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It is shown here that shell crossing is inevitable in the gravitational collapse of weakly charged
(~charge density~ & mass density) dust spheres. That is, all the dust shells in the central part of the dust

cloud are subject to shell crossing before they reach the stage of maximal contraction. This shell cross-

ing, which is accompanied by a density singularity, indicates the breakdown of the dust model there.
Most previous analyses of the gravitational collapse and gravitational bounce of charged dust spheres
were based on the "free-surface approach" —the assumption that the surface of the dust sphere moves

like a test particle in Reissner-Nordstrom spacetime. Because of the occurrence of shell crossing, the
free-surface approach cannot be applied to the late stages of evolution. This makes it dificult to analyze,
in general, what will be the final stage in the gravitational collapse of charged dust. However, for ideal-

ized models, in which the dust interior is considered to be self-similar and the shells are considered to
collide inelastically, the shell crossing is shown to have a very significant effect on the causal structure:
It completely prevents the gravitational bounce. This result, the inevitability of shell crossing (and its
potential to affect drastically the causal structure), is in remarkable contrast to common ideas about
charged-dust collapse.

I. INTRODUCTION

The idea of gravitational bounce [1—3] presents an in-
teresting possibility for the final state in gravitational col-
lapse. It is well known that whenever a black hole is
formed in a gravitational collapse, there must be singular-
ity inside the hole's horizon. According to the
gravitational-bounce idea, deviations from spherical sym-
metry and/or quantum-gravity effects, which become im-
portant near the curvature singularity, may convert the
contraction into expansion. The collapsing matter may
thereby avoid the singularity and emerge, through a
white hole, into a "new" asymptotically Aat universe. To
illustrate this idea, Novikov [1,2] considered the gravita-
tional collapse of charged dust spheres. In Ref. [2] he an-
alyzed such a homologous collapse with a uniform
specific charge c satisfying ~s~ &&1. Here s=e/p, where
e is the charge density, p is the mass density of the dust,
and we set G =C = 1. Novikov concluded that a gravita-
tional bounce actually occurs in this case: the collapsing
dust reexpands, without any divergence of density (except
for the particle at the center). The matter then emerges
through a white hole into a second asymptotically Hat
universe.

Later it was found that the innermost regions of
charged black holes are unstable to electromagnetic
and/or gravitational perturbations (the blue-sheet insta-
bility of the inner Cauchy horizon [4]). Because of this
instability it is generally believed today that the picture of
gravitational bounce, obtained from the spherical
charged dust model, is oversimplified and irrelevant to
realistic collapse. Nevertheless, for the issue of the final
state of gravitational collapse it is important to under-
stand the possible effects of this instability on the struc-
ture of the spacetime [5]. In order to study the effects of
any instability, it is necessary to have a good understand-

ing of the background solution. This is a sufhcient reason
to study gravitational-bounce solutions, even though they
are unstable. Of course, another motivation comes from
the special, unusual aspects of the gravitational bounce.

Until recently, the general solution of the Maxwell-
Einstein equations for the evolution of charged dust
spheres was not known [6,7]. (The general solution was
found recently [8].) It has long been known, however,
that the spherical electro-vacuum exterior of such a
sphere is described by the Reissner-Nordst'r'om (RN) line
element:

&2 6 dt2 g —ldy2 y2d02

where b, = 1 —2m/r+Q /r, dII is the line element on
the unit two-sphere, and m and Q are the mass and the
charge of the dust spheres, respectively. In addition,
there is no coupling between the motion of the various
dust shells. The world line of each dust shell (including
the surface of the sphere) is equivalent to that of a
(charged) test particle which moves radially in a RN
geometry (a geometry whose mass and charge are those
produced by all shells internal to the shell being studied).
This provides one with a simple approach to the evolu-
tion of charged dust spheres, which I will call the free
surface approach. The analysis in Ref. [2] was based on
that approach.

It is well known that a test particle with ~c.
~

& 1 which
falls radially in RN spacetime with

~ Q ~

& m does not hit
the central singularity. Instead, as the particle reaches
some minimal y value, its motion is reversed, and it is
finally ejected into an external asymptotically Oat
universe (see e.g. , Refs. [2,3,9], and the discussion in Sec.
II). Pictorially, we say that the particle moves through a
"tunnel" into "another universe. " In a charged dust
sphere with ~s~ &1, each shell "feels" ~Q~ &m [10]. In
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such a case one could expect, on the basis of the free-
surface approach, that all the dust shells will undergo a
gravitational bounce into the other universe.

