
(3.3)

By noting that the function ko has the form
ka = 1 —R Qz in the asymptotic region (except the polar
region where the inequality R QF )&m /r does not hold),
we can give the function e =e ( 4 ) (which is valid in the

Many out-going jets observed in active astrophysical
phenomena are believed to be generated from magneto-
spheres surrounding compact objects. Here we consider
a black-hole magnetosphere. The whole region of the
black-hole magnetosphere cannot be occupied only by the
outflow region because of the existence of the horizon.
There exists some boundary region where the inflows are
separated from the outgrows and the poloidal velocity of
plasma particles becomes very low, and we caH this the
stagnation region.

The accretion Qows toward a black hole start from the
stagnation region with very low-poloidal velocity. Here
plasma particles can move only in the toroidal direction.
Let us study the magnetospheric structure in the low-
poloidal fiow limit (up «1, M «1). In this limit, the
field line geometry can be determined by the poloidal
wind equation which reduces to

w~ere

Bo
0'p =—

2Q

This leads to the Aux function

% (r, 0)=%,[1—k, (r, 8)],

(3.5)

(3.6)

which gives the shape of field lines (%=const) in the stag-
nation region.

Now the role of the GS equation (2.24) is to give the
proper number density of plasma particles. The left-hand
side of Eq. (2.24) describes electromagnetic forces which
work in the transfield direction and balance with inertial
forces in the right-hand side. In the low-poloidal flow
limit (M «1), the terms with the factor M become
dominant in the right-hand side. Then, by virtue of Eq.
(2.17), we find

—Bpk
n(r, O)=

4&PP gr QF

kog""a„(k a„%')+sin0g a . a 4
sinO

BoQ
X 1+ (1—g„—g,~Q~)

nF'

If we set QF =const, then Eq. (3.7) reduces to

(3.7)

Bpko
n (r, O)=

87TPPP AF

kp
X g""a (k a k )+slneg"ag Oa k

sinO

(3.8)

for which the shape of field lines and the line n =0 are
shown in Fig. 1. The solution obtained here is physically
meaningful only in the region where n )0. We find such
a region (the dotted region in Fig. 1) between two light
surfaces. In this stagnation region, asymptotically uni-
form magnetic field lines (the solid lines in Fig. 1) are
considerably bent because of the balance between inertial
forces and electromagnetic forces in Kerr background
geometry. The very similar shape of field lines was nu-
merically obtained by Wilson [8]. Notice that such a field
line geometry is due to the condition for the quasiequili-
brium of matter. In the force-free assumption, Blandford
and Znajek [1] solved the GS equation and obtained the
solutions with a monopole or paraboloidal geometry. We
find that the effect of matter which is neglected in the
force-free limit is very important for determining the glo-
bal shape of field lines.

It is clear that the stagnation region cannot occupy any
regions near the horizon and the polar axis where the
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Plr=r = (1—aQF) 0F

1/3

(3.9)

Black Hole Equatorial Plane

FICx. 1. Poloidal magnetic-field lines and density contour in

the low-poloidal fiow limit (mu&=mQF=0. 06). The vertical
axis is parallel to the spin axis of the black hole and the magne-

tosphere. The horizontal axis denotes the equatorial plane. The
thin solid lines denote the field lines, and the dotted region cor-
responds to the region n & 0, with the boundary n =0 shown by
the thick solid lines. The shape of the field lines becomes un-

physical near the polar region and near the horizon. These
properties do not change even if ~H )&Qz or AH &(QF.

plasma particles cannot be sustained by the electromag-
netic forces (see Fig. 1). We observe the unphysical re-
sults that the magnetic-field lines do not thread the hor-
izon and do cross with the polar axis. Then the proper
number density n becomes negative near the horizon and
the toroidal current density diverges at the polar axis.
[Note that we cannot use Eq. (3.6) in the polar region
where R Az & m/r. ] In these regions, poloidal plasma
Bows must occur to deform the field line geometry shown
in Fig. l.

The inner part of the stagnation region is bounded by
the line n =0 (located at a distance of several times the
horizon radius rH) and the polar region. These boun-
daries can be understood as the "plasma horizon" point-
ed out by Damour et al. [9]. Their discussion was based
on the condition for the electromagnetic force balance
E.(E+VXB)=0 for a test particle where E, B, and V
are the electric field, the magnetic field, and the velocity
of test particle, respectively. Our result is an extension of
their work to the MHD system. Notice that the outer
boundary of the stagnation region also exists. This is due
to the rotation of field lines and is characteristic of our
MHD treatment.

