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We explore the electromagnetic properties of relativistic constituent-quark models of the proton and
neutron, in particular their dependence on the constituent-quark mass and the confinement scale. Rela-
tivistic effects are never negligible in any model which fits the charge radius of the proton. For a fixed
charge radius the confinement scale decreases with decreasing quark masses. Nonvanishing Pauli mo-
ments of the constituent quarks are needed to fit the magnetic moments for any value of the quark mass
and confinement scale. It is possible to describe existing form-factor data at least up to momentum
transfers Q =6 Gev with quark masses significantly smaller than the conventional nonrelativistic
choice of about one-third of the nucleon mass.

I. INTRODUCTION

The purpose of this paper is to present the results of
exploratory calculations of the electromagnetic form fac-
tors of Poincare-covariant constituent-quark models.
Nonrelativistic constituent-quark models describe mesons
or baryons as bound states of two or three constituents.
All other degrees of freedom are absorbed into the con-
stituent quarks. Such models have been quite successful
in describing mass spectra [1—3]. Even for low values of
the momentum transfer, the use of nonrelativistic quan-
tum mechanics in extracting electromagnetic properties
from such models is inconsistent in principle when the
mass of the constituent is not large compared to the re-
ciprocal confinement scale. However, the bound-state
wave functions can always be interpreted as eigenfunc-
tions of a Poincare-invariant mass operator. For both
relativistic and nonrelativistic systems the little group is
SU(2), and the components of the total spin are the gen-
erators [4]. It is necessary and sufficient that the internal
Hamiltonian (mass operator) be invariant under this
group. The use of eigenfunctions of the spin and mass
operators for the calculation of form factors requires an
extension to eigenfunctions of a four-momentum opera-
tor. It is necessary that the current density operators and
the eigenfunctions of the four-momentum functions
transform consistently under the unitary representations
of the Poincare group, This extension of eigenfunctions
of the spin and mass operators to eigenfunctions of the
four-momentum implies the choice of a "form of dynam-
ics [5]". This choice fixes the kinematic subgroup of the
Poincare group. Light-front Hamiltonian dynamics,
[6—8] where the kinematic subgroup is the symmetry
group of a null plane, has the unique advantage that the
relevant components of one-body currents transform con-
sistently. Relativistic constituent-quark models so for-
mulated can account for the observed pion form factor
for both low and high momentum transfer [9].

It is important not to confuse the wave functions
representing state vectors in a Hilbert space of three con-
stituent quarks with covariant functions defined as solu-

tions of wave equations, or as matrix elements of covari-
ant local Heisenberg fields, e.g. , Bethe-Salpeter ampli-
tudes [7,8, 10]. The relationship of the Poincare-invariant
quantum mechanics of con6ned constituent quarks to a
local Lagrangian field theory [11] is nontrivial and out-
side the scope of this paper.

At the outset it is not clear that a simple constituent-
quark model can or should account for the electromag-
netic structure of nucleons. For low momentum transfer
we might expect the meson cloud of the nucleons to play
an essential role [12] and for sufficiently high momentum
transfer the elastic form factors are determined by the
valence amplitude of the current-quark Pock-space wave
function. In that limit perturbative QCD predicts the Q
dependence of the form factors [13,14]. A successful pa-
rametrization of existing data has been obtained by an in-
terpolation between these extremes [15]. There is, how-
ever, some reason to doubt the applicability of perturba-
tive QCD to exclusive processes in any experimentally ac-
cessible region [16].

The purpose of the present study is not to advocate the
best nucleon model, but to explore the quantitative
features of exactly Poincare-covariant constituent-quark
models. In this exploration we will use drastic
simplifications in the model specifications while insisting
on exact Poincare covariance which implies that the nu-
cleon states must be represented by eigenfunctions of the
spin operator j . In previous work [17,18] this require-
ment was realized only in a "weak-binding approxima-
tion" of questionable validity.

The main parameters of the models are a confinement
scale I/a and the mass mq of the constituent quarks.
The nonrelativistic limit obtains for a/m ~0. The re-
quirement of Galilean invariance and nonrelativistic ex-
pressions for the magnetic moments determine the con-
ventional choice of about one-third of the nucleon mass
for m . These constraints are absent in relativistic mod-
els. The main purpose of our investigation is to deter-
mine whether exactly Poincare-invariant constituent-
quark models can reproduce realistic nucleon form fac-
tors for Q of several GeV . Three-quark nucleon wave
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II. FGRM FACTGRS AND CURRENT OPERATGRS

Elastic form factors are related to the matrix elements
of the current density operators

&r, X',j,P"'lI"(x)lP,j,~, r &, (2.1)

functions must be antisymmetric in color and have iso-
spin equal to —,'. It follows that the dependence on the
internal momenta and spin must be of mixed symmetry.
We restrict our calculations to wave functions which are
of mixed symmetry in the canonical spin variables, and
symmetric in the internal momenta. The dependence of
the wave function on the spin and isospin variables is
then unambiguously determined by the symmetry charac-
ter. This restriction to functions symmetric in the inter-
nal momenta is an oversimplification which implies the
absence of tensor forces. It should be removed in more
realistic models. We further restrict the dependence on
the internal momenta to a set of representative functions
depending on only one parameter which fixes the
confinement scale.