As was pointed out in Ref. [2], the condition for the in-
dependent motion of each shell (and for the validity of
the free-surface approach) is that there is no shell cross-
ing, i.e., that the world lines of the various dust shells do
not intersect. It is argued there, however, that for
reasonable initial data (such as homologous collapse with

~
E

~

&& 1) shell crossing does not occur [11].
In this paper I analyze the relative motion of the col-

lapsing dust shells. This analysis reveals that shell cross-
ing is inevitable in the gravitational collapse of any spheri
cal charged dust configuration with

~
E

~
& 1. More precise-

ly, for every regular initial distribution of spherical
charged dust with ~e~ & 1, shell crossing must occur, and
all the shells in some vicinity of the center are subject to
shell crossing before they reach the stage of maximum
contraction. This result is proved in Sec. III, and then
further explained in Sec. IV.

The occurrence of shell crossing makes it dificult to
analyze the subsequent evolution of the dust sphere. One
might think that the shell crossing is just a technical
problem, which complicates the analysis but does not
affect the qualitative structure of the spacetime: After
all, if each individual shell, by its independent motion,
tends to bounce, it might be expected that the mutual in-
teraction between dust shells will somewhat modify the
pattern of dust Bow, but not so drastically as to prevent
the gravitational bounce. To demonstrate that this is not
necessarily the case, I will briefIy describe the results ob-
tained for a simple, idealized model of a collapsing
charged dust cloud. The dust interior of this model is
marginally bound and self-similar. It is also assumed that
the dust shells collide in a completely inelastic manner
[12]. The causal structure which results from this simple
model is rather surprising: The Reissner-Nordstrom tun-
nel is sealed by a null spacetime singularity. This null
singularity is created at the center of the dust sphere, and
then evolves to intersect the external Reissner-Nordstrom
singularity (see Fig. 2). Thus, it completely blocks the
tunnel and prevents the gravitational bounce.

This paper is organized as follows. Section II outlines
the basic features of the Reissner-Nordstrom geometry
which are relevant to the analysis here. In Sec. III, I
briefly discuss the principles governing the evolution of
charged dust spheres, and prove that shell crossing is
inevitable. In Sec. IV, I use a simple charged dust model
to explain, intuitively, why shell crossing must occur. Fi-
nally, in Sec. V, I discuss the results and give some con-
cluding remarks. In particular, I discuss the possible
effects of the shell crossing on the causal structure and
show, using a simplified self-similar model, that these
effects may be very significant.

II. THE REISSNER-NORDSTROM GEOMETRY

The causal structure of (analytically extended) RN
spacetime with

~ Q ~
& m is shown in Fig. 1 [13]. The

l

FIG. 1. Penrose diagram of the extended RN spacetime (see
text).

The spacetime is composed of various R and T regions.
R regions are those where r &r+ or r &r . In such re-
gions 6)0, so that the r coordinate is spacelike and the t
coordinate is timelike. In the T regions, r & r & r+,6 is
negative, so that r is timelike and t is spacelike. R+ is
the external asymptotically Oat universe, where r) r+.
T is a region of trapped surfaces, and the only possible
motion there is towards smaller r values. Similarly, T+
is a region of antitrapped surfaces, where the only possi-
ble motion is towards larger r values. In the two inner-
most regions, labeled R and R', r & r and 6 is again
positive. In each of these regions there is a central (r =0)
timelike singularity (Sl in R' and S2 in R ). This
singularity is gravitationally repulsive, and massive test
particles with

~
e

~
& 1 cannot hit it. The equations of

motion for such a test particle in RN spacetime can be
easily integrated to obtain [9]

