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Improved determination of the heavy-quark potential in lattice QCD
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A new iterative procedure in 6tting data is proposed which can properly correct small nonlinear
effects. Applying this procedure to fit the Polyakov loop correlation functions previously obtained in latee

tice QCD simulations, we are able to eliminate the finite-size boundary effects and obtain the quark po-
tential functions themselves, instead of just parameters for the potentials. The quality of the fits is im-

proved significantly. The potential functions obtained at P=6.0—6.2 scale in fine detail, providing im-

portant further support of the scaling. The improved estimates of the string tension satisfy the asymp-
totic scaling within 97%%uo. In comparison with experiments, the obtained value &o./AL =79+3 indicates
AMs=449+17 MeV, where MS denotes the minimal subtraction scheme. The coupling constant
+=0.43+0.03 agrees very well with experiments, and is also in excellent agreement with the theoretical
value vr/8=0. 39, assuming that the long-distance behavior of QCD can be effectively described by the
Neveu-Schwarz string theory.

One of the important aspects of lattice gauge theory is
the calculation of a static quark potential between
quark-antiquark pairs. Until very recently, the scaling
violation of the string tension, the coefficient of the linear
term which confines quarks, measured in Monte Carlo
simulations, has prevented a unique determination of the
potential in the continuum limit. Recently, we per-
formed a series of extensive simulations [1,2] on large lat-
tices and extracted the potential at large distances. As
discussed there, our results indicate that the string ten-
sion is about 30% smaller than previous calculations [3]
and the coupling constant of the Coulomb term is about
twice as large as previous estimates. More importantly,
these parameters satisfy the scaling relation within about
90% accuracy.

However, several aspects in the commonly used data-
fitting method, which were adopted in Refs. [1] and [2],
are not quite satisfactory. In lattice QCD simulations
one measures the operator-operator connected correla-
tions of the Polyakov loops:

C(R)=Re( X y ( y, z)yx( y, z+xR)),
x,y, z

at R =1,2, 3, . . .,N, /2, where N, (N, ) is the lattice size
in the t (z ) direction. Since (P ) =0, the ( P ) ( P ) term
has been dropped. The quark potential V(R ) is then ex-
tracted from the relation

(2)

where A is a proportionality constant and the second ex-
ponential comes from the periodicity in the z direction.
[There are an infinite number of image charges in the z
direction, and in the x,y directions, too. But due to the
exponential decay, only the closest one is accounted for
in Eq. (2)]. Because of its highly nonlinear nature, V(R )

cannot be obtained directly [5]. Instead, the popular pro-
cedure is to assume a form for V(R ) and fit C(R ) to ex-

V(R )= —a/R+oR . (3)

Neglecting the boundary term and fitting Eq. (3) we ob-
tain the first estimates of a' ', cr' '. Using these numbers,
we can estimate the boundary term and eliminate it, i.e.,

tract the parameters in V(R ) by minimizing

y =g„{[C(r) C(r—)]/e(r)J, where C is the mea-
sured value and e(r) is the error [6]. The parameters
thus obtained at each P are then compared with the
asymptotic scaling. A drawback is that the potential
function V(R) itself cannot be determined. Moreover,
the fitting is sensitive to short-distance points because
C(r ) changes scale exponentially while the errors are of
the same size, so that y is dominated by short-distance
points. (In practice we found [1,2] that, dropping out
R =1—3 data points, the fitting becomes stable. This is
justified on the basis that only large-distance physics is
described by the lattice theory. )

We now show that these two unsatisfactory features in
data fitting can be eliminated or softened by an iterative
procedure. The general idea is that if the nonlinear
effects (terms) are small, one can estimate the effects and
correct them iteratively. First assume the nonlinear
effects are 0 and do a straight fit. Estimate the effects
(this requires some knowledge about the form of the
effect, usually available) and subtract them. Do the fit
again. Repeat the procedure till convergence. This pro-
vides a set of data (and errors) with the small nonlinear
effects corrected. The above procedure can be thought of
as a direct generalization of the iterative methods in
mathematics. If the nonlinear terms are "small, " the
convergence is very fast. In our case, typically two itera-
tions lead to convergence at the 1% level.

In the quark-potential problem, we want to correct the
small second term due to the boundary reflection in Eq.
(2). We estimate the boundary term by assuming
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C(R ) /ZI I(R ) = Ae

IPI N&(V (R) —V I(N —R I]R =1+e
(4a)

(4b)

where V' '(R )=—a' I/R+o' 'R is used to calculate the
correction Z' '(R). [Or, equivalently, one can simply
subtract the second term in Eq. (2).] We then extract the
whole potential by

U(R )= Iln(A ) —ln[C(R )/Z' '(R)]]!N, ,

with errors estimated in the standard fashion:

(5a)
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6U(R )= [ln[C(R )+5C(R )]—ln[C(R )]J/N, . (5b)

U(R ) now has smaller variations and fitting U(R ) to Eq.
(3) is more stable. With the improved estimates for
o'",a" I, we can use them in Eq. (4b) and repeat the pro-
cedure iteratively. In practice, we find that the procedure
converges after two iterations, because Z" varies very
little from one iteration to the next due to the combined
effects of o and a. One can see that Z "(R) is a mono-
tonic function ranging from I to 2. Neglecting these
boundary efFects will lead to systematic errors.