The assumption of a constituent-quark model implies
that the efFects of other degrees of freedom are represent-
ed by properties of the constituent quarks, in particular
nontrivial form factors [19]. Consideration of meson
theories would lead to the expectation that reduction of
the electromagnetic structure of the nucleon to three con-
stituent quarks is either not possible or would lead to
constituent quarks of rather large size. Here we explore
the consequences of the extreme assumption that the con-
stituent quarks are suSciently small, so that their form
factors are effectively constant for 0 ~ Q ~ 6 GeV . At-
tempts to extend the model to higher Q would involve
more sophisticated wave functions and appropriate as-
sumptions for the Q dependence of quark form factors.
Such attempts are beyond the scope of this paper.

This paper is organized as follows. The general form
of the matrix elements of currents and their relation to
form factors is presented in Sec. II. In Sec. III Poincare-
covariant three-quark wave functions of the proton and
neutron are constructed explicitly. The forrnal basis for
the computation of form factors can be found in Sec. IV.
The numerical results are presented in Sec. V. A sum-
mary of the results and outlook can be found in Sec. VI.

=(3 (P' P—)26(P +M )9(P )6) 5 6,. , (2.5)

The states iPj, k, , r& are eigenstates of the four-
momentum P; that is, they are eigenstates of a mass
operator and three kinematic components of P. The
choice of the null-plane dynamics associated with the null
vector n implies that the components P =—n -P, and Pz
are separately covariant under the kinematic Lorentz
transformations. We will denote null-plane three-vectors
by boldface type, e.g. , P= {P+,Pr]. It will be con-
venient to use states

IP,j,~, r&
—= IP,j,~, r&3/P+, (2.6)

which are normalized according to

&r', k',j ', P'iPj, A, , 1.
& =5 (P' —P)5' 5 6, , (2.7)

The boost L (P) transforms the four-momentum P to
rest L (P)P = {M,O, O, O] and relates the spin operator j to
the Pauli-Lubanski vector 8'.

{O,j]:=L (P) 8'/3/' P2 . — (2.8)

Under Lorentz transformations the spin operator under-
goes Wigner rotations,

Ut(A)j U(A) =%~[A,L (P)]j,
where

%~[A,L(P)]:=L(AP)AL '(P) . (2.10)

With null-plane dynamics the boosts L (P) are kinematic
transformations and they form a group. If the orienta-
tion of the null vector n is chosen such that the plus com-
ponent of the momentum transfer vanishes,
P'+ P+—= Q =0,—it follows from the covariance, Eqs.
(2.2) and (2.3), current conservation, Eq. (2A), and the
normalization (2.5) that the nucleon form factors are re-
lated to current matrix elements by

components. We assume the covariant normalization of
the states specified by

by the requirements of Lorentz covariance

U (A)I"(x)U(A) =A"g'(A 'x), (2.2)
&P' iI+(0)iP &=I„+—

U«)IPi, ~, r& = iAPj, ~, &&r~ &~[A,L(P)]l~&,

(2.3)

and current conservation

Bg'(x) = [P,I (x) ] 1=
2 X X CNP'N«'»

a=11=0
(2. 1 1)

=-,'[ ~'N(Q') — 2&~N P4(Q')]

+ r3I F~1N(Q ) ~o pV rjN F2N(Q )]

(P„' —P, )&r, ~', j,P lI~(0)lP, j,x, r& =o . (2.4)

The variables A, and ~ are eigenvalues of spin and isospin

where o.
2 and ~3 are spin and isospin Pauli matrices,

rIN. =Q /4MN, and MN is the nucleon mass. The coor-2 2

dinate axes are chosen such that n= {0,0, 1] and
Qr= {3/Q,o]. We are neglecting the proton-neutron
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mass difference. The superscripts IS and IV, or I =0, 1

label isoscalar and isovector form factors, respectively.
The 4 X 4 spin-isospin matrices 4' & are by definition

~IN IN 1& ~2N I + 7N+2 1

= 1 3, 2N y' I1V
1 1

(2.12)

Note that the matrix element is independent of P' and P
for all P' and P that satisfy P+ =P'+ and P T

—PT =QT.
Equation (2.11) can easily be solved for the form fac-

tors to give

F'(Q')= —'Tr[($' ) 'I+] (2.13)

The proton and neutron form factors F ( Q ) and
F „(Q )are

(Q2) —1 [FIS (Q2)+FIV(Q2)]
(2.14)

(Q2) 1 tFIS(Q2) FIV(Q2)]

and

6 .N(Q') =FIN(Q')+F2N(Q'»

(2.15)

They are identical to the conventional Dirac and Pauli
form factors [20—22]. For vanishing momentum transfer
they are, respectively, equal to the charge and the anoma-
lous magnetic moment in units e and e/M&. The con-
ventional Sachs form factors are

G,N(Q') =—FIN(Q') —nNF2N«')

(re),h„,. = f d3r r2(IO(r))p

dG, N(Q )= —6
dQ 2

dFIN(Q')= —6
dQ 2

3+ —F2N(0),
g& o 2M~

(2.17)

For point quarks these form factors are independent of
Q2, Fl„=—', , and Fld=- —

—,'. For Dirac point quarks the
Pauli form factors F2„, I'2d vanish. For constituent
quarks the choice I'2„=I'2d =0 is just as arbitrary as any
other choice.