(3)u, =E eQ/r, —
where u —=g &u, u =dx /dr, and ~ is the proper time.
The conserved quantity E is the total mass-energy of the
particles at infinite r, per unit rest mass (that is, a margin-
ally bound particle has E =1). For radial motion, the
normalization of the four-velocity reads u'u, +u'u, =1,
and Eq. (3) then yields

dr
d~

1/2

+ 2 2(m EEQ) Q (1—e—)

r r2

(4)
For a test particle with ~e~ & 1 there exists some r value,
0 & r;„&r, for which u' vanishes. From Eq. (4), r;„ is
given by

external and internal horizons are located at r =r+ and
r =r, respectively, which are the two r values where 6
vanishes:

r =m+(m —
Q )'

(m —eEQ)+ [(m —eEQ) +(E~—1)Qi(1 —e2)]'~2

Q'(1 —E')
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For 0 & r & r;„ the square root in Eq. (4) becomes imagi-
nary, indicating that this range is forbidden. This means
that at r =r;„u"changes sign and becomes positive (an
alternative way to show this change of sign is by analyz-
ing the fundamental, second-order equation of motion,
acceleration =Lorentz force, at r =r;„). The particle
then begins to move outward in a time-symmetric
manner. It passes through T+, and finally reaches the
second asymptotically Oat region R +.

From the light cone structure in Fig. 1 it is obvious
that the regions R and R' are causally disconnected,
so an infalling particle must select one of these two
patches. As was shown in Ref. [9], this selection depends
on the sign of u, at r =r: If u, (r ) &0, R is selected
and vice versa. This is also apparent from the pattern of
the dotted lines t =const in T (see Fig. 1). Note that u,
is always positive in R+ (in fact, this requirement defines
the positive t direction). Also, u, cannot change sign in
any R region, because the t coordinate is timelike there
[this can also be shown directly from Eq. (3)]. u, is al-
ways positive in R ' and negative in R

The horizontal dashed lines in Fig. 1 represent space-
like slices which intersect the two r =0 singularities. The
geometry of such a slice is semiclosed (i.e., it would be
closed if the two r =0 singularities were absent). For
each slice, let L be the proper distance, measured from
the singularity S1. The semiclosure is demonstrated by
the behavior of the function r(L). Unlike the "normal"
situation (i.e., in a spacetime without trapped or anti-
trapped surfaces), this function is not monotonic: it in-
creases in the region R', attains a maximum in T (or
T+), and then decreases again to zero in R . This semi-
closure is essential for the discussion below.

Therefore, the conserved quantities c,E. and Q are related
by [141

The geometry and the topology of the dust interior are
different from those of RN spacetime. It is convenient,
however, to extend the terminology of the RN R and T
patches to the charged-dust case. The motion of each
dust shell is equivalent to that of a test particles in RN,
and we can use this equivalence to define the desired ex-
tension. Thus, we say that a point 0 on the world line of
a given shell m belongs to R,R', R+,R'+, T, or T+,
according to the location of 0 when we embedded the
world line r(r) of the shell m in an RN spacetime with
the corresponding parameters m and Q(m). One can
easily show that, as in an RN geometry, each shell will
select one of the two innermost patches, R or R ' . It is
also trivial to show that a shell m with uP(r =r (m)}(0 will pass through R, and one with
uP(r=r (m)))0 will select R' .

In the following discussion I assume that at the center
(m =0) 0& ie~ & 1 (the assumption 0 & ie~ is not necessary
for the result, but it simplifies the mathematical treat-
ment). In order to show that shell crossing is inevitable, I
first prove the following three lemmas, with the assump-
tion that no shell crossing occurs. I then show that these
lemmas lead to a contradiction, and therefore this as-
sumption must be wrong.

Lemma 1. All the dust shells within the central part of
the dust sphere (defined by m & m~, for some parameter
m~ )0) collapse into R

Proof. Regularity at the center implies that in the lim-
it m ~0, Q vanishes. Eq. (7) then reads

III. INEVITABiLITY OF SHELL CROSSING

dm dQ
dX ' dX

(6)

The evolution of charged dust spheres has been dis-
cussed by several authors (see e.g., Refs. [2,6, 14]). As
long as shell crossing does not occur, there is no coupling
between the motion of the various dust shells. Each shell
moves freely as a test particle in a (hypothetical) RN
spacetime with m and Q being the total mass and charge
enclosed in that shell. Hereafter, we shall use the quanti-
ty m to label the dust shells. The velocity u' of each shell
is given by Eq. (4), where Q, E, and e are regarded now as
functions of m.