The magnetic-field lines in the low-poloidal Aow limit
are approximately given by k0 =const, because these lines
are just "equipotential" lines along which the Row ac-
celeration is not effective. As was discussed by Blandford
and Payne [10], the plasma infiows with very low velocity
will be generated in a region near (and inside) the surface
B,k0=0, which corresponds to a local maximum of the
potential k0 along a radial direction. Except near the po-
lar region, the maximum surface exists at the distance

Then, from Eqs. (3.7), (2.17), and (2.18), we can estimate
in order of magnitude of the Alfven Mach number M
and the poloidal velocity u~ in the stagnation region near
the surface r =rs,

2 2 rp'g s

0 m

2 2
)'( 1 II )10/3( II )2/3

+2@40 F

BpM

( g„+g~Q~) (4nprl)
2 2

(1—aQ ) (mQ )
0 204 F

0 F

(3.10)

(3.11)

e (:—mQF) « I . (3.12)

This means that the stagnation region can occupy a large
part of the "slowly rotating" magnetosphere (i.e., the sur-
face r =rs is very remote from the horizon).

Our additional assumption is
2

px/ (3.13)
%'0QF

which gives the consistent results that u~-M (-e )

and 1 —ko —M (-e ) in order of magnitude. Equation
(3.3) obtained in the low-poloidal velocity limit from the
poloidal wind equation (2.14) turns out to be valid up to
the order of M .

It is interesting to note that the Rows in the magneto-
sphere considered here are neither magnetically dominat-
ed nor particle dominated. In fact, from Eq. (3.13), we
find

80
p

which, by virtue of Eq. (2.3), leads to the result

yn p dr/dt
cBOBe+/v' —g

(3.14)

(3.15)

where y is the Lorentz factor. The left-hand side of Eq.
(3.15) can be regarded as the degree of magnetization of
flows (i.e., the ratio of particle energy flux to electromag-
netic energy Aux). It is clear that Eq. (3.13) is a plausible

Some mechanism which leads to the usual result that
Q~-AH has been discussed (e.g. , see Phinney [2]). How-
ever, we have still a controversy [11]over the validity of
such a mechanism in terms of the consistency with MHD
causality. Physical conditions in the stagnation region
may be important for determining the value of QF. In
this paper we do not pursue this problem, and we treat
QF as a free parameter independent of co~. Nevertheless,
we must recall that any accretion fiows in the black-hole
magnetosphere start from the region k0&0. For exam-
ple, on the equatorial plane, k0 can become positive only
if e& —,

' for a =m and e&1/&27 for a =0, where
e=mAF. Hence we assume that
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assumption because we are mainly interested in the
e6'ects due to matter accretion on the magnetospheric
structure.

IV. ACCRETION FLOWS FROM STAGNATION REGION

At the stagnation region (up «M «1) the poloidal
wind equation was approximated by Eq. (3.1), while in a
region near the inner boundary accretion Aows may be
accelerated to the velocity uz-M . Then it should be
modified to the form (keeping the terms up to the order
ofM )

2

(4.1)

In Eq. (4.1) ko is larger than M; hence, the flows are still
sub-Alfvenic. Equation (4.1) represents the effect of plas-
ma Qows on the shape of field lines in the sub-Alfvenic re-
gion. Along a 6eld line %=const the function ko de-
creases as uz increases. The plasma acceleration makes
the Geld line turn in the direction of the inner light sur-
face rI", where k0=0, which is close to the ergosurface
g« =0 in the case m QF « 1 (see Fig. 2). This effect will
be amplified as the plasma acceleration goes on.