In order to compute the matrix elements (2.11) we need
representations of the states

~ PN ) by symmetric func-
tions of the null-plane momenta, the spin, and isospin
components of the individual quarks. The construction
of such wave functions is the subject of the next section.

III. QUARK-MODEL WAVE FUNCTIONS

are Lorentz-invariant quantities related to the form fac-
tors in the limit of vanishing momentum transfer as
shown in Eqs. (2.16) and (2.17).

We will assume that the nucleon is a bound state of
three constituent quarks, which is antisymmetric in color
and totally symmetric in the space, spin, and i.sospin vari-
ables. The single-quark current is of the same form as
the single-nucleon current (2.11) with the subscript X re-
placed by q, indicating quarks. The form factors of the
up and down quarks are related to the isoscalar and iso-
vector quark form factors by

(2.18)

for both neutrons and protons.
The magnetic moments

VN =FIN(0)+F2N(o)

and charge radii of the nucleons

(2.16)

The nucleon states ~PN, XN, TN ) are represented by
symmetric functions of the quark variables pi,
(i =1,2, 3). The A, 's are eigenvalues of the longitudinal
components of the null-plane spin. The Poincare covari-
ance of the wave functions is realized in the form

+PN, IN, & y(P1& ~1& rl& P2& ~2&r2& P3& ~3&T3) 0MN, I N, &~(kl& qlT& ~1& TI& ' ' ' )~( P PN
Ã

1/2
~(P ki qIT kq» 4 q3T)

(3.1)
B(p„p,, p, )

P= gp, ,

+
PI.

+, and q;T=p, I g, PT, — .
p + (3.2)

which implies the constraints

where P is an eigenfunction of the mass, spin, and isospin
operators. The momentum variables g, , q, T, and P are
related to p&, p2, p3 by

The Jacobian of the variable transformation
kl f1T k2 q2 43Tq3T Pl P2 P3 I

~ P'~1' 11T'k2' 12T'~3 q3T 1 (3.4)
~(PI P»P3)

The mass operator of the noninteracting three™body sys-
tem is a function of the internal momentum variables

i & iiT'
3 3

g q;T=0 and g g, =l .
i =1

(3.3)
+Pl.l &T (3.5)
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For the representation of the total spin operator it is
cc - 'enient to define longitudinal components q,„, such
that the relative momenta q; and the spin satisfy vector
commutation relations:

function of the momenta with a symmetric function of
the spin-isospin variables. The spin function

C2 (IL]»X2A»3) (»»k ]»»( 2IS ]2»A]+A2)

q;„:=—Mop;—=1 ~i +qiT
(3.6)

X(S]2,—,A]+A2»A3l —,A1v) (3.11)

o

It follows from Eqs. (3.5) and (3.6) that
r 2

Mo= g Qm; +q; (3.7)

is symmetric or antisymmetric under the interchange
1~~2 for S&2=1 and S&2=0, respectively. It is often con-
venient to express these spin functions as outer products
of Pauli matrices, that is,

e, (X„X„X,)= (X, l]~, IX, )n-, „
As in nonrelativistic systems the total spin operator j can
be expressed as a sum of orbital and spin contributions,

( ~ ]»»('2» ~3
)—

(3.12)

3

j= g (y; Xq;+s;), (3.&)
The function

s;:=%~(g;,q;T m, MO)s;,

which has the matrix representation

(X'IW (g, q„m, M, )lz&

(3.9)

where the operators s,. are related to the quark spins s; by
a Melosh rotation [20, 23]:

42 &»& ( k], k2» k3» V1» V2» T3 )

—[N], (»(,„12,13)C, (T„r2,T3)
N 1»»

+&2 (A.„X2,A3)4,' (r],T2, r3)]

(3.13)

m +(Mo —
1 o"(n Xqr)

[(m +kM0 )'+ q T ]'" (3.10)

is fully symmetric under all permutations, and it is the
only such function with the nucleon spin and isospin
equal to —,'. It can be expressed as linear combinations of
outer products of spin and isospin matrices for the parti-
cle pairs I1,2I and [3,NI, that is,

The operators y; by definition satisfy canonical commuta-
tion relations with the momenta q, and commute with

the operators s, . It follows that the individual quark
spins do not commute with the orbital angular momenta.
This is a characteristic difference between relativistic and
nonrelativistic systems.

Expressed as a function of the momenta q, and the ei-
genvalues of the longitudinal components of the opera-
tors s; the wave function g has the same structure as the
wave function of a nonrelativistic quark model. In this
representation we can assume a product of a symmetric

I

PM1]», 2.~,»g(k]» l]T» 1» 1' '

e= [co++]],1

v'2

where

(3.14)

4' =
—,
' [1672112]] 2 [1 1 ]3

14 ———g [lo.ko.2lr T2]] 2]8 [o„T ], ~ .1

k, a

(3.15)