Accordingly, we defin r+(m), r;„(m), and u, (r) by
substituting the corresponding m-dependent parameters
in Eqs. (2), (5), and (3},respectively. The dust cloud is as-
sumed to be initially regular. In normal situations, the
existence of a regular center implies [14]
E~:E(m =0)=1. If—initially the dust cloud includes a
central Minkowski bubble, Ep ) 1 is possible as well, but
Ep can never be smaller than unity without violating the
regularity of the initial slice.

Let X(m) denote the rest mass of the dust enclosed in
the shell m. It is related to m and Q by

lim u, (r =r (m) }=E~ 1—
m~0

t2
0

1 —Q 1 —Q,'
= —E 1—0

1/2
E,p &0.E2 (9)

Thus, there exists mp&0 such that for each shell with
m &mc, u, (r (m)) &0. According to the above discus-
sion, all these shells collapse into R .S

Note that this result is in a remarkable contrast to the
discussion in Ref. [2] (see Sec. 3 there). In this regard, re-
call that if we look at the radial motion of test particles in
a fixed RN spacetime, we find that in the limit ie~ &&1
(but with fixed E )0) the particles go through R ' . This
is apparent from Eq. (3) when we set r =r, because both
Q and r are fixed. In the charged dust problem dis-
cussed here the situation is different, however, because

Q(m) . dQ, eo
lim = lim =Q'z=

m 0 Pl m 0 dm Ep

where ea=—e(m =0). Here the prime denotes derivative
with respect to m. By assumption, we have 0 & a~i & 1,
and (as we discussed above) regularity at the center re-
quires E~ ) 1. Equation (3) then implies
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dr, „(m) &0. (10)

Proof. It is straightforward to show, from Eqs. (5) and
(g), that for reasonable regularity conditions on the be-
havior of E(m) and e (m) at m =0 [15],one obtains

dr;„r;„(m)= lim
m~0 dm m~0

the relevant RN parameters are determined by the dust
itself. Thus, when we vary e, the parameters Q and r
(for a given m) are changed as well. In particular, in the
limit ~e~ ((1, r /~Q~ becomes ((1 too. Therefore, the
term eQ—/r in Eq (.3) does not vanish in this limit, and
its negative contribution overcomes the positive contribu-
tion of E.

Lemma 2. All the shells in the central region (defined
by m ~rn„ for some m, )0) satisfy

tral part of the dust sphere are subject to shell crossing.
To show this, we choose M ( inin( ma, m, ) and
M'=M —dm (with dm )0 and infinitesimally small). In
view of lemma 1, M and M' collapse into R . At the
(comoving) moment that M' attains its minimal r value
we have, according to lemma 3, r;„(M')=r(M')) r(M) )r;„(M). This, however, contradicts the state-
ment of lemma 2. This contradiction indicates that the
world lines of M and M' must intersect somewhere before
r;„(M') is approached. The occurrence of shell crossing
removes the contradiction, because the redistribution of
the dust shells breaks the conservation of m, E and Q for
each shell.

We conclude, therefore, that all the shells with
m (min(ma, m, ) are subject to shell crossing before they
reach their minimal r value.

IV. INTUITIVE EXPLANATION
FOR THE OCCURRENCE OF

SHELL CROSSING

1+V (1—s0/E0)/(1 —&0)
0

Lemma 3. All the dust shells in R satisfy, at any
fixed moment of comoving time, dr/dm (0.

Proof. Let M and M' be two neighboring shells that
pass through R, with dm =M —M'&0 infinitesimally
small (here the symbols M and M' denote the dust shells
themselves, and at the same time they express their m
values). We define dL(s) to be the (time-dependent)
infinitesimal proper distance between these two shells, as
measured by a comoving observer. According to Eq. (6),
dL is related to dm by dm =Ed% =Ep d V =4mEpr dL,
where dV=4mr dL is the three-dimensional volume ele-
ment. On the other hand, dL is related to dr, the
difference in the r value at a fixed comoving time, by
dr/dL =n". Here n is the (radial) unit vector normal to
the four-velocity u