Then, the magnetic field lines that originate from the
stagnation region may be able to cross the inner light sur-
face and finally reach the horizon. However, this is possi-
ble only when the Bows satisfy the critical conditions at
the Alfven and fast magnetosonic points and the bound-
ary condition at the horizon. These conditions will put
some constraints on the values of 4, uz, M, etc. , along
the field lines threading the horizon. In this section we
will estimate in order of magnitude these quantities to re-
veal the magnetospheric structure in the super-Alfvenic
region. Our approach is based on the assumptions (3.12)
and (3.13). The conditions (2.20) and (2.21) that result
from the poloidal wind equation or the GS equation are
used to estimate the order of a physical quantity A in a
power of e like A -+e (including the sign of A).

up &) i

=02

FIG. 2. Schematic picture of effects of inflows in the sub-
Alfvenic region. The vertical axis denotes 1 —4'/%'0 and the
horizontal axis denotes the distance r from the black hole. In
the low-poloidal flow limit, roughly speaking, the function
1 —%'/+0 has a shape determined by up =0. When the flows are
accelerated to the velocity uz —1 or uz)&1, the shape of field
lines is changed. Because flows are fixed in the line of 4'=const,
the flow lines or the field lines must bend inward.

We are interested in how the field line configuration de-
pends on the angular velocity AH of the black hole.
Hence we denote the order of the Kerr spin parameter a
as aQ„-e~. The accretion Aows must pass through the
critical points (the Alfven point and the fast magnetoson-
ic point) to reach the horizon. We denote the order of
the Alfven Mach number at the Alfven point as Mz —e
(i.e., the Alfven point is located at the region where
ko-e ). The stream lines start from the stagnation re-
gion where Eqs. (3.4) and (3.6) hold. Then we have the
fiux function 4 and the conserved quantity e satisfying
the relations that 4 & Vo and e —+p. Some part of the
filed lines may not thread the horizon. We specify the
6eld lines threading the horizon by denoting the Aux
function as +-Toe". If the field lines happen to enter
into the polar region of the black hole, we must evaluate
the order of the polar angles O„and OH at the Alfven
point and the horizon. The Alfven point is very close to
the horizon in the polar region; hence, it is plausible to
assume 0„-00 and we denote their order as
sin 0&-sin 0&-e . Now we show how p, a, A, depend
on p.

First let us consider the case for a rapidly rotating
black hole AH)&Q~, which corresponds to the range
1~y (2. We start with the analysis of the Alfven criti-
cal conditions (2.20) and (2.21), in which ko consists of
three terms. The orders of 2g, &Q+ and g&&Q+ are E

and t +, respectively, but the order of g„cannot be fixed
as yet. Hence we must consider the following cases: (i)
a &y+A, , (ii) a=y+A, , (iii) y+X&a.

For case (i), we obtain in order of magnitude M -g«,
which leads to g„+g,~Q~ -+e, p ~Q~ -+e '~ ' or
+e + + . Then the orders of Elp and LQ~lp, become
+1 and —or+, respectively, from Eqs. (2.22) and
(2.23), and finally we obtain kz/ko-e . On the other
hand, from the definition of k4, we obtain k4 ——e
Note that these results are consistent with condition
(2.21). In this case the accretion flows can pass through
the Alfven critical point. However, the total energy E
must be positive, and so no energy extraction occurs.

Through a similar discussion for case (ii), we can ob-
tain the results that g„—+@~+, g„+g,&Q+ -+e~+,
p Q —+e +~', E/p-+], L, Q+/p- —], and finally,
k2/ko E' '. From the definition of k4, we obtain
k4 —+e 'i'+~'. In this case also, condition (2.21) can be
satisfied if the Alfven point exists in the region k4&0.
This case is astrophysically interesting, because the ener-

gy and angular momentum of the black hole can be ex-
tracted. (The accretion Qows with E &0 are allowed. )
For the case (iii) condition (2.21) is never satisfied. There-
fore we do not consider this unphysical case.

From the above discussion we find the result n ~ y+A.
for the Alfven critical condition. Further it should be
noted that the angular momentum I. given on the field
lines passing through the polar region will be proportion-
al to sin 8&. Then the ratio of LA+i@ ( ——e~+ ) to
sin 8„(-e ) should not depend on the parameter A, .
This means that y —cx does not depend on A, . Here we
are interested in an active black hole from which the ro-
tational energy can be extracted. Therefore we assume



EFFECTS OF MAGNETOHYDRODYNAMIC ACCRETION FLOWS. . . 2301

that a=y. This relation gives E-L QF in order of mag-
nitude, except on the field lines passing through the polar
region. The negative-energy influx is impossible in the
polar region [a&y+A, , i.e., case (i)], where the elec-
tromagnetic contribution to E becomes very small. Now
we can estimate the poloidal velocity u~ at the Alfven
point. Froin Eq. (2.18) we have the result
up-e" +r for A, & 2 —y (sin 8 «Qp/coH) and

3r for 0& A, &2—y (sin 8& QplcoH), while by
analyzing the poloidal wind equation (2.14) in the limit
kp~M and k2+kpk4~0 we have the result u~-e
and uz -t. ~, respectively. These two estimates be-
come consistent only if

p —2 /+A, (4.2)

This is an important result which determines the field
lines threading the horizon.