The wave function g~ z, (g„q]T,A, „r],. . . ) with

the spin-isospin structure (3.13) has the form

=»)]»(q„q2, q3) g 2)~ '~ (%M])N~ '2 (&M2)D2 '2 (&M3)@2 g (~]»~2»~3»T]»T2»r3)
]»Ap)A3

where the longitudinal components the vector q, are
given by Eq. (3.6). The requirement of rotational invari-
ance implies a nontrivial dependence of the wave func-
tion on the constituent-quark mass. The function
»)]»(q], q'2, q3) =P(q, , qz, q3 ) is a permutation symmetric,
rotationally invariant function normalized according to

J [dg] J [d'qT]lg(q] q2 'q3)l'

d q q&q2q3 =1,

where

and

5( g] +f2+ g3
—1 )

[dg']: =dg]dg2df3
1 2 3

(3.18)
[d'qT]:=d'q»d'q2Td'q3Tf( 11T+q2T+ 13T)

[d q]:=d q, d q2d q35(q]+q2+q3)

Q(q]+m )(q2+m )(q3+m )

(3.19)
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N(mq /a)
p(M0)= exp( —M /2a ) . (3.20)

The dimensionless factor N(m /a) is determined by the
normalization condition (3.17). This wave function de-
pends on only two parameters: the 'constituent quark
mass mq and the range parameter a which specifies the
confinement scale. The bound-state wave function has a
well-defined nonrelativistic limit, m /a —+ ~, as well as
an extreme relativistic limit, m /a~O. For the present
exploratory calculations we did not vary the shape of the
wave function. For low and moderate values of Q we do
not expect significant dependence on the detailed shape.
For sufficiently high momentum transfer the wave func-
tion considered here will be manifestly inadequate. The

A simple way to realize the permutation symmetry is to
assume that 1I) is a function of a simple algebraic com-
bination, for instance, q, +q2+q3. For the numerical
computations it is a little more convenient to choose a
function of M0. Specifically we will assume [24]

model could be extended to higher values of Q by con-
sidering wave functions with appropriate high-
momentum tails and Q -dependent form factors of the
constituent quarks.

It is possible to express the relativistic wave functions
derived here in an equivalent Dirac-spinor representa-
tion, but there is no advantage in doing so. In order to
compare our wave functions to those used elsewhere [17,
18] we present spinor representations in some detail in
Appendix A.

IV. NUCI. EON CURRENT MATRIX EI,EMENTS

Having constructed nucleon wave functions we are in
the position to compute the current matrix element (2.11)
using the quark current operators (2.17) and the wave
functions (3.16). It will be convenient to treat the wave
functions gM as rectangular matrices with the columns

N

labeled by the spin-isospin variables A.~, ~& of the nu-

cleon, and the rows labeled by the spin-isospin variables
of the quarks:

I+=3f [dkl f I
d'q ]f I

d'q' )5(q I q—+0 Q» (q' —q +4Q )5( ql
—

q
—(1—4)Q )

WM (kl q 1T k2 'q 2T k3 'q 3T) q3 4M (kl qlT k2 'q2T, k3 'q3T)

1 2

g Af, pIFp
I=OP=1

The spin-isospin matrix A4& is defined by

JNp =3f [dg.) f [d qT) f [d qT)$(MO)$(MO)

X5(q', —q, +g,g )5(q' —
q +g Q )5(q' —q

—(1—
g )Q )

XM (kl 1 1T f2 12T k3 13T)(~p )3XM (kl qlT k2 q2T k3 q3T)

(4.1)

(4.2)

where

XM, 2. , (fl ql T ~1 Tl ' ' ) rl +I. , 2. (+Ml )+2,A(+M2@2, , 2.. (+M3)+2, , (~1 ~2 ~3 1 T2 T3)
k2) A 3

(4.3)

It follows from Eqs. (4.1) and (2.13) that the nucleon
form factors are linear combinations of the quark form
factors:

FI(Q2) y ( I (Q2)yI
p

I

The matrix elements C & so defined are independent of
the nucleon mass Mz. They are dimensionless functions
of Q and a/mq. If B p and B'p are defined as the con-
tributions of @ and @' to C &, such that

and (4.4) C p= ,'(B p+B'p), — (4.6)

~l(Q2) — y ( I (Q2)~1M~

q P

where

it follows from the isospin structure of the wave function
that

and

C, p(Q )=—,'Tr[($, ) 'JKp]

(4.5)

C~p= ', (B~p ,'B~p) . ——— (4.7)

C2 p(Q )= —,'Tr[(/z&) 'Atp] .
M~ ' The general expressions for the proton and neutron form

factors are
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F1,= 2 I( ,'8—1,p+ ,'8-1,p)Fp. +81,pFpd]
p

8 1, 1 +
2 F2u8 1,2 + ( TF2u +F2d )8 1, 2

F1„—X [(—,'8, p+ ,'8,—p)Fpd+8,pFp„]
p

(4.8)

where F,„=—2F1d= —', . For Q =0 we have
8, 1(0)=811(0)=1and 812(0)=812(0)=0.