Imagine now that we remove all the dust shells with
m )M and replace them by an electrovaccuum (RN) ex-
terior. This does not inhuence the geometry of the dust
interior; hence dr(~) and dL(r) are unchanged. One can
easily verify that any radial world line in RN spacetime
satisfies n "=u, . Clearly, this holds also for the world line
of M, which is the surface of the new (hypothetical) dust
sphere. Since normal derivatives are continuous on M,
for its both sides we have dr/dL =u, =u, . This yields
dr/dm =u, /4mEpr . Since u, i. s negative in R (and it
is assuined that both p and E are positive), dr/dm is neg-
ative there as well. ~

In R+, since u, &0, dr/dm is always positive. This
conforms with our simple intuition about normal distri-
butions of matter (i.e. , when spacetime is not too curved).
The transition from positive to negative values of dr/dm
occurs at r =EQ/E„which is always located in T [16].
Note that the negative value of dr/dm in R is directly
connected to the semiclosure of spacelike hypersurfaces
there [and to the fact that r (L) is monotonically decreas-
ing there], which we discussed is Sec. II.

We can now easily prove that all the shells in the cen-

dp'

d7.

1 /2
2)1/2 2m 2 m=u = —(1—E

p p
2 (12)

In the preceding section, the inevitability of shell cross-
ing was proved by showing that the other possibility is
mathematically impossible. It is worthwhile to comple-
ment this proof by an intuitive discussion which explains,
from the positive point of view, why shell crossing must
occur. For that purpose, let us focus attention on the
case ~E~ =const (&1. Let us also assume that the dust
cloud is initially homogeneous (that is, p is uniform on
the initial slice), and that all the shells are marginally
bound (E =1). This would be approximately the case if,
for instance, initially the homogeneous dust configuration
is at rest and is very dilute (nonrelativistic). This is basi-
cally the model that was considered in Ref. [2] (see Ap-
pendix III there).

In general relativity, by contrast with Newtonian
theory, there is no exact spherically-symmetric homo-
geneous solution for charge dust. This is due to the grav-
itational effect of the energy density associated with the
electric field. This energy density always vanishes at the
center, but is in general nonvanishing elsewhere, which
breaks the homogeneity. Nevertheless, as long as the
electric field energy density is much smaller than the dust
density, this effect is insignificant, and a configuration
which is initially homogeneous evolves in an approxi-
mately homogeneous manner. In particular, one finds
that for the case

~
E

~
(( 1 considered here, the

configuration evolves approximately homogeneously as
long as m/r is much smaller than c, . On the other
hand, when m/r becomes comparable to c. , the special
features of the RN geometry become important. For in-
stance, both m/r;„and m/r are -=2c. . The evolu-
tion of our initially homogeneous configuration is
schematically divided, therefore, into two states: the
homogeneous stage, and the bounce stage. This can also
be seen from the equation of motion, Eq. (4), which now
reads
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In the homogeneous stage, the second term in the square
root is insignificant, and the velocity is approximately the
same as in the collapse of homogeneous, marginally-
bound, neutral dust [the constant factor (1—E )'~ does
not break the homogeneity; its effect is equivalent to a re-
scaling of the gravitational constant G, due to the
Lorentz repulsion].

Note that each dust shell reaches the bounce stage at a
different time. To understand the evolution of the dust
configuration in the bounce stage, it is important to know
which shell is the first to bounce. The time slicing
relevant for this discussion is the comoving time. On the
other hand, Eq. (12) [or Eq. (4)] is written in term of the
proper time. Fortunately, in the homogeneous stage, due
to the similarity to the Robertson-%'alker solution, the
proper time coincides with the comoving time. Let us
find, qualitatively, how the lapse of time from the initial
slice to the bounce stage depends on m. Initially, due to
the homogeneity, we have m /r ~ r ~ m . Therefore,
the contraction factor required for a shall labeled m to
approach the bounce stage, [m /r]b, „„„„,,/
[m /r];„;„„»;«, is proportional to e m . The
external shell (i.e., the shell with the maximal m value,
which is the surface of the dust sphere) requires the
smallest contraction factor to approach the bounce stage.
In the homogeneous stage all the shells have the same
rate of contraction. Therefore, the external shell is the
first to bounce.