Once converged, the true potential function U(R)
and errors are readily obtained from Eq. (5);
U(R)=const —ln[C(R)/Z(R)]/N, . We use U(R) in-
stead of V(R) to emphasize that the true potential func-
tion can differ froin the analytical form V(R ) in some fine
details; V(R) is only used to estimate the boundary term.
This is justified if V(R) is close to U(R) and the bound-
ary term is small.

With this new fitting procedure, we reanalyze the data
previously published [1,2]. Figure 1 shows the Polyakov
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FIG. 2. Quark potentials at P=6 on the 243X12 lattice
(upper) and at P=6.2 on the 24' X 16 lattice (lower).

loop correlations C(R) and the potential V(R) obtained
using the above method at P=6. 1 on lattices 24 X14.
One can see that the quality of the fits for the potential is
better than that of the direct fit to the correlation func-
tions C (R ). This is because the data points for C (R ) are
drastically suppressed by the presence of X, in the ex-
ponent in Eq. (2), and thus any deviation from the fitted
line is correspondingly enlarged. This is especially clear
for the short- and long-distance points. Clearly the new
fitting method produces a more stable fit with clear physi-
cal content. The errors in the fitted parameters are also
reduced. These features are shared by all the data for
P=6, 6.1, and 6.2. In Fig. 2, the extracted potentials at
@=6and 6.2 are shown along with the fits. The fitted pa-
rameters are listed in Table I. Also listed is the dimen-
sionless ratio 3/cr /AL calculated from the two-loop
asymptotic scaling:

2( g 2p/33 )
—51/121 4m p/33 (6)

The fact that &rr/Al at different P agrees within 97%
accuracy indicates the scaling sets in around P=6. Simi-

0.6—
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TABLE I. cr and a obtained from the iterative procedure.
The scaling ratio &o./AL is also listed.

FIG. 1. The Polyakov loop correlation functions C(R )

(upper) and the extracted potential U(R) (lower) at P=6. 1 on
the 24 X 14 lattice.

6.0
6.1

6.2

0.0343(27)
0.0267(24)
0.0215( 18)

0.48(6)
0.46(4)
0.41(5)

78.9(3.1)
77.9(3.5)
78.8(2.7)
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a =0.43+0.03,
quite consistent with those obtained in individual fits
(Table I), and is in excellent agreement with the
potential-model analysis [9,10] on the heavy-quark sys-
tems cc (a=0.48) and bb (a=0.38). The value for the
string tension from Table I,

&o /Al =79+3, (9)

( I I ( I I ( I I I I

compared with cr =0.18 GeV from the analysis [9,10] of
cc and bb systems, implies

AMs=
' V0. 18 GeV=449+17 MeV,83.5

MS (10)

FIG. 3. Potential functions from Figs. 1 and 2, scaled as in

Eq. (7). All data points collapse into a single universal curve.
This indicates the scaling of potential functions.

lar onset of scaling around P=6 is also observed in the
quark deconfinement transition temperature T, [7,8] and
latent heat L [8].

Scaling is a central issue in lattice QCD simulations be-
cause it ensures a unique continuum limit. The scaling
observed in o., T„I.so far is only single-parameter scal-
ing. Stronger evidence of scaling would be the scaling of
a continuous function at each P. The quark-potential
function at each P obtained from these new fits provides
such a function. This is in fact the motivation of this
work. In Fig. 3 we plot the scaled potentials

U(R)/+o = a/(&crR )++—o.R (7)

at each P with dimensionless distance x =&o R. The
data points nicely collapse into a single curve. This fact
indicates that the potential functions at each P scale in
fine detail, a significant further support for scaling.

A fit to the data points in Fig. 3 gives

where MS denotes the minimal subtraction scheme. (See
Table 3 in Ref. [2] for some details. ) From this QCD
scale, we can learn some basic physics. At P=6—6.2, the
lattice spacing a =0.07—0.09 fm [via Eq. (6)]. Thus the
range of potential we measured is 0.2 —1 fm, which is
about the size of these cc (R,„~0.5 fm) and bb

(R,„s~ 0.2 fm) systems.
It has been suggested that the long-distance behavior

of QCD can be effectively described by string theory
[11,12]. The effective coupling term, the second term in
Eq. (3), originated from the "fiux-tube" fiuctuations, and
has different coeKcients in different strings. For the sca-
lar strings [11], a=rr/12=0. 26. For the Ramond and
the Polyakov strings, a=0 [12]. For the Neveu-Schwarz
strings [13], a=m. /8=0. 39 [12]. Our results therefore
strongly favor the Neveu-Schwarz string.

Finally, we point out that this iterative approach is
quite general. In particular, the iterative procedure out-
lined in Eqs. (2), (4), and (5) can be directly applied in
simulations on finite-size systems to eliminate finite-size
boundary effects.
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