It follows from Eq. (2.16), which relates the magnetic
moments to the form factors, and Eq. (4.9) that magnetic
moments are related to the matrix elements 8 p by

M~
2p

Plq
g [( ', 8—

2 p+ —,'82 p)Fp„+82 pFpd ]
p

2(81 1 81, 1 )+ 2F2d81, 2+( 2F2d+ 2u )81,2 P —1=F2 (0)

I
8 2, 1(0)+ $ (4F2u F2d )8 2, 2 (0) )

f71
q

(4.10)

mq

M~
F2„=

mq

[82, 1 + 2F2u82, 2+( 2F2u +F2d ) 2, 2 ]

(4.9)

X [( ', 82,p+—,'82, p)F—pd+82,pFp. )
p

1M„=F,„(0)
M~

[—,
' [(82, (0)—82, (0) ]

mq

I. 2(82, 1 82, 1 )+ 2F2d82, 2
q

+( ,'F2d+F2u—»2,2] where

+ ,'(4F2d —F2„)8—2 2(0)],

2
qsT

((3M0+mq) +q, T

(1—(3)M0($3M0+m ) ——,'q, T

m (1 (3)M0(k3MO™q) 2qsT-'[8,', (0)—8»(0)]= 2 f [—dk) f l. d ~T) IN(M0)I
($3M0+ mq )'+q,'T

(4.1 1)

(4.12)

(4.13)

The ratio gz /gv of the weak coupling constants is

gv

+ Mf [dpi f [d'qT]IP(M0) '
(m +$3M0) +q, T

5

gV q

[282 2(0)—1] .

f [dk) f [d'e )IP(Mo)I'

+XM, I/2, 1/2(kl qlT 42 12T k3 13T)[~3T3)37M, 1/2, 1/2(kl llT 42 q2T k3 13T)
T

5

3 gV
(4.14)

The factor (gz /gv) is the ratio of the weak coupling constants of the constituent quarks. For current quarks this ratio
would be unity. For 1.4 (a/m (3.5 we find that the value of (g„ /g1, )q required to give g„ /gv = l. 25 varies from 0.9
to 1.2. In the nonrelativistic limit, a/m ~0, we have the well-known result gz /gv= —,(gz /g1, ) which requires
(gA/gv)q =-.' [25 26)

The charge radii are related to the slopes of the form factors at zero-momentum transfer according to Eq. (2.17).
From Eq. (4.8) it follows that

and

dF, (Q)
dQ2

= lim
g2 0 g 0

8, 1(Q ) —1
+I'2„

380 (Q2) 81 (Q2)

2Q 2Q

1,2 Q

Q
2 (4.15)

dF1.(Q')

dQ 2
= lim

Q —+0 Q ~0

81 (Q2) 82 (Q2)

2Q 2
" +I'2d (4.16)

It is instructive to compare these results with the nonrelativistic limit, a/m ~0. Let us first remove the relativistic
effects in the spin composition by taking the limit q;T~0 in the Melosh rotations, i.e.,
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m~+g;Mo —io (nXq T) io (nXq, )—+l—
[(m +g;M ) +q ]'i 2m'

the matrix elements 8 & are in that limit proportional to a single form factor Fp.

Bi i(Q )~Fo(Q )» Bi, i(Q ) BI i(Q )~0» B2 i(Q z)~ —,'Fo(Q )» Bz i(Q )+B2 i(Q )~0»

(4.17)

(4.18)

B2,z(Q')~Fo(Q'» Bz~(Q')+3Bz2(Q')~0 Bi,2(Q')~0 BI,2(Q')~0.
The function Fo(Q ),

Fo(Q ):= f [dg] f [d QT ]f [d pT ]p(MO )0(Mo )5(q i r qi T +pi(QT )5(q 2T qpT +$2QT )5(q 3T q3T ( 1 $3)QT )

(4.19)

is equal to unity for Q =0. In this limit the four nucleon
form factors are related to single form Fo(Q ) by the re-
lations

and

Fi~(Q')~Fo(Q'), Fi„(Q')~0, (4.20)

F2 (Q2)~ (2+4F2„F2d )Fo(—Q ),
3mq

F2„(Q )~ (
—2+4F2d F2„)Fo(Q—) .

3m'

(4.21)

6 =p Fp, G „=pFp, and G, =Fp . (4.22)

With the assumption, m =
—,'M&, a fit of the nonrelativis-

tic formula (4.21) to the magnetic moments requires
F2„=—0.05 and Fzd =0.01. Equation (4.21) shows that
the anomalous magnetic moments of the nucleons vanish
in the limit m —+ oo [21,27].

Written in terms of the Sachs form factors for
Q ((4M~, Eqs. (4.20) and (4.21) are the familiar nonre-
lativistic relations

Since F&„vanishes in this limit the leading term of G„ is

en 9x mn (4.23)

3 .2
q;

Mo~3mq+ g
, 2m

M02 9mq2+3(q12+q22+q32)
(4.24)

As expected the form factor Fo(Q ) becomes a Gaussian
in that limit,

which gives a reasonable approximation for the slope of
G,„at Q'=0.

There are still relativistic eFects in the relation between
the form factor Fo(Q ) and the wave function. Unless
a«m the charge density, which is the Fourier trans-
form of the charge form factor, is not given by the square
of the Fourier transform of the wave function

The nonrelativistic limit, a/m ~0, of Fo(Q ) can be
obtained by taking g, ~—,

' and

I

Fo(Q )~fd'e, fd'e, fd'e, 5(qi+q2+q3)4(qi+ 3 Q, q2+ 3Q, q3
—-', Q)0(4, q2 'q3)

=exp 2'

and the charge radius of the proton tends to &3/a. A fit
to the empirical charge radius [28,29] of the proton re-
quires aNR=O. 4 GeV, which is not small compared to
the quark mass. The Galilean invariant nonrelativistic

(4.25)

I

quark model is not an approximation to a relativistic
model for any realistic value of a.