Under "normal" conditions [i.e., in a weakly curved
spacetime, or whenever the function r(L) is monotonical-
ly increasing], as the external shells bounce before the
internal ones, one would not expect the shells to cross
each other. In Ref. [2] it was presumed that the collaps-
ing shells pass through R ', and the bounce occurs there.
Since the geometry in R ' is "normal" [the function r(L)
is increasing], it was concluded there that no shell cross-
ing is expected in the

~ E~ ((1 homogeneous model. How-
ever, in Sec. III (lemma 1) it was shown that the dust
shells collapse into R . (The statement there is limited
to the shells in the central part of the dust sphere. Never-
theless, for the homogeneous model discussed here, one
can easily extend this result to include all the dust shells. )

The bounce occurs in R, where the function r(L) is de-
creasing, and the shell at the surface now has an r value
smaller than that of its neighboring shells (dr/dm is neg-
ative). That is, in R the "external" shell is actually sur-
rounded by its neighboring shells (the inversion in the
sign of dr/dm occurs in T, where the coordinate r is
timelike and the statement that a shell is surrounded by
another shell is meaningless; see the discussion below).
This situation is directly related to the semiclosure of the
spacelike hypersurfaces, the horizontal dashed lines in
Fig. 1, which was discussed in Sec. II.

It is now clear why the shells must cross each other.
The external shell, which has the maximal m value, is the
first to bounce. At the moment that it bounces, the
neighboring shells, which are now surrounding it, are still
collapsing. This tendency of the external shell to reex-
pand (i.e., to increase its r value), while the shells sur-
rounding it are still collapsing, leads to shell crossing.

This argument is based on the fact that in R

dr /dL WO, and if at some (comoving) moment there are
two neighboring spherical dust shells with the same r
value, the distance between these shells must vanish.
This statement is not valid everywhere: For instance, in
any comoving time slice of a closed Friedmann universe,
there is a spherical shell with a maximal r value, and
dr/dL vanishes there. However, this statement is always
valid in any R region, for the following reason. If
n"=dr/dL vanishes, the (radial) normal vector n is
tangent to dt. On the other hand, since n is normal to a
timelike shell, it must be spacelike. In any R region, dt is
timelike, hence dr/dL cannot vanish.

In the above discussion I preferred, for conceptual
clarity, to discuss the occurrence of shell crossing at the
external shell. It is clear, however, that the same argu-
ment is valid for all the dust shells interior to this exter-
nal one. A particular shell does not "feel" the shells
external to it; hence each shell can be treated as a
"boundary. " Therefore, in this homogeneous model all
the shells are involved in shell crossing.

In the more general, inhomogeneous case, we cannot
show that all the shells are subject to shell crossing. Nev-
ertheless, for a given initial slice with a regular behavior
at the center, we can restrict attention to a small, concen-
tric ball that includes the center. For a suSciently small
ball, the effects of inhomogeneity will be insignificant,
and we can use the above qualitative arguments to ana-
lyze the evolution. It is not surprising, therefore, that for
any regular initial data the central shells are necessarily
subject to shell crossing.

V. DISCUSSION

In this paper I have shown that in the gravitational
collapse of weakly charged-dust spheres, shell crossing is
inevitable. More precisely, for every initially regular
spherical distribution of weakly charged ( ~e~ (1)dust, all
the shells in some vicinity of the center are subject to
shell crossing prior to their bounce.

Spherical dust models, either neutral or charged, are
often used to address various problems in general
relativity —mainly due to their simplicity. This simplici-
ty results from the lack of coupling between the motion
of the various dust shells (so long as the shells do not
cross each other). In particular, the dust sphere's surface
moves as a test particle in a Schwarzschild or RN space-
time, independently of the interior geometry, and
knowledge of how the world line of this surface is embed-
ded in the external (electro-)vacuum geometry provides
us with an important piece of information about the glo-
bal structure. This is true even if we do not know any-
thing about the interior geometry.