Next let us discuss the case for a slowly rotating black
hole coH «Qp (y &2), and analyze conditions (2.20) and
(2.21) by noting that g,&Qp « ~g&&QP. Now we can set

up the following cases: (i) a & 2+ A, , (ii) a =2+ A, , (iii)
2+1,((x.

We follow the same procedure as with the rapidly ro-
tating case. For case (i), we can obtain the results that

leads to E/p-+1 and LQp/p-+e . Hence we
obtain k2/ko —e, which is consistent with condition
(2.21) because kz ——e . In this case the energy influx
must be positive.

Even for case (ii), which can be consistent with condi-
tion (2.21) because kz/ko —+e and k& —+e
both E and L of the inflows become positive, i.e.,
E/p-LQp/p-+1. This is because the BZ mechanism
does not work for the slowly rotating (AH &Qp) black
holes.

Case (iii) is unphysical bee iuse the condition (2.21) is
not satisfied. Then we obtain the result that a ~ 2+1, for
the Alfven critical condition. In the same way as with
the rapidly rotating case, let us require that
E-LQF/sin 8„, which leads to the relation a=2. By
calculating up at the Alfven point from Eqs. (2.14) and
(2.18), we can derive the result

(4.3)

It should be noted that Eq. (4.2) changes smoothly to Eq.
(4.3) when y =2 (i.e., co~ —Qp). In fact, this result is ex-
plicitly verified by the analysis of the case y =2.

Before reaching the horizon, the super Alfvenic inflows
must pass through the fast magnetosonic point too.
However, we find no additional constraints from the cal-
culation in order of magnitude at the critical point.

At the horizon, the GS equation and the poloidal wind
equation reduce to the same equation (2.27), from which
we can obtain the following results: When AH »QF, we
have MH —+e~ for the polar region where
sin 0«Qp/co~, and MH &+e for the other region
where sin 8~QF/AH. It will be plausible to choose
MH —e ( « e ) throughout the horizon because
M„-er and the Alfven point is close to the horizon (if
y & 1). When @AH « Qp, we have MH —+E Notice th. at

these results are consistent with the results obtained at
the Alfven point if the Alfven Mach number does not
drastically change between the Alfven point and the hor-
izon.

By comparing Eq. (4.2) for the rapidly rotating case
(co& )&Qp, 1 & y &2) and Eq. (4.3) for the slowly rotating
case (AH «Qp, 2 & y), we find the interesting result that
the flux function for the Geld lines threading the horizon
depends crucially on the ratio ~~/QF.

QF
sin 00

0'p AH

for co~))QF and

(4.4)

-sin 0H (4.5)
'Pp

for AH «Qp. From Eq. (4.4), the averaged poloidal
magnetic-field strength at the horizon is estimated as
Bp~H 0 OQp/(m AH ) -Boa r. The black hole can am-
plify the magnetic field (always Bp~H &)Bo), but its rota-
tion suppresses this amplification (because Bp~~ decreases
as y decreases). Such a remarkable change of the mag-
netic field does not occur when ~H —QF and AH (&QF.

Magnetic-field lines coil around the black hole due to a
strong dragging of the inertial frame, and the toroidal
component of the magnetic field is strengthened near the
horizon. The toroidal magnetic field 8~ near the horizon
can be calculated from Eq. (2.11). At the horizon it be-
come negative for the slowly rotating hole (co& &Qp),
which generates a "leading" type of field line, while it be-
comes positive for the rapidly rotating hole (AH & Qp),
which generates a "trailing" type of field line. The form-
er corresponds to the injection of angular momentum
into the horizon, and the extraction of angular momen-
turn from the black hole occurs only for co~ )QF. Plas-
ma particles have a tendency to comove with the inertial
frame as a result of their inertia, so in the vicinity of the
horizon, their angular velocity is forced to approach cuH.