Numerical results for the slope of Fo(Q ) at Q =0 can
be represented by the expression

TABLE I. For various quark masses m~ and size parameters n we list in columns 4—6 the values of the Pauli moments and the ra-
tios of the weak coupling constants of the constituent quarks that are needed to fit the magnetic moments and the ratio of the weak
coupling constants of the nucleons. In columns 6 and 7 we list the proton charge radii and slopes of the electric form factor of the
neutron at zero momentum transfer.

o. (GeV)

0.420
0.554
0.635
0.640

m, (GeV)

M~ /3
0.33
0.24
0.21

0
1.68
2.65
3.05

F2u

—0.050
0.039

—0.025
—0.046

F2d

0.010
—0.110
—0.047
—0.025

~g~ ig v),

0.75
0.92
1.07
1.13

rp (fm)

0.810
0.836
0.827
0.857

dG, „/dQ' (GeV)

0.544
0.487
0.451
0.422
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dFo(Q )

Q2 Q2 0

2

1+0.15 +0.022
20! m m2

q

(4.26)

I.0

0.8

For 0&a/m &3.5 the numerical results for the mag-
netic moments (4.10) can be approximated by the expres-
sions

2M& n
p —1= 1 —0. 11

3mq mq

0.6

0.4

0.2—

+ (4F—2„F2d )—1 —0.0561 a
mq

p„=— 1 —0. 13
3mq mq

(4.27)
0-
0

I

0.2
I s I

0.4 0.6
Q (Gev )

0.8
1

I.O

It follows that

2M~
p +p„—1= 0.02

3m
q mq

(4F —F 1 —0—.0561 CX

2d 2Q

FIG. l. The proton form factor F, (Q ) for the parameters
shown in Table I. The following line codes are used: dash-dot

m~ =0.33 GeV; solid mq =0.24 GeV; dash line, m~ =0.21 GeV;
dash-double dot for the same parameters as the solid line except
that F2„=F2d=0. The experimental data are taken from the
compilation in Ref. [34].

+ (F2d +F2—„) 1 —0.0563 a
mq

(4.28)

should not expect to obtain reasonable low-energy nu-
cleon properties in the zero-mass limit of a constituent-
quark model, and it does not appear to be possible to do
So.

A fit to the experimental data, p +p„—1=—0. 12, can-
not be achieved if the Pauli moments of the constituent
quarks vanish.

The relativistic spin e6'ects also aAect the charge ra-
dius. If we determine the quark form factors F2„and F2d
by 6tting the magnetic moments of the proton and neu-
tron, the charge radius of the proton can be represented
by the expression

1+0.2 (4.29)
m

In the extreme relativistic limit m ~0 the matrix ele-
ments B are functions of Q /a, Bz2(0)= —,', and the
matrix elements Bz& vanish linearly in m . The matrix
elements B,z diverge as 1/m~, and the quark form fac-
tor s F2q must vanish at least linearly with mq . We

V. NUMERICAL RESULTS

We have calculated the four nucleon form factors for
the range 0&Q &6 GeV for several combinations of a
and m shown in Table I together with the values of the
quark Pauli form factors which fit the magnetic mo-
ments. The values a=0.554 GeV, m =0.33 GeV are
the parameters used in Refs. [17] and [18]. Experience
with pion form factors [9] indicates that smaller constitu-
ent masses may give realistic form factors at larger values
ofQ .

Table I shows the proton charge radius and the slope
of the neutron's electric form factor G,„at zero momen-
tum transfer. The experimental values of the proton
charge radius given in Refs. [27] and [28] are 0.81+0.04

TABLE II. The effects of the Pauli form factors of the constituent quarks on the slope of the Dirac form factors of the proton and
neutron at zero momentum transfer. All slopes are listed in units of GeV . Vanishing Pauli form factors are indicated by the sub-

script 0.

a (GeV)

0.420
0.5S4
0.635
0.640

m, (GeV)

M~ /3
0.33
0.24
0.21

A /7?l
q

0
1.68
2.65
3.05

(dF|./dQ )p

0
—0.296
—0.377
—0.423

(dF, „/dQ2)

0
—0.057
—0.092
—0.124

(dF, p IdQ')p

—1/2a
—2.58
—2.67
—2.97

(dFi~ IdQ')
—1/2a
—2.48
—2.42
—2.63
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(fm) and 0.862+0.012 (fm), respectively. In the conven-
tional dipole form factor the value 0.81 (fm) is used. Ex-
perimental values for the slope of G,„(Q ) at zero
momentum transfer are [30] 0.485+0.010 GeV and
[31] 0.511+0.008 GeV . The main contribution to the
slope of G,„(Q ) at zero momentum transfer comes from2

F~„(0) and is determined by the neutron's magnetic mo-
ment. Since the precisely known magnetic moment fixes
the Foldy term in the slope of 6,„,the data for dG,„/dQ
at zero momentum transfer can be interpreted as data for
dF, „/dQ . Table II shows the effect of the Pauli form
factors of the constituent quarks on the slopes of the
form factors F, and F,„at vanishing momentum
transfer. The Pauli form factors of the constituent
quarks which are necessary to fit the magnetic moments
also play a decisive role in obtaining reasonable values for
the slope of 6,„(Q ).