Shell crossing, however, breaks down this simple law of
evolution. In particular, the motion of the surface is no
longer guaranteed to be independent of the evolution of
the interior geometry. For simplicity, let us consider
dust configurations for which all the shells are subject to
shell crossing. This is found to be the typical case for
sufficiently homogeneous initial data (moreover, if a given
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configuration does not satisfy this requirement, we can al-
ways focus attention on a sufficiently small central core of
it, imagining that this central core is immersed in electro-
vaccuum. In this way, from any initially regular
configuration we can obtain a smaller configuration in
which all the shells are subject to shell crossing).

If we assume that the shells cross each other without
interaction, then the original surface shell will penetrate
into the dust cloud [12]. The shell which then becomes
the new "surface" will immediately thereafter penetrate
into the cloud, leaving a new shell as the surface, and so
on. The only way to avoid this complication is by assum-
ing that, as a consequence of the shell crossing process,
some sort of interaction (pressure, viscosity, etc. ) will ap-
pear and prevent the shells from physically crossing each
other. This assumption seems reasonable, because shell
crossing is always associated with a divergence of the
dust density, and also a divergence of the dust's shear
tensor. Even if, for some physical system, the dust ap-
proximation is valid under normal (nonsingular) condi-
tions, the extremely high density and shear may break it
just before the shell crossing.

With the presence of such an extra interaction, the
original surface shell will remain at the surface, but it will
no longer move freely. It is clear, therefore, that once
she11 crossing occurs at the external shell, the world line
of the surface will no longer evolve freely, and will neces-
sarily be influenced by the evolution of the dust interior.
Indeed, this inAuence makes it difficult to analyze the
evolution after the occurrence of shell crossing.

What can be the effect of shell crossing on the causal
structure of the spacetime? In order to get insight into
this question, I have analyzed the evolution of several
marginally bound self-similar charged-dust solutions [8],
after the occurrence of shell-crossing I selected these
solutions for their especially simple form [17]. To ex-
plore the causal structure of the self-similar interior I
used the method developed by Ori and Piran to analyze
the causal structure of spherically symmetric self-similar
solutions [18]. To model the local behavior of the collid-
ing dust shells, I assumed that the collision is completely
inelastic. According to this assumption, the colliding
shells cannot cross each other; rather, they are stuck to-
gether, forming a thin massive layer (a delta function in
the mass and charge distributions). The layer is massive,
because in a completely inelastic collision all the matter
enclosed between two neighboring shells is stuck together
when these two shells collide. This massive layer forms,
with zero mass and charge, at the first event of shell
crossing (the event F in Fig. 2, which is located on the
world line of the surface). As time passes, it collects all
the dust shells that intersect its world line, and becomes
massive and charged. The principles governing the evo-
lution of such a massive thin layer were discussed in Ref.
[19] (the equation of motion was explicitly derived in
Refs. [3] and [20] for the case that both exterior and inte-
rior geometries are RN. The generalization to the case of
dust interior is straightforward, however). I integrated
the world line of the massive layer numerically, assuming
that it has vanishing surface stresses.

The results obtained from this numerical integration

FIG. 2. A typical Penrose diagram of self-similar charged-
dust collapse. The dust interior is to the left of the surface (the
dashed line). This surface becomes a massive layer (the dotted
line, denoted ml) at F, the first event of shell crossing. The ver-
itcal line C is the regular center. eh and ch are the event and
Cauchy horizons, respectively. N is the interior null singularity.
The bold lines represent the inner and outer apparent horizons,
which separate the region R +,R, and T . The jagged lines
denote spacetime singularities.

are rather surprising: For all the self-similar solutions
that I have studied, it was found that the massive layer
shrinks monotonically with time, and eventually crashes
to the right-hand RN singularity S2 of the vacuum exte-
rior (see Fig. 2). By its motion, the surface layer crosses
the world lines of all the dust shells. The latter are
presumed to be absorbed in the massive layer in the in-
elastic collision. Thus, eventually, all the collapsing
matter is compressed into the r =0 singularity. A typical
resultant Penrose diagram is shown in Fig. 2. For some
sets of (marginally bound, self-similar) initial data, the
Penrose diagrams are different from this one. However,
in all the cases that I have studied, the resultant Penrose
diagrams have a common feature: There is an "outgoing"
null singularity in the dust interior (denoted X in Fig. 2).
This singularity eventually intersects the right-hand RN
singularity S2 (at the point P in Fig. 2). The massive lay-
er, too, intersects these two singularities at P. Thus, the
RN tunnel is completely sealed by the interior null singu-
larity. Consequently, there is no gravitational bounce
and no other asymptotically Oat universe. Full details of
my analysis of the causal structure of self-similar charged
dust and the motion of the massive layer will be present-
ed elsewhere.