However, they must be frozen on the field line rotating
with angular velocity QF. Then, if co~) QF, the drag-
ging of the inertial frame works to make the field lines of
a trailing type through the plasma's inertia, and as a re-
sult the angular momentum of the black hole is
transferred into the magnetic field. If AH & QF, the drag-
ging of the inertial frame extracts angular momentum
from the magnetic field of a leading type

The analogous effect of dragging was discussed in the
hydrodynamic limit and the force-free limit. RuSni and
Wilson [12] assumed the hydrodynamical pressureless
limit, in which the fluid accretes freely along geodesics,
and the process determining the field line geometry is
dominated by the fluid motion. Their result corresponds
to the case coH ))Qp. Blandford and Znajek [1], in the
force-free limit, found that the angular momentum ex-
traction from the black hole and the toroidal magnetic
field on the horizon are proportional to AH

—QF. Thus
our result obtained here is consistent with these results in
the different limits.

In summary, the Alfven critical conditions (2.20) and
(2.21) severely constrain the accretion flows onto the
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B2

P„,— Er—tfd%'-
QF COH

(5.3)

Remember that the total magnetic Aux depends on the
parameter Q~/co&. Therefore, the total power increases
as the spin-down of the black hole proceeds. This in-
crease of P„, will stop when ~H -QF.

Our estimate of the power output is essentially analo-
gous to the BZ mechanism [1],but in our discussion the
poloidal magnetic Aux at the horizon is obtained as a
function of AH through the magnetohydrodynamic con-
ditions. This clearly denotes the e6'ect of MHD accretion
Bows.

We can estimate the time variation of the hole's angu-
lar momentum in the same way, and the result is, in order
of magnitude,

The integration should be done on the horizon 6=0, and
the dot means the evolution rate. We can estimate P„,
by taking E——p and g —const in order of magnitude:

1p39 0. 1

Gm QF /c
m

10'Mo

2 2
Bo

(W) (5.10)
1 T

horizon is suppressed by the rapid rotation, as was shown
in the previous section. The field lines threading the hor-
izon increase as the spin down of the black hole goes on,
so the power output increases. When AH decreases to a
value somewhat larger than AF, the energy extraction
produces the maximum power which will be equal to 1/e
times the initial power. This increase of P„, occurs in
time scale given by w,„-m Q~ /B 0, which is very short if
compared with the total lifetime ~-mAF/Bo. We will
observe that the black-hole magnetosphere becomes ex-
plosively active at this stage (explosive stage). In the later
evolution when ~H ~OF, we cannot apply the estimate
obtained here. The power output will decease rapidly. If
we use characteristic values for AGN's, we obtain

G2 m 2Bp2

poc' Gmn~/c'

J-m /AF .

This means the time variation of AH is

B2
CO H 3 2m 0F &H

(5.4)

(5.5)

at the initial stage where po is magnetic permeability of
vacuum, and

G2 mB
poc (GmQF/c )

Then, if initially the black hole has the mass m =mo
and the angular momentum J=JO —mo (we consider a
rapidly rotating Kerr black hole which has the spin pa-
rameter a -mo), the time scales of the evolution of m and
Jare approximately given by

7 m

mo m oAFQ)H

B2
(5.6)

and

Jo
«m «&m—J (5.7)

Hence, in our estimation the mass evolution is negligible
during the extraction of the rotational energy.

In this paper we have discussed the black-hole magne-
tosphere by taking QF as a parameter independent of AH.
Now we also consider an evolutionary model in which
QF does not change so much. Then we solve Eq. (5.5) to
show explicitly the time variation of coH ..

' 1/2

co — 1 — tH 2m mQF
(5.8)

(5.9)

In the initial stage, the black hole is rapidly rotating
(catt ))Q~) and the MHD inilows can extract its energy
and angular momentum. However, the power of the ex-
traction is very low because the magnetic Aux into the

where g is some undetermined constant of the order of
unity and t is the observer s time. By substituting Eq.
(5.8) into Eq. (5.3), we obtain the power output

mBo 1

[1—((Bo/m Q~)t]'~

104p 0. 1

Gm Q~/c
m

10'Mo

2
Bo

(W) (5.11)

at the explosive stage. The lifetime r (-r,„/e ) is

poc (GmQF/c )

G mBo

Gm QF/c 10 Mo—10
0. 1 m

1T
(yr) (5.12)

0

APPENDIX: THE GS EQUATION

We derive a useful form of the general-relativistic CxS

equation from the steady and axisymmetric MHD equa-
tions. (To our knowledge, the GS equation for Kerr
space-time has never been given explicitly in any litera-
ture. For the Schwarzschild space-time, see Mobarry and
Lovelace [13], and for the Minkowski space-time, see

(evolution does not reach the stage of co~ (Q~, because if
AH &L2F, energy and angular momentum are injected
with Aows so the black hole should spin up).