'
Figures 1 —3 illustrate the fact that for Q ( 1 GeV the

data can easily be reproduced with different quark
masses. Calculated values of the form factors 6 (Q )

2
en

and F,„(Q ) are compared in Fig. 4 to the parametriza-
tions of Hohler [32] and of Gari and Krumpelmann [15].
The main qualitative result is that the Pauli form factors
of the quarks required by magnetic moments produce
small neutron form factors F,„(Q ) for a wide range of
momentum transfers. A precise experimental measure-
ment of F&„(Q ) should provide an important constraint
on these models.

At larger values of Q we see important differences in
the form factors for different values of the constituent
quark mass and range parameter. To illustrate these
effects we show in Figs. 5 —7 the form factors F, F1p7 2p7

and F2„multiplied by Q" in comparison with proton
[33—35] and neutron [36—39] data, and with the parame-
trization of Gari and Krumplemann [15]. For m =0.33
GeV the form factors decrease too rapidly to fit the data
for Q ) 1 GeV . This expected behavior is characteristic2 2

-0.4

-0.8

—l.6

-2.0
0

I

0.2
I

0.4 0.6
Q (Gev )

I

0.8
I

I.O

O. IO

O.OS

0.06

0.04
~ ~ ~ ~ ~

0.02 —:-

FIG. 3. The neutron form factor F2„(Q ) for the same pa-
rameters as in Fig. 1. The experimental data shown are taken
from Refs. [36—38].

2.0
0—

l.6

I.2

0.8

-0.024

-0.04—:
~ ~ ~ 0 ~ ~ ~ ~ \

~ ~ ~ y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

04 -0.060
l I I

2
0 (Gev )

0
0

I

0.2
I s I

0.4 0.6
Q (Gev }

I

0.8
I

t.o

FIG. 2. The proton form factor Fz~(Q') for the same param-
eters as in Fig. 1. The experimental data are taken from the
compilation in Ref. [32].

FIG. 4. The electric form factor of the neutron G (Q ) and
2

en

F,„(Q ) for the same parameters as in Fig. 1. The dotted line
shows the form factors for mq =0, a=0.7 GeV, F» =F2d =O.
These form factors are compared with the parametrizations of
Hohler [32], long dashes, and Gari and Krumpelmann [15],
short dashes.
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I.2i-

0.8—

0.6-

0.4

0.2

+ HOHLER etal.
~ LITT etal.
x WALKER etaI.
o ARNOLD et al.

0XWI-- ..~"

Q' (GeV )

I

6

0

-0.2

~ -04—
CU

C3'

-0.6-

-0.8—

-I.O

It
It /t

~ ALBRECHT et aI.
+ BARTEL et al.
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l I

2
Q (Gev )

X

FICx. 5. The proton form factor Q F,~(Q ) for the parame-
ters as in Figs. 1 and 4. The short dashes show the parametriza-
tion of Cxari and Krumpelmann [15]. The experimental values
are taken from Refs. [33—35] as indicated in the figure. The
open circles are extracted from Ref. [40] as described in the
text.

FIG. 7. The neutron form factor Q F2„(Q ). The lines are
labeled as Figs. 5 and 6. The experimental values are taken
from Refs. [36—39] as indicated in the figure.

of the large mass, it does not indicate a breakdown of the
constituent quark model. Reasonable agreement with the
data can be achieved with smaller quark masses with
slightly larger range parameters. We have not investigat-
ed the effects of a Q dependence of the quark form fac-
tors, but indicate the size and sign of possible eA'ects by
showing the form factors calculated for m =0.24 GeV
and +=0.635 GeV with F2„=F2d =0. A qualitative rep-
resentation of the data can also be achieved with I =0
and 0.=0.7 GeV. For +=0.635 GeV and m =0.24 GeV
with F2„=—0.02S and F2d = —0.047 we find good
agreement with recent measurement [35] of the ratio

Q Fz~!(p„—1)F,~ shown in Fig. 8. Earlier measure-
ments [34] indicated larger values. We used a constant
value of 0.7 for this ratio in order to extract from Ref.
[40] form factors F, and F2 shown in Figs. 5 and 6.

VI. SUMMARY AND OUTI.OOK

Nonrelativistic constituent-quark models of the elec-
tromagnetic structure of nucleons are always inconsistent
even for small values of the momentum transfer. Our ex-
ploratory calculations have demonstrated that relativistic
constituent-quark models can describe the available data
for 0 ~ Q (6 GeV provided the quark mass is smaller
than the conventional choice. It is inherent in the notion

0.6
2.0

.~ it

ll

I

CL

I.2—
CL

0.8—

~ ~

it

It~

0.2
0.4

0
0 2

Q (GeV l

I

6

0-
0

Q (Gev )

l,
6

FICx. 6. The proton form factor Q Fz~(Q ). The lines and
data points are labeled as in Fig. 5.