This result, the collapse into a central singularity and
the absence of a tunnel, is in remarkable contrast to the
basic tendency of each individual dust shell to reexpand
into a "new universe. " It is therefore important to un-
derstand the difference in the motion of massive and non-
massive shells. For any nonmassive shell the geometry is
smooth; i.e., the features of the gravitational field are the
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same on its two sides. By contrast, a massive shell may
feel very different gravitational fields in its two sides. In
particular, by its motion the massive layer penetrates into
the region of trapped surfaces J of the interior
geometry (cf. Fig. 2), while its external geometry is still
that of the RN region R . The attractive force induced
by the interior T region overcomes the repulsion of the
exterior R region. The reason for this is simple. In prin-
ciple, the gravitational repulsion in the exterior R can
be overcome by attractive forces, but the gravitational at-
traction in the T interior can never be overcome by
repulsive forces because the T region is one of trapped
surfaces. The T interior thus wins the struggle, and the
massive layer crashes to r =0.

It is important to note that this result, the replacement
of the gravitational bounce by a complete collapse to
r =0, has nothing to do with the density singularity asso-
ciated with the shell crossing. The existence of shell
crossing merely indicates that any attempt to analyze the
motion of the surface of the dust cloud (and hence, the
global structure) must take into account the structure of
the could s interior. It is this interior structure (in partic-
ular, the trapped surfaces in the interior T ) that
prevents the reexpansion and pulls all the collapsing
matter into the central singularity.

The analysis presented here does not exclude the possi-
bility of completely regular evolution (without shell
crossing) if

~

c,
~

& 1. Normally,
~
E

~
& 1 everywhere will im-

ply ~ Q ~
& m, which means that there is no black hole and

no tunnel. However, if we give the infalling dust shells
sufticiently high kinetic energy, m may become greater
than ~Q~ even though ~r.

~

& 1. Such gravitational bounce
solutions of charged dust with

~
E

~
& 1 will be discussed

elsewhere.
Independently of the research, by various people, on

charged-dust collapse, de la Cruz and Israel [3] have
studied the motion of spherical charged massive layers.
This topic was further analyzed by Boulware [20]. For
massive layers with a Minkowski interior and an RN ex-
terior, it was found that a gravitational bounce inside a
black hole is possible, but only if ~E~ & 1 and ~Q~ (m
(again, this requires a sufficient initial kinetic energy).
Here c, is the ratio of the electric charge to the rest mass
of the massive layer. This does not contradict the results
presented here, which were obtained only for the case
~E~ (1. Note, however, that the thin layers discussed

there cannot be made of pure dust, for the following
reason. Let us assume that initially the charged dust
forms a very thin spherical configuration, with Min-
kowski interior and RN exterior. We keep in mind, how-
ever, that this configuration has a finite width (though
very small), and it thus can be regarded as a collection of
many independent, concentric dust shells. The innermost
dust shell feels m =Q =0, and moves as a test particle in
Minkowski spacetime, i.e., with a constant value of u,
reaching r =0 within a finite proper time. On the other
hand, the outer shell feels an RN geometry (with

~Q ~
(m) and tends to bounce before r =0 is reached.

Thus, such an initially-thin dust distribution must spread
out when the outer shells begin to bounce. The rate of
spreading out is virtually independent of the initial width.
One thus finds (even in the limit of zero initial width) that
a thin layer made of pure dust will spread out during the
bounce stage. In order to preserve the layer's zero width,
one has to introduce some finite, negative stress in the ra-
dial spacelike direction [21].

The analysis presented here, concerning the inevitabili-
ty of shell crossing, was carried out before I found the
general explicit solution for charged-dust spheres. The
conclusions of this analysis can also be derived from my
general solution (see Sec. 5 of Ref [8]). I choose, howev-
er, to present my original analysis instead, because of its
simplicity and because it gives a better insight into the
occurrence of the shell crossing.
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