We want to emphasize that the maximum activity of
the black-hole magnetosphere can appear in the middle
stage of the evolution if initially the black hole is rapidly
rotating (cott ))AF). This will be clearly observed under
the situation that e—:m AF «1. The mechanism is essen-
tially a result of the MHD interaction between the mag-
netic field and the hole's rotation. Hence we can expect
that such a property of evolution will be preserved even
when e is not so small. This point, however, must be in-
vestigated in future work.
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Camenzind [14]). The basic equations are summarized as
follows.

The particle conservation equation is

p+F yu (ug. g
—u~.~ )

A

Bp2

Ã =0

where

N =nu

with n as the proper number density.
The momentum conservation equation is

TP. =0,;P

where

T~P —T~P + T~P
em M

and the electromagnetic part is

T~= (F F~+'g ~F F~ )
1

em 4 5 4 po 7

and the matter part is

(Al)

(A2)

(A3)

(A4)

(A5)

M .
&

pr) p2 B2
J

t + tp+F rg+ tymp gtt+gtQIIF)11

(A13)

F "~(u'dqu, +u~B„u~)= p,—n(u'8 u, +u~B u~),pn

Bp

(A14}

(F j~+F p4)= —j4- ~q(& —gF" ),B' " " 4m& —gP

(A15)

Tgf =(p+P)u u~ Pg ~ . —

In the following we take the cold limit (P =0,p =pn).
The frozen-in condition is given by

uPF P=O,

in addition to the Maxwell equation

(A6)

(A7)

F y gty+ g yyF
—,FAtj'= —F
Bp gtt gty F

F BP gtP+ g PPF
8gp

4& gtt +gtyQF gtt +gtPQF

(A16)

and

F[ P ]=0 where d+ = (F"&/Bz )—Q z.
Consequently, Eq. (A12) is rewritten as the equation

for j&:

F+ = —4+j'P (A9)

From these equations, the momentum equation in the
cold limit reduces to

pnuPu . —F Pj =0 .;P P (A 10)

The GS equation describes a force balance in the
transfield directions. The transfield component of the
momentum equation is given by

k, —m'
J p&(u B@ur+u Bgup)

F

F„g (y g Fre)
4~& —g

B2P'9 p

g„+g,pQp (g„+g,~Q~)n

QF Bp2 gt~+g~O+F
gtt +gtP+F gtt +gtfF

FA
(pnu ~u „.p —F„~j~)=0,

Bp
(Al 1) (A17)

and is rewritten in the form

FA
[pn[ —u (u~ „—u„.~) .u'B„u, —u B—„u~]

Bp

F~aj' F~p~ F—~rJ'] =o— — (A12}

By using the relations

Bye =p( Bqgut + Q @Beau y
+ u y Mp )

and

g F'a
4~a,L, = —&a,u, + a & gF"e+-

4mq

(A18)

where B~ =F~&F &
( A, B =r, 9)—. We can pick up the

toroidal current density j~ from each term in the left-
hand side of Eq. (A12) as we can arrive at the final form

(A19)
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ko —M j = n—u't)+e+pnu'u&r)+OF
a~+gty&r

gB B29 p ~
1

Pw 4~P w

p'QB p 7l

g, t +gtyny (g tt+gtynF )n

4'& g—a.
+—g gtt+gttt+F

(B„qt)
grr Pw

+8, , (a,e)+—g gtt +gt ttt+F

Pw

Because the Maxwell equation gives

(A21)

QF Bp2 g]y+ g yy QF
8g/4' gt] +ggyQp gtt +gtpQp

(A20)

we can eliminate j ~ from Eqs. (A20) and (A21) to obtain
the GS equation in the cold limit. Equation (2.24), shown
in the text, is derived by using relations (2.9)—(2.11).
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