FICi. 8. The ratio of proton form factors Q Fz~ l(p~ —1)F,~
for various quark masses m~ and confinement parameters a.
The lines and data points are labeled as in Figs. 5 and 6.
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of constituent quarks that they may have form factors
di6'erent from those of Dirac point particles. In the
present preliminary investigation we assumed quark form
factors independent of Q . To ascertain the limits of va-
lidity of these models for larger momentum transfer it
will be necessary to consider bound-state wave functions
with more realistic high-momentum features and admix-
tures of mixed permutation symmetry. It is also neces-
sary investigate the role of quark form factors that have a
reasonable Q dependence. Such investigations must be
extended to other hadrons, because success of
constituent-quark models beyond hadron spectroscopy
will depend on their ability to describe the properties of
all hadrons with the same structure of the constituent
quarks.
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u (p) =S(A)u (A 'p),

u(p)=u(A 'p)S '(A) .

The canonical spinor amplitudes

(A6)

a p+Pm+io 1+/3
u~ p &2m ( to+ m )

where

1 +P
Co:=+p +m p + +2 p

(AS)

and the null-plane spinor amplitudes u (p) are related by
the Melosh rotation AM(p):

the product u (p)u (p) = (p)PB (p) = 1 is manifestly
Lorentz invariant. %'hen A belongs to the subgroup of
the null-plane boosts, i.e., the group generated by E and

K„, the Wigner rotation L(A p)AL(p) is the identity.
Thus it follows from the covariance of the spinor ampli-
tudes that for any Lorentz transformation A which be-
longs to the group of the null-plane boosts we have

1s

APPENDS X A: Dirac-Spinor Representations

Spi nor amplitudes of single particles

The Dirac-spinor representation S of the boost L '(p)

u (p) =u, (p )AM(p),

where

p +m —io'. n Xp&
(p):=

+2p+(co+ m )

Note that

(A9)

(A10)

+
s(L '( ))= +

&mp+ 2 v'mp+

Thus the null-plane spinor amplitudes

B (p):=S(L '(p)) 1+
2

(A 1)

2p+(m+co)=(p++m ) +p T

The null-plane representation 4(p) of any one-particle
state with the norrri

II
pll'= g f d'pl p(p, ~) I'

is related to the canonical representation %,(p) with the
norm

II
PII'= X fd'pl+, (p, a)l', (A13)

ar pT+Pm+p+ 1+a3 I+p
u (p)=

&mp+

y p —m + I+f3
— 'Y

2&mp+
(A3)

where y":=f3a", a:=1. For any Lorentz transformation
A we have the covariance condition

by

&p++(p) =&M(p)'p, (p)&~ (A14)

The Dirac-spinor representation of the same state is

%(p) =u (p)%(p)+p+ =u, (p)4, (p )&co . (A15)

In terms of this spinor representation the norm is given
by the manifestly invariant expression

S(A)u (p) =u(Ap)JP~IA, L (p)], (A4)
IIVII

= f d p 25(p +m )p(p)p(p) (A16)

where % [A,L (p)] is the Wigner rotation corresponding
to the Lorentz transformation A and the boost L (p).
Since the inverse of S(A) is given by Spinor representations of three quark wave functions-

s-'(A) =Ps(A)"f3, (A5)
The spinor representation of the bound-state wave

function P~ is given by
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X(qt, q2, q3):=u1(ql)cau2(q2)u3(q3)1/M (ql, q2, q3)uN(0)

=0(et, e2, e3),1(q1), 3( 13)C' 2(q2)u N(0
1/2

8Q(222)
(m +co, )(m +co2)(m+co3)

(A17)

where

(A18)

and

1 1+/3 . „ 1 „ . 1+
~1,2' ~ Y Clr2 1,2' / Y C+ 1+» ~3,N' Y Y5+ (A19)

The charge-conjugation matrix C is C:=i y Y = ia—2 To. verify the result (A19) note that

1+p a q, +pm+co, 1+p a* q2+pm+co2 1+p
lO2 lO 2 l'T2

V2 2 V2m (m +co1) 2 +2m(m +co ) 2

1/2
(m +co, )(m +co2) 1+p l02l72v2 4m

(A20)

and

1+p a.q3+/3m+co»+p
u3(q3)uN(0) =

+2m (m +co3)

1+p m +co3

2 2m
(A21)

1+p ct q, +/3m+co, a* q2+Pm+co2 1+p
u, (q, )I ", '2" 2(q2) = l/3cr k 0'2 i~ V2&6 2 +2m (m +co1) +2m (m +co2)

1/2
(m +co, )(m +co2) 1+p

lO kO2'3l7~72
4m 2

1

v'6

1+p 1+p 1+p ct q3+pm+co3 1+p 1+p m+co3
u3(q3) Vk/5

2m (m +co3)

1/2

(A22)

(A23)

It follows that the full wave function

(P1 P2 P3) 1/'M (ql 12 q3)~(P PN) (A24)

for an arbitrary nucleon momentum pz is related to the
spinor amplitudes X by

1/'M~ qtiq2~q3

=u1(q1)u3(q3)X(cll, q2, 13)u 2(672)uN(0)

8m

(m +co, )(m +co2)(m+co3)

Xu1(qt)u3(q3)t u z(q2)uN(0) .

1/2

(A25)
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